ÚLOHA VÍCE TĚLES V NEBESKÉ MECHANICE

Rozměr: px
Začít zobrazení ze stránky:

Download "ÚLOHA VÍCE TĚLES V NEBESKÉ MECHANICE"

Transkript

1 ÚLOHA VÍCE TĚLES V NEBESKÉ ECHANICE SPECIFIKACE PROBLÉU Řeš úlohu ěles zaeá aléz pohyby ( foulova pohybové ovce a aléz ech řešeí) hoých bodů (esp ěles př zaedbáí duhoé oace) a eé působí pouze vzáeé gavačí síly podle Newoova gavačího záoa Uvažue bodů o hoosech eé se obecě pohybuí a epohyblvý počáe ecálí souřadcové sousavy (vz ob) časově poěé polohové veoy bodů vzhlede ozače Na aždý bod ( ) působí přažlvé gavačí síly ( ) osaích bodů F ŘEŠENÍ Ozače polohový veo -ého bodu vzhlede -éu ao Pa zřeě e () Podle veoového vau Newoova gavačího záoa (vz Úloha dvou ěles) po síly F plaí F de e uvezálí gavačí osaa a e velos veou (vzdáleos bodů a ) Pohybová (veoová) ovce -ého bodu á poo va F Po áceí dosáváe vzah po veo zychleí -ého bodu a záladě poloh a hoosí osaích bodů ve vau a () Jedá se o eleáích dfeecálích ovc duhého řádu po ezáé [ y z ] fuce závslos polohy -ého bodu a čase apř ve vhodě zvoleých aézsých souřadcích y z s počáe v bodě Rovcí () říáe pohybové ovce po úlohu ěles v absoluích souřadcích Nechť bod (ěleso) e výzaé apř í že á ze všech evěší hoos (Sluce po plaeáí sousavu; Zeě po ěsíc a další uělá ělesa v gavačí pol Zeě)

2 Odvodíe pohybové ovce po pozoovaele a pohybuící se bodě Ozače podle () polohový veo bodu vůč Pše ovce () epve po a poé po osaí Dosaee () (4) Ve (4) se epve od sčíaců odděll sčíace po a poé se uvážl že podle () Odečeí ovce () od (4) dosaee (5) Zde se opě využl () spolu se zavedeí edodeových veoů Vyděle z posledího sčíace zvlášť -ý čle Dosaee Pví sčíaec éo ovos sdužíe s pví sčíace pavé say v (5) a duhý sčíaec podobě s duhý v (5) Zísáe (5) ve vau odud (6) Jedá se o dfeecálích ovc řádu po ezáé [ ] ζ fuce závslos elaví polohy -ého bodu vůč (pohybuícíu se) bodu apř ve zvoleých aézsých souřadcích ζ s počáe v Těo ovcí říáe pohybové ovce po úlohu ěles v elavích souřadcích Všěe s že levá saa (6) (aulovaá) by byla pohybovou ovcí po poblé dvou ěles a (epleovsou) Pavá saa v (6) vyadřue zv ušvé zychleí osaích ělesspecálí případ po úlohu ěles: Rovce (6) po a pa dává

3 (7) ( ) Po pa důležý e případ zv oezeé úlohy ří ěles dy předpoládáe že (uěle vyobeé oscé ěleso vůč Ze a ěsíc eve Sluc zaedbaelé hoos) Pa (7) přede do vau ( ) (8) Pví ovce (8) e pa epleovsá ovce po ěleso př uísěí pozoovaele do cea Duhá ovce (8) e ovce po ělíso ovlvěá ušvý zychleí ělesa a pavé saě Nepoužívaěší aeacý odel (8) e po ěleso coby Ze ěleso coby ěsíc (eveuálě Sluce) a ělíso coby uělá dužce (oscá aea) Jeslže avedee do ovy dáhy ěsíce ole Zeě bude se v éo ově vale pohybova poože se zachovává celový oe hybos e sředu hoos sousavy odel (8) pa voří dvě dfeecálí ovce řádu po ezáou veoovou fuc [ ] popsuící polohu ělesa (ěsíce) v ově pohybu daé sřede cea (Zeě) a aváděcí ychlos a ezáou veoovou fuc [ ] popsuící polohu ělesa (dužce) v éže ově vždy vůč sředu cea (Zeě) Osu souřadcové sousavy volíe a aby pocházela bode avedeí ělesa (vz ob) Zřeě e [ ] ( ) ( ) Veoové dfeecálí ovce (8) pa předou do (dvoásobého poču) saláích dfeecálích ovc vau ( ) ( )

4 [ ] ( ) ( ) ( ) ( ) ( ) ( ) [ ] Př ozačeí fucí 4 a zavedeí fucí 4 4 lze sousavu čyř ovc duhého řádu převés a sousavu os ovc pvího řádu vau ( ) ( ) ( ) ( 4) Teo va lze apsa foálě veoově ao 4 [ ] f S vae fuce f [ f f ] T 8 vsoupíe do sofwae v ATLABu a po řešeí sousavy dfeecálích ovc využee poceduy ODE ebo ODE45 Počáečí podíy [ ] T budou ásleduící: 8 Polohové po ěleso (ěsíc) cosβ ; s β Paaey a β e učea poloha ěsíce (ělesa ) v čase - vz ob (edy v oažu avedeí dužce ) Polohové po ěleso ; 4 Paaee e učea vzdáleos bodu avedeí dužce od sředu cea (Zeě) Rychlosí po ěleso π π v cos β ; 5 6 v s β Paaee v e učea (oažá) ychlos ěsíce (ělesa π ) vůč ceu Sčíaec v agueu gooecých fucí zaeá že ychlos e (přblžě) olá a původč

5 4 Rychlosí po ěleso v cosβ ; s β 7 8 v Paaey v a β e uče veo v aváděcí ychlos dužce (ělesa ) Pozáy: ) á-l bý sulace eálá e časová záladí edoa (seuda) přílš alá Zavedee poo ezávsle poěou τ ao τ de e původí časová poěá v seudách a osaa udávaící ol seud aí ové časové edoy Např e-l τ v hodách e 6 e-l τ ve dech e 864 Po aždou dfeecovaelou fuc f poo plaí íso časových devací d d df d df dτ df dτ d dτ do levých sa dfeecálích ovc dosazuee d dτ ) Vyee-l a pavých saách dfeecálích ovc velču obeví se ve duhých sčíacích poě ho p Po odelovou úlohu Zeě ěsíc alé ěleso e (ěsíc e 8 á lehčí ež Zeě) Paae K á po Ze hodou 4 K / s 4 98 / s Zavedee-l 4 osau K číselou hodoou 98 vyadřuee vzdáleos (polohové souřadce ež sou výslede řešeí sousavy dfeecálích ovc) v egaeech ) Hodoy a v vysyuící se v počáečích podíách po ěleso (ěsíc) lze vol (poud ezáe přesěší hodoy) ao sředí vzdáleos Zeě-ěsíc a sředí ychlos pohybu ěsíce ole Zeě po případ uhové dáhy Tyo paaey sou 84 v s / 4) Po případ odelu Sluce-Zeě-alé ěleso by bylo 6 p (Sluce e 4 á hoěší ež Zeě); K / s 4 / s Počáečí podíy a v po Ze lze vol opě ve vau sředí vzdáleos Sluce-Zeě a sředí ychlos Zeě ole Sluce po případ eí uhové dáhy Pa e 496 v 98 s /

4. Analytická geometrie v prostoru

4. Analytická geometrie v prostoru . alcá geomee v oso V aalcé geome so geomecé obe chaaeová omocí číselých údaů. Vlasos geomecých obeů so sdová v edom e í osoů: ooměý eledovsý oso, o. E (oso), dvooměý eledovsý oso, o. E (ova), edooměý

Více

Přijímací zkoušky do navazujícího magisterského studia Učitelství fyziky pro 2. stupeň ZŠ a Učitelství fyziky pro SŠ pro akademický rok 2010/2011

Přijímací zkoušky do navazujícího magisterského studia Učitelství fyziky pro 2. stupeň ZŠ a Učitelství fyziky pro SŠ pro akademický rok 2010/2011 Přijíací zkoušky do avazujícího agiseského sudia čiesví fyziky po supeň ZŠ a čiesví fyziky po SŠ po akadeický ok / ) Při akceeačích závodech sauje závodí auoobi z kidu a ěří se čas, za keý uazí dáhu 4

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

FOURIEROVA A LAPLACEOVA TRANSFORMACE,

FOURIEROVA A LAPLACEOVA TRANSFORMACE, FOUIEOVA A LAPLACEOVA ANSFOMACE, OPEÁOOVÉ CHAAKEISIKY DVOJPÓLŮ Fourierovy řady prodlužováí periody Prodloužeí periody při zachováí šířy ipulsu π sižováí záladí frevece ω = frevece, eré jsou u raší periody

Více

Souhrn vzorců z finanční matematiky

Souhrn vzorců z finanční matematiky ouh zoců z fčí ey Jedoduché úočeí polhůí předlhůí loí yádřeí Výpoče úou Výpoče úou poocí úooé szby Výpoče úou poocí úooých čísel úooých dělelů Výpoče úou součoý zoce oečý pál př edoduché polhůí úočeí oečý

Více

ě ú ě ú ů ě ů ě é ú ž ú ě Ú ů ů ě é š ů ě ě Ú ě ě ě ň é ň é Ú é é ěž é é ž Ú ž ž ž ů ě ě ž ě é ě ě ů é ň Č ž é Č ě Č ň ů ú ěž ú ú Č Ú ě ú ů Ú ě ú ě ů Ú é é ě é ú ě ú Ú ě é ú ú ů ú ď Č Ř é ě ú ů ů ě ě š

Více

éž á ý š ú ř ž ě ě áž é č é á ž ě á á ě ěž é á č ř é ú č é á ř ý ž ý č á ý ě ý ž Í é é á Í ě Ů ě é ř š š č á ý ž ř ů é é á ě ě ý á ů á ě ě š á é á ě é

éž á ý š ú ř ž ě ě áž é č é á ž ě á á ě ěž é á č ř é ú č é á ř ý ž ý č á ý ě ý ž Í é é á Í ě Ů ě é ř š š č á ý ž ř ů é é á ě ě ý á ů á ě ě š á é á ě é č ý ů ě ý ě ů ř č á ě ý ě ť á ě ě ž ý ě ý ř á Í ů á ý č ý á ě é ě é ůž é á ř š ě ř ě ř č é ř ě ý ě ó ů ě č ž é ě ý ď é á ň á ě ě ě ě ý é č á Í á ě ě é á á ě é ě ř áž á š ě ř ž ř ěó é žč á ž é á ě é ř áž

Více

Í č é ú ú ď š á ú ú Í č Í č é ž š é á é Í é ě ď á úď Ů ě č á ě ě á é ď Í ě é č á Ž ě á Í á ď ě ě é ň é ž é ě ě ě á á á Í Í áš ě č Í ě Ů ž á á Í é é á

Í č é ú ú ď š á ú ú Í č Í č é ž š é á é Í é ě ď á úď Ů ě č á ě ě á é ď Í ě é č á Ž ě á Í á ď ě ě é ň é ž é ě ě ě á á á Í Í áš ě č Í ě Ů ž á á Í é é á á á é ď ě é á ť ě é ďá á á č Í é ď š ě á á É ž č ď š š é ě é ď ď é ě ť š č á ě ď á ě é č ě ě á é č é Ů ž č ť čů č š ě š ě é é á é š š č ť áí Í č ť é č ď é ž á ě á á ě ě ě š á á ě ž é č Í ž č ž é é éč á

Více

ž ž í ě ů í ě í é ě ě č ěž ů ř ě ě č č á š ě ý ř í ě ů ě á š ě ě ý ž čů č á í ý ů ří ě í č éč ě á ší ž á á í ě í ř í á í ý ě í í ř í á ě ě ě íš š ě í

ž ž í ě ů í ě í é ě ě č ěž ů ř ě ě č č á š ě ý ř í ě ů ě á š ě ě ý ž čů č á í ý ů ří ě í č éč ě á ší ž á á í ě í ř í á í ý ě í í ř í á ě ě ě íš š ě í í ť í ť í í Č č úč í ý í č í ě ě í Á í ř í á í í š í íš š í ě á í í é ě á ě ě í š ě í ú ý ř ě í š ě í ú ý ř í ý é š á í í ý ž ý ůž ý á í č ě ě í čí í á ů ě ě ží á ří š í č ří ů ě ě š š ě í ě á Ú ý č é

Více

ř ř ř ř ř ú é é ř ď ů ř ř ř ú ů ř ů ú ř é ř ř ř ř é ř é š ú š š ř ř ů ů é ř Ž ř š ř ř ř ť ř é ď š ř ř ř ř ů ř ž ů é

ř ř ř ř ř ú é é ř ď ů ř ř ř ú ů ř ů ú ř é ř ř ř ř é ř é š ú š š ř ř ů ů é ř Ž ř š ř ř ř ť ř é ď š ř ř ř ř ů ř ž ů é Č Ó ř ř ř ř ď ú ů ů ř ř ř ř ř ř š ř ř ď ř ď é ř é úř é ř ř ř úř é Č ř ř ř ř ř ú é é ř ď ů ř ř ř ú ů ř ů ú ř é ř ř ř ř é ř é š ú š š ř ř ů ů é ř Ž ř š ř ř ř ť ř é ď š ř ř ř ř ů ř ž ů é ů ů ř Š Š é ř ř ř

Více

á í í Č ť ó í íď ý í í íř ý ř ě Í č ť í á š á ý é ů á í ť č Í Í é ď ž é ž ť é éř ů í š ší ý í Í é á É í ě é ř í Í í é í ř ě á ó í í ě š ě ý á ř í á í

á í í Č ť ó í íď ý í í íř ý ř ě Í č ť í á š á ý é ů á í ť č Í Í é ď ž é ž ť é éř ů í š ší ý í Í é á É í ě é ř í Í í é í ř ě á ó í í ě š ě ý á ř í á í á Č ť ó ď ý ř ý ř ě Í č ť á š á ý é ů á ť č Í Í é ď ž é ž ť é éř ů š š ý Í é á É ě é ř Í é ř ě á ó ě š ě ý á ř á ě é Í Ž ý ť ó ř ý Í ů ů ů š Í ý é ý ý ů é ů š é ů ó Žá Í á Íř ě šř ó ř ě é ě é Ě š č á č

Více

Č Á ě Ě Á é é ě ďě ě ů ú é é é ě é é ď ď š ě Č Á ě ú é ů š š Ť ď é Ž ě é š ů Č ů ů é ů ů ě é ě é é é ě Č Á ě Ě Á é Ř ě é ú ó é š é Ž Ž é ě é ě ě é š éž é ě ě š ě ě ě š ě š ě ú é š ě ů Ěú Á ě Ž š é š ě

Více

ž é ó ů ě é ě ÁČ Ý Á š ě č š ž š é š é ú é ě Š é ó č ě š é é ďé é é é ž š š é ž ě é š ť ů š ě ž é č é ě ž é ě é ž š ě š ú é ěž ě č ě ž ě é ť ž é é ě é

ž é ó ů ě é ě ÁČ Ý Á š ě č š ž š é š é ú é ě Š é ó č ě š é é ďé é é é ž š š é ž ě é š ť ů š ě ž é č é ě ž é ě é ž š ě š ú é ěž ě č ě ž ě é ť ž é é ě é ě Č ž é ó ů ě é ě ÁČ Ý Á š ě č š ž š é š é ú é ě Š é ó č ě š é é ďé é é é ž š š é ž ě é š ť ů š ě ž é č é ě ž é ě é ž š ě š ú é ěž ě č ě ž ě é ť ž é é ě é é é ě ě é č č é ě ě ž ě ů š úě ó ž š é ú é ě č

Více

é ř ř ř ě ř é é é é ž Č š é š ř ň ž ř ť Č š é é ú ě ě ů é š ž ě š ž é ř é ž ř ě š ě é š ž ě ě š ř ů ž é ě ž é š ž ě š ň ž ř ě ř ř ň é ř š é ř ř š ř š

é ř ř ř ě ř é é é é ž Č š é š ř ň ž ř ť Č š é é ú ě ě ů é š ž ě š ž é ř é ž ř ě š ě é š ž ě ě š ř ů ž é ě ž é š ž ě š ň ž ř ě ř ř ň é ř š é ř ř š ř š ř é é é š ě ě Ú ř Ř Č ě ř š ř é ř ž ž Ř Č ř Ť é é ž ž é ž ž ů š ž ě š š ž ě ě š ř ů ř ě ř ř é ě ů é ě ř ž š ě ř Č é é ř ř ř ě ř é é é é ž Č š é š ř ň ž ř ť Č š é é ú ě ě ů é š ž ě š ž é ř é ž ř ě š ě é

Více

rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil

rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil 3.3 Obecé soustav sl soustava sl seskupeí sl působících a těleso vláští případ: svaek sl (papsk všech sl soustav se potíaí v edo bodě) soustava ovoběžých sl (papsk všech sl soustav sou aváe ovoběžé) ová

Více

Á Ž č Ž ó ě č ý ž Ž ó ě Č Í ý Á Ž Ž č Ž ó é č ý Ž Ž Ó ě č ý Ž ř ě é š ě é ý č Ž Í ř Í č é ó é é Č é Ž č ž š č č ř ě ě ý ř ž ž é š ě ž ÍŽ é Ž Ž ý Ž ř Ž

Á Ž č Ž ó ě č ý ž Ž ó ě Č Í ý Á Ž Ž č Ž ó é č ý Ž Ž Ó ě č ý Ž ř ě é š ě é ý č Ž Í ř Í č é ó é é Č é Ž č ž š č č ř ě ě ý ř ž ž é š ě ž ÍŽ é Ž Ž ý Ž ř Ž ř ě ý ř é č ň ř ú ě é Š ý ž č Í Ž ř Ž Ž ý ě ě ě ě ř ň ř ř ú ě é š Í ř Í Í ů Í č Í Ž ř ř ý ř ě ř ó ř é ň ř ú ě é š č ý ý ř é ř ě é ý ň ý ř Ú ě é ř š ě é é č é ř č Ž é Í ó č ř ů č é é Á Ž č Ž ó ě č ý ž Ž

Více

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =

Více

β. Potom dopadající výkon bude

β. Potom dopadající výkon bude Učebí ex k předášce UFY Feselovy vzoce a jevy a ozhaí dvou posředí II Odazvos a popusos Ve vakuu je plošá husoa oku zářeí dáa Poygovým vekoem S c ε E B a zářvos (W/m je defováa jako časová sředí hodoa

Více

ě ří č č ě ě č ě á í ě ýš ří ě č ě í É á ý ář é ř č é ř í č ě č é ř í č ě ř č ý č š č á č í á ě ě í ř š í í ř é š č í á č í á Í š š ě ř ů á čů áš ř é

ě ří č č ě ě č ě á í ě ýš ří ě č ě í É á ý ář é ř č é ř í č ě č é ř í č ě ř č ý č š č á č í á ě ě í ř š í í ř é š č í á č í á Í š š ě ř ů á čů áš ř é Ý á í ě č é í í č í á í ě č ě č í á í ř é č í á ý í č í á í š í ě č í ě á í ž á ě ů ř á é č š ě é é í í é š é á é í č ě í í á é ú á é č á á ř á í ě ěř ě č í á í á ý í č í á í š í ě č í ě í Ž á í é š é

Více

Č š ř ř ř ř š ř Č Ř ň ž ř ř ý ř ř ž š ž š ř ň ý ř ú ý ř š ř ů ý ú š ž ž ř ř ř ž Ž š ř š Ž ř ž š š

Č š ř ř ř ř š ř Č Ř ň ž ř ř ý ř ř ž š ž š ř ň ý ř ú ý ř š ř ů ý ú š ž ž ř ř ř ž Ž š ř š Ž ř ž š š ý š Ú ž š ž š ý ž ř Ť šť Č ý ň ř ž ú š ý ž ý ř ů ž ž ř ř ý ů š ň ý ú ř šť š ý ú ž ý ú ó ú š š ů ř Č š ř ř ř ř š ř Č Ř ň ž ř ř ý ř ř ž š ž š ř ň ý ř ú ý ř š ř ů ý ú š ž ž ř ř ř ž Ž š ř š Ž ř ž š š ř Ž ý

Více

ý ě é ř é é ý Č ř Ž Ý ě é ř é ř ž ř ě Ý ě é ř č ě ř é č ě ř Í ý č č č č é ř ě š ě ý ř ý ý ř ě š šť ů ř é ú é ž č é ř é ř š ý ů ř é é ř č č é é ě ž ý ě

ý ě é ř é é ý Č ř Ž Ý ě é ř é ř ž ř ě Ý ě é ř č ě ř é č ě ř Í ý č č č č é ř ě š ě ý ř ý ý ř ě š šť ů ř é ú é ž č é ř é ř š ý ů ř é é ř č č é é ě ž ý ě úč ý ě é ř ř é Á Í ÁŠ Í Ý Ě ŘÍ Í ď Č Č š ě ě ě ó č ý ě éř ř é č é é ě č č ě ý ě éř š ř Ž ř Ž č ů č ě ř Í š ž ý ě é ř ř Ž ě č ř ů č č ý ě š é ě é č ě Ž ý ž ý Ú é č ý ý ě ó ř č ě Ž ř ě ý ě é ř é é ý Č ř

Více

3.3.3 Rovinná soustava sil a momentů sil

3.3.3 Rovinná soustava sil a momentů sil 3.3.3 Rová soustava s a oetů s Předpoady Všechy síy soustavy eží v edé rově. Všechy oety sou oé a tuto rovu. *) Souřadý systé voíe ta, že rova - e totožá s rovou s. y O *) Po.: Sový oet ůžee ahradt dvocí

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský socálí fod Praha & EU: Ivesujee do vaší budoucos Ekooka podku aedra ekooky, aažersví a huaích věd Fakula elekroechcká ČVUT v Praze Ig. učerková Blaka, 20 Úrokový poče, základy fačí aeaky (BI-EP)

Více

á ó ší ř ě á ě ě á í í í é ří ž Í á ě Í š í í í ó í ě é í í é ř Í é í ť í ří š ě á éž ž á ž á áá á í í č ě ř č é ď Ú á é ě ě É á š ě í Ž á í íč Í É ř

á ó ší ř ě á ě ě á í í í é ří ž Í á ě Í š í í í ó í ě é í í é ř Í é í ť í ří š ě á éž ž á ž á áá á í í č ě ř č é ď Ú á é ě ě É á š ě í Ž á í íč Í É ř ě í Íč í é íž ě Č é á ť ž ší ť ř č í á í ž ř ě é ř ž á í ů é ř ě á č é é ě ř Íž á š ěí Í ší Í š Ě ří é é ž í č ý ů á í ě é ř í č ě š Ž ží á í í é í ě š č í í í í á í é é á Í ó í ž ě á íš é é č éé ť á ó

Více

š ř ě ř š é ř é ř í é á í á ě ě í í ěř í ř ří ě ř Ž í é ě á í ě í é á í á ě í á í ů ě í ý ů á áš í á ří ář ří í ň í í í ž š ů ěř í áš í í á í é á á á

š ř ě ř š é ř é ř í é á í á ě ě í í ěř í ř ří ě ř Ž í é ě á í ě í é á í á ě í á í ů ě í ý ů á áš í á ří ář ří í ň í í í ž š ů ěř í áš í í á í é á á á řá í í ě Č é í ří é ě ý í Ž ř ř í á á řá á í í í í ě í í á ě Žá é ář ě é á ě é á ř í ší ů ř á í řá é é é í ř í á í é á ě Žá é ář ě é á ě é á ř í Ší ř á í řá é é é í Č Žá ě á í ě ř í á ý ě í é á í é á í

Více

á í ě ý ďě í í í í í í ř ě á íč ý ů ě ž í ě ý ě ý í ý ě á í í ří ě í í í í ý š í é é á í í á á ě ů á í ě á á í íš é ó ě í í í é í á í č ý ďě ě á á ý ý

á í ě ý ďě í í í í í í ř ě á íč ý ů ě ž í ě ý ě ý í ý ě á í í ří ě í í í í ý š í é é á í í á á ě ů á í ě á á í íš é ó ě í í í é í á í č ý ďě ě á á ý ý á ě ý ďě ř ě á č ý ů ě ž ě ý ě ý ý ě á ř ě ý š é é á á á ě ů á ě á á š é ó ě é á č ý ďě ě á á ý ý á Í š ě á é Í ř řě ž á ý č é ě á ě ě ůé ý č ů é ž á á ř ž á ň ý á á ě ř ý á ů š č á á ž á é č é ó ě á ů

Více

ř Á Á Í ž Í á í ří ů ž ří ě é é á á í ě ý í á é á ří Á á ř ď ž ó í ěč Í á é á é ě ě ý ží á ý á Á ě č é á ň Í ě ě ří š ě ě ě ří Ú á ě Í á ě č ó Ě ě ř í

ř Á Á Í ž Í á í ří ů ž ří ě é é á á í ě ý í á é á ří Á á ř ď ž ó í ěč Í á é á é ě ě ý ží á ý á Á ě č é á ň Í ě ě ří š ě ě ě ří Ú á ě Í á ě č ó Ě ě ř í ř Á Á Í ž Í á ř ů ž ř ě é é á á ě ý á é á ř Á á ř ď ž ó ěč Í á é á é ě ě ý ží á ý á Á ě č é á ň Í ě ě ř š ě ě ě ř Ú á ě Í á ě č ó Ě ě ř ěř ě ř ý á á č ě ř ř é ř ó ó ř á á ů á ú ě š á ě ě ě ě ůá ě é ý ř

Více

Finanční management. Co je inflace? Reálný a nominální diskont. Zahrnutí inflace do výpočtu NPV

Finanční management. Co je inflace? Reálný a nominální diskont. Zahrnutí inflace do výpočtu NPV Fačí maageme Zahuí flace do výpoču NPV Co je flace? defce měřeí pomocí CPI, PPI, defláou eálá a omálí velča měřeí v peěžích jedokách ebo v kupí síle běžé a sálé cey Reálý a omálí dsko zaedbáme-l daě (Fshe):

Více

Č Ú é Ý ĚŽ Ú Ú é ů ů ě ú ů Ú ú ů ů Ú ů ú ů ů é Ú Ú é Ú ů Ů ú Ň ú Ů ú ŠÍ Í ů ě é ú ú ě ě ů ě ě ě

Č Ú é Ý ĚŽ Ú Ú é ů ů ě ú ů Ú ú ů ů Ú ů ú ů ů é Ú Ú é Ú ů Ů ú Ň ú Ů ú ŠÍ Í ů ě é ú ú ě ě ů ě ě ě ě ú ú Í ě ú ú ú ú ě ě ů ě ú ě Č ú é ě ú ú Ú Ž é ú ě é ú ě ě ů ě é ú é ů Ů Ž é Ů ú ú ů ú ů ů ú ů é Ž ú ů ě ě é Ů ů ú ě ú ů Č Ú é Ý ĚŽ Ú Ú é ů ů ě ú ů Ú ú ů ů Ú ů ú ů ů é Ú Ú é Ú ů Ů ú Ň ú Ů ú ŠÍ Í ů ě é

Více

Ů ř á á ú á á Ž ě ě č á ý č ú ý ř š ů ě ý á ř ů čá č ě ě ě ý á ú ř é ú á á á ú á á ú á á Ú š é é řá á á řá ř é ě ý ě ž Ú Ú ř ě ú á ř š Í á Í řá á ě ý

Ů ř á á ú á á Ž ě ě č á ý č ú ý ř š ů ě ý á ř ů čá č ě ě ě ý á ú ř é ú á á á ú á á ú á á Ú š é é řá á á řá ř é ě ý ě ž Ú Ú ř ě ú á ř š Í á Í řá á ě ý á á ě ě ě úř á ě ě Á á á Íú á á á á č ý ř á á á č ú á á řá ě ě š ř ů á á á á á á ř č áš č Ú ě ý ú ě á ů ú ě á č ř úř á ě ě ě ú á á ÁĚ š á úř á ě ě ě č Ů ř á á ú á á Ž ě ě č á ý č ú ý ř š ů ě ý á ř ů čá

Více

Á Í Á ý ý č č č ý ý č é ď Š Č ř ř ý ý č é ť é č é é é ř ř é ý ř ý ý ý ý ý ř č é č š č ď ř ř Ě Ý é č Č č č š Č č Š š š č é č é č ý ř ý ř ó ř ř é č Ž č

Á Í Á ý ý č č č ý ý č é ď Š Č ř ř ý ý č é ť é č é é é ř ř é ý ř ý ý ý ý ý ř č é č š č ď ř ř Ě Ý é č Č č č š Č č Š š š č é č é č ý ř ý ř ó ř ř é č Ž č Ý Á Í Í ř é ř ý ů č č ř ď ď š é č é č č č ú ů ů č č ř ů é č ř ů č ý š Í č ř ů ý ý ř Í č š ýč ř ů č Í ú č ú ů Í š š ř ů ň é é ř é š é č ř č é ř š ú é ř č ý é ř š é é Ú ř č ý é ř š é é é ý é č é ý Á Í Á

Více

Základy teorie chyb a zpracování fyzikálních měření Jiří Novák

Základy teorie chyb a zpracování fyzikálních měření Jiří Novák Zálad eore chb a zpracováí zálích měřeí Jří ová Teo e je zamýšle jao pomůca pro vpracováí laboraorích úloh z z Je urče pouze pro sudjí účel a jeho účelem je objas meod zpracováí měřeí Chb měřeí Druh chb

Více

é č é ř é č ů ě é ý ů ů ž á š ě ř š ř ě Ú ě ý ě ů á ů ř á ů Č ř ě č ú á ý ž ř ů ů é ž č š ě ý ýš č ř š Žů á š š ě é ů ř ý ě é á ž á ř ř ě á á ř ř ž ž

é č é ř é č ů ě é ý ů ů ž á š ě ř š ř ě Ú ě ý ě ů á ů ř á ů Č ř ě č ú á ý ž ř ů ů é ž č š ě ý ýš č ř š Žů á š š ě é ů ř ý ě é á ž á ř ř ě á á ř ř ž ž ě ř é č Ú ž é ě ú ř á ý á Č ř é š ž ď ž žč ř č ě č é ž á á ž ář ě ž č á ý á é č ň é é ř ř á ž č ě á Ž ě ý ř ě č á ř ž á á č ý řá á š ó á á á řá ř ě š á š éč é é ě ě á é é š é ě á Ž č é č ě ě ý á ý š ř

Více

Světlo v izotropním látkovém prostředí a na rozhraní izotropní bezztrátové dielektrikum je charakterizováno skalární permitivitou ε = εε.

Světlo v izotropním látkovém prostředí a na rozhraní izotropní bezztrátové dielektrikum je charakterizováno skalární permitivitou ε = εε. Učebí ex k předášce UFY2 Feselovy vzoce a jevy a ozhaí dvou posředí I Svělo v zoopím lákovém posředí a a ozhaí zoopí bezzáové delekkum je chaakezováo skaláí pemvou ε εε a pemeablou μ μμ (kde μ po emagecké

Více

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti Odezva a obecou periodickou budící fukci Iva Períková Kaedra mechaiky, pružosi a pevosi Obsah Fourierovy řady Odezva a polyharmoickou fukci Odezva a obecou periodickou fukci Odezva a jedokový skok Příklad

Více

é ň Í Í ď ě ď Š Š Á Č Č Ú Á Ž Ů Á Á Á Á Á Ř Ž Á Č ČÁ Ý č ě ý č

é ň Í Í ď ě ď Š Š Á Č Č Ú Á Ž Ů Á Á Á Á Á Ř Ž Á Č ČÁ Ý č ě ý č é ň ý č Č Ú Š Š Á Č Á č Ý č ě č é ň Í Í ď ě ď Š Š Á Č Č Ú Á Ž Ů Á Á Á Á Á Ř Ž Á Č ČÁ Ý č ě ý č Š Š Á Č Á č Ú Á Ž Č é Č ý ř ý ý ž ň ě ý č ě čč š ě ě ýú č é ň é Ř ů č Ž ý ů ě č č ů ř Í š Í ŽÍ Á Í Í Á Ě Í

Více

Nalezení výchozího základního řešení. Je řešení optimální? ne Změna řešení

Nalezení výchozího základního řešení. Je řešení optimální? ne Změna řešení Sipleová etoda: - patří ezi uiverzálí etody řešeí úloh lieárího prograováí. - de o etodu iteračí, t. k optiálíu řešeí dospíváe postupě, krok za kroke. - výpočetí algoritus se v každé iteraci rozpadá do

Více

ř ř ř ď úř ř é ě ě ř ř ř ř š ě š ř ě ř ě ě š ř ů ť ě ě ě ř é ž ž ě ř Ž ž ó é š ě ř ě ř ě ř é é Ž ě ř ě ó ú é ě ě ů ěš é úř úř é ú ě žš é ú ě ú ů ěš

ř ř ř ď úř ř é ě ě ř ř ř ř š ě š ř ě ř ě ě š ř ů ť ě ě ě ř é ž ž ě ř Ž ž ó é š ě ř ě ř ě ř é é Ž ě ř ě ó ú é ě ě ů ěš é úř úř é ú ě žš é ú ě ú ů ěš ě ú Ž ě Č ú ů ě ř ů Ú ěř ě ě ř ů ů š é ě é Ž Ť é ď ř ě é ř ř ě ř ě ř ů ů ž ě ů ě ř ř ř š é ř é Ú ř š Í ď ů ř ú ě é úř Ž ě ů ěž é ú Č ř ů ú Č š ě é é é ř ů ú ů ů ř é ú ě š ř é ě ž ů é ě ě ž é é řď š ř ě

Více

ř ě á é á č ě ž ž é ř č ýš é é ř ě á é á ž ů á é ž á ů

ř ě á é á č ě ž ž é ř č ýš é é ř ě á é á ž ů á é ž á ů ž ř á č š úř úř é á á čá á á ř é á Í áš é á ř á é ž á č ř ě á é á č ě ž ž é ř č ýš é é ř ě á é á ž ů á é ž á ů ř ě á é á ř ě á é á ý á éčá á é ř ě á é á ó ů á ý ě ú á ě á á ř é á Í ř ě á ř ý ě ě š é ý

Více

ý Č Á ž Ě ě Ě Á Á ě é ž é č é č é č ů é č ú ž é é ě ě é ž č é ě ů ž ý é č é ž č é č é ž ě ý é é č é ž č ý é č é ž ý č č č ů ž ů ě ý ý ž ů ž é ů ě Č č

ý Č Á ž Ě ě Ě Á Á ě é ž é č é č é č ů é č ú ž é é ě ě é ž č é ě ů ž ý é č é ž č é č é ž ě ý é é č é ž č ý é č é ž ý č č č ů ž ů ě ý ý ž ů ž é ů ě Č č Č ý Á ž Ě ý ě É Ý Ě Á Á ě ž č č ý ě ě ů Š ě Š ě č č ú Ě ň é é č Č Š ě úč é ě ý Ž é č é ž ý Č Á ž Ě ě Ě Á Á ě é ž é č é č é č ů é č ú ž é é ě ě é ž č é ě ů ž ý é č é ž č é č é ž ě ý é é č é ž č ý é č é

Více

ě ě é ň é ř ř ě ř é ě ě č ě úč ě é č č ě č é ě é čů ř ů č é ě ž ř ú ř ř č ř ě ě ř é Š ř é ř ě ř ř ú č ě ř é Š ř ě ř ř é č ě é é ž é Č é č é é ř ě žň ě

ě ě é ň é ř ř ě ř é ě ě č ě úč ě é č č ě č é ě é čů ř ů č é ě ž ř ú ř ř č ř ě ě ř é Š ř é ř ě ř ř ú č ě ř é Š ř ě ř ř é č ě é é ž é Č é č é é ř ě žň ě ě ě Á Ř É Ě É Ř Á Č é ř ř ů č ř ě č š č č č ě š ě ř é ě ř é Š ž č č ř ř č ř ě ř ř Č ř ř č ě č ů ů ž ě č ž ů č ř č ů ů ř ů ě ř ě ř ě ř é é ř ř ř č č é é ě ě é ň é ř ř ě ř é ě ě č ě úč ě é č č ě č é ě é

Více

ě ě ě ú ý ý ý ý ě ý ž ů ý ů ě ý ě ú ě ů ž ů ě ý ý ý ě ž ý ý ě ž ň ý ě ě ě ě ů ý ý ě ě ú ž ý ě ž ě ú ě ý ý ě ý ý ě ě ž ů ů ž ě ě ý

ě ě ě ú ý ý ý ý ě ý ž ů ý ů ě ý ě ú ě ů ž ů ě ý ý ý ě ž ý ý ě ž ň ý ě ě ě ě ů ý ý ě ě ú ž ý ě ž ě ú ě ý ý ě ý ý ě ě ž ů ů ž ě ě ý Í ý ú Š ý ý ú ě ů ě ů ě ě ě ě ý ý Č ě ě ý ě Š ň ň É ú ú Č É Č ú Ý ě ě ě ú ý ý ý ý ě ý ž ů ý ů ě ý ě ú ě ů ž ů ě ý ý ý ě ž ý ý ě ž ň ý ě ě ě ě ů ý ý ě ě ú ž ý ě ž ě ú ě ý ý ě ý ý ě ě ž ů ů ž ě ě ý ý ě ý

Více

ří í é í é ž č é í ř ě í š Ž š ž á úč é é ř ě ů í ě ě ý č í ý ú é á á ě é ě í č é č ář č é í é é ě é ž í ý ů ů á č é ž ě é ř á í č í č á é ě ž í é ší

ří í é í é ž č é í ř ě í š Ž š ž á úč é é ř ě ů í ě ě ý č í ý ú é á á ě é ě í č é č ář č é í é é ě é ž í ý ů ů á č é ž ě é ř á í č í č á é ě ž í é ší ř ž č ř ě š Ž š ž úč ř ě ů ě ě ý č ý ú ě ě č č ř č ě ž ý ů ů č ž ě ř č č ě ž š ě š ě č Ž ř ě č šš ů ň ž ž ž ř ř ž Ž č š ů úř ý ó ě š ř ě ý ě ý ě š ř ě č ř ž č ř š ý š š č ě č ě Ť š ě ř ě š ž ě ý ž ý ž

Více

é ě ú é ě ů ě ú ů ě ů ě ú ě ě ď Ý Ž ě ě ú ě Ý ů ě ď Ž ě ě ú Ý Ť ě Ť ě ů ě ě Ť ů ú š ú ě ů ú š ě é ě Ť š ě

é ě ú é ě ů ě ú ů ě ů ě ú ě ě ď Ý Ž ě ě ú ě Ý ů ě ď Ž ě ě ú Ý Ť ě Ť ě ů ě ě Ť ů ú š ú ě ů ú š ě é ě Ť š ě Ý ÚŘ Ň É Í ň Č Ú š ě Ť ů ů š š é ě Šť ě ě ú ě é ě ú é ě ů ě ú ů ě ů ě ú ě ě ď Ý Ž ě ě ú ě Ý ů ě ď Ž ě ě ú Ý Ť ě Ť ě ů ě ě Ť ů ú š ú ě ů ú š ě é ě Ť š ě ě š ě é Ú š š ě é ě Ž é ě ú éú ČÚ ú ú ú ě ú Ú ú ě

Více

Ž Č Č Č ú ý ů ž ě é é č ž čá ř ě é é Ž ě ě á á ř ř ě Ž ž á é é ů á č Í Ý ý ř čá ř é ř ě ý á é ě ě Í Í ý ů á é š é ž á é Ž ů ý Í á é ář ě é š é ř ů á ě

Ž Č Č Č ú ý ů ž ě é é č ž čá ř ě é é Ž ě ě á á ř ř ě Ž ž á é é ů á č Í Ý ý ř čá ř é ř ě ý á é ě ě Í Í ý ů á é š é ž á é Ž ů ý Í á é ář ě é š é ř ů á ě Ž Č á Č Č á ý ž Ž á é á ě Ó É ň ž áš š á ž é á ž é č á č á ž áš á č á Úč ž š á é ě ý ý Í č č á Ž ě é ý á ž Ž ď Č á Č á á ě é ě č ř ě ž é č ý ěř ě á á ř č ý ěř ý ř č ýý ěř ý č é č č é ó á Í ú čá é Č é á

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

ý éž í í á í í í á á éří í š á á éří í ří ý ý ý í í á žá é á ší í í á á á á í ý á ř é í ář í ý á ň á ů é á ř í í ý š ú ů é á ů á é á á ý Č íč é á ž í

ý éž í í á í í í á á éří í š á á éří í ří ý ý ý í í á žá é á ší í í á á á á í ý á ř é í ář í ý á ň á ů é á ř í í ý š ú ů é á ů á é á á ý Č íč é á ž í á á é ú á ří ý ý Čá é íč ř ůž á á ř í Ú í Č ý ž ú ů é á í ř ů á í é í í ž í é úř á á ý á í ř í í Č í ů ů š í á á šíř í ř é é í é ý í ž á í á é é ř í í é ů í í í š é Ť í á ú ř í í ů é á ý éž í í á í í í

Více

-Á----Á á-ě-í í ú --ž í ú ----í š é -----š -ě é é í ---é -

-Á----Á á-ě-í í ú --ž í ú ----í š é -----š -ě é é í ---é - ÁÁ áěí í ú ž í ú í š é š ě é é í é í í ě í č ářž í í í Č á á á í é í í ě í č ářž í í á áč ř Č č í ž ó á áě á č ě řé í ěě ěý í í óů ěí ěš í řů á áž í ě é š ě í é š ě ř ý ř á áá á í ří é í ž á ý ř í Ž é

Více

ďé í š ř é í ř í ěí í é í ř Ú Ú ě í ě í Č í ě í í š ě í í Č ř í ří š é í ř ů í í ř é í ě ř ř ří ř í é ř í í ů í é í é ř é ž í ěů í ú ž í é íí í é é é é í ě í í é ž í í ř í ě í í é Č é ří í í í ů í Č é

Více

Č í í í ě í í ě í í č ý á čá í ěří í í í é ří á ří é ě í ý ř í í í úř í á í í úř í á č á ě á ů á í ě é Íí í ř á í í í í ř Ží í úř ří á ě í ů ě ý á í ú

Č í í í ě í í ě í í č ý á čá í ěří í í í é ří á ří é ě í ý ř í í í úř í á í í úř í á č á ě á ů á í ě é Íí í ř á í í í í ř Ží í úř ří á ě í ů ě ý á í ú Ě Í ÚŘ ě í ě á í í č ř í š Č ř íř á Ř Á ÁŠ ý á čá á ě í úř ě í ě á í í úř ří š ý í ď á č ú í á á í í řá í á ě ě ší ř ů á í á č é ú í í ří í ř ž Ž í á Žá á í í í ě í í á á á ř ží á í í ří á Č ž ě é á í

Více

ý ě ů ů ě Í ň ý ň ď

ý ě ů ů ě Í ň ý ň ď Ú Íď ú ě ž ž ů ě ů ž ě ů ě ú ú ě ý Ž ž ě ú Č ú ě Í ý ý Č ň ě ů ú ě ě ú ú ěú ů ě ď ň ý ě ů ů ě Í ň ý ň ď ů ý ž ž ú ě ě ů ú ě ě ě ě ý ý ů ě ú ě Í Ž ý ů ý ý ň ě ě ě ě ú ů ů ý ú ů ž ú ž ý ž ě ú ě ě Í ě ý ě

Více

ů ý ěř ů č ý ěř á ů á ý ě á é é š ě ř ě é úř í á ě ž á é ř ů ý ěř ý ěř á ů á ý ě é ě ž á á ř ě é úř í á ě ž á é ř ý ěř á ů č ý ěř á ý ě ě š ž á č í ž

ů ý ěř ů č ý ěř á ů á ý ě á é é š ě ř ě é úř í á ě ž á é ř ů ý ěř ý ěř á ů á ý ě é ě ž á á ř ě é úř í á ě ž á é ř ý ěř á ů č ý ěř á ý ě ě š ž á č í ž ý í č ž á á í č ů ř í í ž í í ř á ěř á ů ý ěř ý ěř č ý ěř á ů ý ěř á ů á ý ě ž ů š ý ž á á č í ž ž í ř ě é úř í á ě ž á é ř ů ý ěř ů ý ěř á ů č ý ěř á ů á ý ě ě á ý á ž á á ř ě é úř í á ě ž á é ř ů ý ěř

Více

á ř č á é Ž ř ů á á ř á Čá Ž ř á á é ž ř á á Š ý é ř é ř á ř Š ář ř ž á ř ý ž á ř á ý ú ů á ř ý á á ú ň ý ř č á č ř Ž á á Žá ý ý ř ý ř č ú ř ůž á žá ý

á ř č á é Ž ř ů á á ř á Čá Ž ř á á é ž ř á á Š ý é ř é ř á ř Š ář ř ž á ř ý ž á ř á ý ú ů á ř ý á á ú ň ý ř č á č ř Ž á á Žá ý ý ř ý ř č ú ř ůž á žá ý á á á é áí ř ý Čá áš ř ý ý á Š ář á Šá á á č ů á á ř ř éč č á č Č á ž á ř ů áš é á ž á Í á ř é úř Ž š ř á š úč á ř Ž é ú ů é č č é á ž á řá á á áš š úř ý á á á ý á Ž š é á á ř ů á á ř á ú ů é á Ž é ř á

Více

ž ř ž é ň ž šš ř ň ř ř č é é ř é ž é ř šř š š ř ř č é š é é ř é č č é ř é č é ř

ž ř ž é ň ž šš ř ň ř ř č é é ř é ž é ř šř š š ř ř č é š é é ř é č č é ř é č é ř ř ů ú ř ž é é é é ř č ú ř č é ž ň ň ž é ř é ř é ř č ř é č é é ř É Á Á Í Á É Ý Í Ů Š Á Ž Ě Ý É Á Ř Ý ž ř ž é ň ž šš ř ň ř ř č é é ř é ž é ř šř š š ř ř č é š é é ř é č č é ř é č é ř č ř ž é č ř ř ř é č é

Více

š á Č á í ž š á č ž í š á š Č íž á ří š á í ř čí ó í á á ě á ě í é č í č í á ž í ě á é š ž í áš š á í é ž é ž í ž í é ž ý á á é ž ú úč í ů ž ž ů ž ž ř

š á Č á í ž š á č ž í š á š Č íž á ří š á í ř čí ó í á á ě á ě í é č í č í á ž í ě á é š ž í áš š á í é ž é ž í ž í é ž ý á á é ž ú úč í ů ž ž ů ž ž ř á í Č í á ří í ř í ó í á á ě á ě í é í í á í ě á é í á í é é í í é ý á á é ú ú í ů ů ř í é é é í é í ú é á í ář ó í ář í í ý í ář í ý á úř ě ěř ý ří ě ů í ý ěř é ě á é ě á úř ě ěř ý á é úř ě ěř é í í ář

Více

Č ř ě ř ě š ě š ž ř é ě ě Š ř ě ř é ě ř Ť ž ř ř é ř ě ě š ř š ě ě é ř ě é Š ě š ů ů ř é Ž ě ě š é ř š ě Ž ř Š ěú š ě Š Š ř ě ě é ě ř ů ř ě ř š ě ě ž é

Č ř ě ř ě š ě š ž ř é ě ě Š ř ě ř é ě ř Ť ž ř ř é ř ě ě š ř š ě ě é ř ě é Š ě š ů ů ř é Ž ě ě š é ř š ě Ž ř Š ěú š ě Š Š ř ě ě é ě ř ů ř ě ř š ě ě ž é Ž é é Č Č ř ě Ž ď Č Č ú ř é ě ž ě š é ě ě ě Š ě é ř ě ř ě ž ř ř é ž ř ě ř ě ě ž ž ě ř ě é ě Ž é ě ě ř ě ě Ž é ě ř ě ř ě ř é ř ž ř é Č ř ě ř ě š ě š ž ř é ě ě Š ř ě ř é ě ř Ť ž ř ř é ř ě ě š ř š ě ě é ř

Více

ě ř é š ó ó š Š Í ř ř ř ý ř é ř ě ě Ú ř Ú ž ž ř š ě ř š Í

ě ř é š ó ó š Š Í ř ř ř ý ř é ř ě ě Ú ř Ú ž ž ř š ě ř š Í Í š ě ř é š ó ó š Š Í ř ř ř ý ř é ř ě ě Ú ř Ú ž ž ř š ě ř š Í Í Á Í Ó Ú é š ě ý ě é é Ť ú ř é ě Ť š é ěř ů ý Í Š ě ů ť ě ě ť ř ř ěš š ú š ě ŽČ Í é ě ž Š ě ů ě Š é ř ě ěš é ř ý Í ý ř ě ěž ř é Žů Ž ě ě ř

Více

ý í á á š ě é í š íž á á ě š š ě ě á ě é ř é ž čá é ž ř í ř í í á č í š á í š ř í é ě š ž í ý é ě í í í á ř é ě ě ší ž ů ý á ě š é číš ě á ú ě í á í ě

ý í á á š ě é í š íž á á ě š š ě ě á ě é ř é ž čá é ž ř í ř í í á č í š á í š ř í é ě š ž í ý é ě í í í á ř é ě ě ší ž ů ý á ě š é číš ě á ú ě í á í ě Í Á Í Ý Á Ú Ř Č Í Í č ř á ý š á ý í í č í í ě í ž ě í č í á í í í í č í í á í ěž ě á í č í ěř í é ýš ý á á ě í í š ů í á í ů č í ž í ž í áš ě ě á é ě á í é š í é ř é á é á í á ě ž áž í ý č á í ž ý ě ší

Více

Č š š Č ň ů Č š ů Č ů ů é š é é š ó š éú š é ú š é é é š ú ů ú ů ů é Í š ú š ú é é ď é é ú ů ů é é é é é é ů ŽÍ š é š

Č š š Č ň ů Č š ů Č ů ů é š é é š ó š éú š é ú š é é é š ú ů ú ů ů é Í š ú š ú é é ď é é ú ů ů é é é é é é ů ŽÍ š é š š é Ú š Ž ú šť š é ň ó é Č ň é é ů ú š Ž é ó ů š é ň ň é é šť é š Ž ú ú š š ů ó Č š š Č ň ů Č š ů Č ů ů é š é é š ó š éú š é ú š é é é š ú ů ú ů ů é Í š ú š ú é é ď é é ú ů ů é é é é é é ů ŽÍ š é š ů š

Více

ř é č ě ě ý Ž Ž ů é é ý ě ě é ě é ý ý ě é ě é ž ř š ů ě ě é š é é ě ž č é ř é ř š č ě é č ě ě š ý ž ě ý ě š ř é ř é ý ě é č ý š ý Ž č ř ý ý ř š ů ě é

ř é č ě ě ý Ž Ž ů é é ý ě ě é ě é ý ý ě é ě é ž ř š ů ě ě é š é é ě ž č é ř é ř š č ě é č ě ě š ý ž ě ý ě š ř é ř é ý ě é č ý š ý Ž č ř ý ý ř š ů ě é ě ř é Í ý ř é ř ř č ř ý ě ě š ř ů ě ř Í ě ě ř ě Č Í ě š úř ř ý ř úř ř ý ť ě é ě ý ř ě š ů ý ý ě ě ý ů č é é é ž Ž ř š ř š ý šť é ě š é ť ě ř é č ě ě ý Ž Ž ů é é ý ě ě é ě é ý ý ě é ě é ž ř š ů ě ě é š

Více

Í ý ú ú Ž Í Ž Í ů é ů Ž ů Ž ů Ž Í ů Ž ů Ž ů é ů é é éó ě ě ě ď ů ě ě š Í ů ě ý ě é ě ě ý ú ě Í ý ě ě š ů Š ě ě Ě ě ě ů ý é é ě ě Ó ú ú é ě é ů š ě Ž Ž Š ě ě ý é ů š ě š ě ž ý é ě ýš é Š ý ů ý ý Í Ž Ř ě

Více

é é š ň é ž ř š é š ý é Ť é é ř ů ý ť ž ž ž ý ř é é é é ž ř é Š Ú ý ž é ř é ž ř é Š ý ú ř Ť ž ž ř ř Ť é Í š ý Ž ý é ř Ť š ř ř ř š ý ř Ž ď ř ř ž ř ž é

é é š ň é ž ř š é š ý é Ť é é ř ů ý ť ž ž ž ý ř é é é é ž ř é Š Ú ý ž é ř é ž ř é Š ý ú ř Ť ž ž ř ř Ť é Í š ý Ž ý é ř Ť š ř ř ř š ý ř Ž ď ř ř ž ř ž é ř ý ú ď Š Í Á É ř ú ř ř é ů é ř ř š ř é ž é Ž š é š ý é Ť é ř ů ý ž Ž Á ý ř é ř ů é é ž é ž ř é é ř ž é ř ú ý é é ž Ť ž é é š ň é ž ř š é š ý é Ť é é ř ů ý ť ž ž ž ý ř é é é é ž ř é Š Ú ý ž é ř é ž ř é

Více

ě ě é é Ú ů é ů ě ú ě Ú é ň é ú ě Ž ů ě Ý š ě é ů ě é š š ě é ě Í Ú éú š š ě ě Ú ě ě š Ů ě é é Ú š ě é Ú Ž é Ž š ě é ň é ž š é é é š Ú š š ě Ž Ú é Ú Ú

ě ě é é Ú ů é ů ě ú ě Ú é ň é ú ě Ž ů ě Ý š ě é ů ě é š š ě é ě Í Ú éú š š ě ě Ú ě ě š Ů ě é é Ú š ě é Ú Ž é Ž š ě é ň é ž š é é é š Ú š š ě Ž Ú é Ú Ú Ý ÚŘ Č Ý Ř Ý Ě Ř Ř Ý Č ú ú Ú é ě ě š ů Ú ů ů ě ě š ů ú ě é ňé é Í ě Í ě ú é ě ů š ě úč Č é ě ě ě é é Ú ů é ů ě ú ě Ú é ň é ú ě Ž ů ě Ý š ě é ů ě é š š ě é ě Í Ú éú š š ě ě Ú ě ě š Ů ě é é Ú š ě é Ú Ž é

Více

ú ú ú á é í ý í á í ý č í ř š í ú í ú č Č ý á č í č í á ř ť í Č á á ú í Č í í í ť ý ú é á ú ť ř í ř ůž á é Č ď ů ř é í č ř ÍÍ ú é á č á Ě í č ř ú á ž

ú ú ú á é í ý í á í ý č í ř š í ú í ú č Č ý á č í č í á ř ť í Č á á ú í Č í í í ť ý ú é á ú ť ř í ř ůž á é Č ď ů ř é í č ř ÍÍ ú é á č á Ě í č ř ú á ž á í á é ří ý Č Č é ř ůž á Ř í á á í á ý í á ř í Ú Č ú ů Í é á ží í ý ř í ý ý ý é ž á í č é ř íč í í í ý á é é á í ží á á ď ň é á ď éří í é ř š á Č á ť č íří š í é ří í č é š í ž í éč ů é á í ú ů č íú ž

Více

ž á ř ě é é č á á ž č ě á ř č ě á á á ě ř ě ý é á š ň ř é ř š ý á ř ů á á ě Ž é ýš é č ž á á á ě ě á á á ě řá é ň é áš á á á ě š é ř ě á Ž ž á ř ččá č

ž á ř ě é é č á á ž č ě á ř č ě á á á ě ř ě ý é á š ň ř é ř š ý á ř ů á á ě Ž é ýš é č ž á á á ě ě á á á ě řá é ň é áš á á á ě š é ř ě á Ž ž á ř ččá č á Č é á é č á Č á á á č č ý á á č á á č á á š ý ý é ůč á ž ř ě á á á Ž á ě ěž á á ř é žň á ř č ř á á á é ř ř ě á č ě ř ř á ě ěž ř ě ý ě ě č áš á ž á č ý á á ž č á ě á ě č ě ě á ř á ř ý ů ž ž á č á ř ž

Více

ž ř ž ř ý é é č ů ý ý ň ý ý ň ň é č ř ř ř é č é ř é

ž ř ž ř ý é é č ů ý ý ň ý ý ň ň é č ř ř ř é č é ř é Ý ý ř ý ů ú ř ž ý ř ý é Ý é ý ý é ř č ú ý ř ý č é ž ý ň ň ž é ř é ř é ř č ř ý é č é ý ý é ř É Á Á Í Á É Ý Í Ů Š Á Ž Ě Ý É Á Ř Ý Á Á ž ř ž ř ý é é č ů ý ý ň ý ý ň ň é č ř ř ř é č é ř é ů ý é ř ů ř é čů

Více

í ň š ř ú í í ář á í ář ě ě í é é ě é í í ě ě é á é ř í á í ášé ů ž é á á í ě í á ě á ž ě ř é á ý ž í čá á ý í á í é é á ý ě č č ý á á í áš ě é é ě á

í ň š ř ú í í ář á í ář ě ě í é é ě é í í ě ě é á é ř í á í ášé ů ž é á á í ě í á ě á ž ě ř é á ý ž í čá á ý í á í é é á ý ě č č ý á á í áš ě é é ě á ÚČ É ŘÍ Ě Č Í Č Í Í čá í ř á ý í í á ě ě š é á í á ž é é ě í ří ě ě á í č ž é í á ř íč ů ě á í ě ě ší ý č í í ý í ů í á ý ý í č í ů čá í á ý í í ě í í í ě ř č í ř í á í é ě ě ě ěž ř í š ě á ě í í é ář

Více

á ó ě ší ú ě ů á č á ó í á ů ž ř í í ší ú í ž é í á á ě á é í č úč ý á í é ž ý ě č ý ě á á ý á ý é ě š š ě í á ů ě é é ž ů ř í ý á í ř í ě á í á ž ú ů

á ó ě ší ú ě ů á č á ó í á ů ž ř í í ší ú í ž é í á á ě á é í č úč ý á í é ž ý ě č ý ě á á ý á ý é ě š š ě í á ů ě é é ž ů ř í ý á í ř í ě á í á ž ú ů Ó í á ý č é ó á ý á ý í ý í ř í ší á ú í ě ř ů é ř áš ě é ó í ř á í í ó ě á ě ě á ě á ě ší ž ř íž á á é í ů á í š ř áž ě ě č Č á ě ý ší á ý ě ě čí ř ší ž á ří č é ž á í í ě é ó í č á é č á ř ý ř š éý é

Více

č é č ř č

č é č ř č Á č ř č Á Á Ň Á č é č ř č Á Ů Ě Í Ý Ř Í Ě É Á Č Ň Í Í Š Á Í Á Ů Ž ČÁ Č ÉÚ Á Í Á Ů É Á Í Ž É Ř ý š ž ř é š ř é ř č é ř é Č é ě ý é ý ú ě š é ý ř é Á ý č ů ú č ř ě ó Á ú č ě ě ů ý ú ů š č é Á ř č ě ř ý č

Více

ř ěž Ú Í ř Í Í Ž ř Ž Í Ž Ú ž ň ú ř Í Ú ž š ě ň ú Í Í Ó Č š

ř ěž Ú Í ř Í Í Ž ř Ž Í Ž Ú ž ň ú ř Í Ú ž š ě ň ú Í Í Ó Č š Ú ú Č ř ě ě Č ř ěž ú Í ř ě ě ž ň řž ú Ú ě ř Í ř ěž Ú Í ř Í Í Ž ř Ž Í Ž Ú ž ň ú ř Í Ú ž š ě ň ú Í Í Ó Č š ř Í ěž ú ř Š Š Í ř ř š ě Í Ž ň ř ě ň Í ř ě ř ř ě ě Í Í Í ě Í ř ě Í ř ěž Ú š Í ř ň ř ú ř Ž ú ř Ú

Více

3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso

3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso 3.3 Soustav s a sových oetů soustava s a oetů sesupeí s a oetů s působících a těeso váští případ: svae s (paps všech s soustav se potíají v jedo bodě) soustava ovoběžých s (paps všech s soustav jsou aváje

Více

ů ů Ř ů ž ě ů ů Ř é š é Ř Č ž ě ř ň Č é š ý ř ý š ř ý Č ý ň ý ů ž ě ů ř ř ř ý ů ě é ů ů ý ž ě ž úř ý ů ý ě é é ě é ě ý ě é ř ě ú ý ž ý ý ř ř ů ě ý é ý ě ř ý ř ů ů ý é řú ý ž ú ý ěř ú ž ý ů ř ý ě é ř ú

Více

ěž Úč úč Í ěž Ž č Ž ž ů Á Č Č Ž Úč Ž Úč Ž ň ž Ů č č Ž Úč Ž Í č š ě ň ó ÚČ č Ž Úč č Č š Ž Š Š ÍŠ

ěž Úč úč Í ěž Ž č Ž ž ů Á Č Č Ž Úč Ž Úč Ž ň ž Ů č č Ž Úč Ž Í č š ě ň ó ÚČ č Ž Úč č Č š Ž Š Š ÍŠ š ě ě š ů úč Ý č Č š ě úč š ěž ÚČ Úč ž č ž ě ě ě ů ě č ň č ž ÚČ Í ů č ú ě Á č Č č ň úč š ěž Úč úč Í ěž Ž č Ž ž ů Á Č Č Ž Úč Ž Úč Ž ň ž Ů č č Ž Úč Ž Í č š ě ň ó ÚČ č Ž Úč č Č š Ž Š Š ÍŠ ěž úč úč ž ě ž Ž

Více

ú é é č žé é é ě é é ž ř ž é ě ů Ř ň ž é é řď ú é Á ř é č ř ž ó ř ě ú ů é ě ě ř é č ž é ě ř ě Č ď ř ř č ž ě ě ů ě ř č ě é ž ů ř ó é ř č ř ě ě ř č é é

ú é é č žé é é ě é é ž ř ž é ě ů Ř ň ž é é řď ú é Á ř é č ř ž ó ř ě ú ů é ě ě ř é č ž é ě ř ě Č ď ř ř č ž ě ě ů ě ř č ě é ž ů ř ó é ř č ř ě ě ř č é é Č é Č Í č č Á é č č ě ř ě ř é č č č ř ž ěř č č ř ě č č é ě é ě ž ů č Ý Ť é ř ě é ť ě ů ě é é ť ř ů ě ř ě ů č Š ě ó ó ž ť č ř ž ř ž ě č ž ř Š ž ě ó ž ě ž ě č Šř ú é é č žé é é ě é é ž ř ž é ě ů Ř ň ž é

Více

í í í ě á ří ě ó í ř í í í úř ř í á í í úř ří í úř í á í á í í úř á í í í í á ž í á ě á í í í í ú í á í í á ě í í á ě ří í ř í í í í áš í úř ě í ř á í

í í í ě á ří ě ó í ř í í í úř ř í á í í úř ří í úř í á í á í í úř á í í í í á ž í á ě á í í í í ú í á í í á ě í í á ě ří í ř í í í í áš í úř ě í ř á í Í ÚŘ É ŘÍ í úř ří ž á ř ř ř á á ť Í Ř Í á á í úř ří í úř ří š í á Ú í á á í í řá í á ě í ě ší ř á í á ú í í íí í ř ž ž í á žá á í í í ě í í á ěí ěí á í á ďě ř á í á á í á áš ě šíú ě ú í ří í ř á í ú í

Více

é ž ň ž ř ž š ý ř š ř ů é é ů ž é ž ý ý ž ř ý ý ů Ž ýš Ú ý ž ú ř ř ř ž ř ý é Č Č é ď ř Ž ř ý ů é ý ř ý é ř ť Í

é ž ň ž ř ž š ý ř š ř ů é é ů ž é ž ý ý ž ř ý ý ů Ž ýš Ú ý ž ú ř ř ř ž ř ý é Č Č é ď ř Ž ř ý ů é ý ř ý é ř ť Í é ú ří ý ř Š ýř ďž ř ď ý ř ú ú ř ů ž š ťé é Ž é Ž ž ý ř ů ž Ž Ž ů ý Ž Ž é ú ů éž ž ř ý é š ř ú ž ý ý ý é ž é Ú ý ž ú š ž ř ž ů ů ž ú ý é Úš ž ů ú ů š ž ů ž ž ž ž ú ď ý é ž Ž ž Žš é ž ň ž ř ž š ý ř š ř

Více

Ů ř ě ů Ž Ž á á á á á ý ú ů ů š ě ů á á á Ž Š ář ř ě ů Ž Š ř ě Ů ř ě Ž š Ž ě ýš á á č č ý ář ě ů ř ě ě Ž čá ář ě á ě ě ě ř š á á ř ý á á á Ž ř ú á á ř

Ů ř ě ů Ž Ž á á á á á ý ú ů ů š ě ů á á á Ž Š ář ř ě ů Ž Š ř ě Ů ř ě Ž š Ž ě ýš á á č č ý ář ě ů ř ě ě Ž čá ář ě á ě ě ě ř š á á ř ý á á á Ž ř ú á á ř á ě á á áš č á á č á ě á č ě ě š ř ů á Ó ř ě ě š ř ů ě á áš á áš Á Ú á á áš á ů á ň ý č ž á ř Ž á ě ř ř ě Ž á ň á á ů ý ý ř ř á ř á á úř á á á č ě ě š ř ů á á Ů ř ě ů Ž Ž á á á á á ý ú ů ů š ě ů á á á

Více

Í š á Ž ě žá š é ř ř ě á š á š á á á á ř ůž ř á á á č ř á č ř š á ř šš é é ďě á á š á ě ě š ř ů é á ě ř š é á á á á ě á š ů č č é ě á ž é é á ě žš ž á

Í š á Ž ě žá š é ř ř ě á š á š á á á á ř ůž ř á á á č ř á č ř š á ř šš é é ďě á á š á ě ě š ř ů é á ě ř š é á á á á ě á š ů č č é ě á ž é é á ě žš ž á ě Ý á ě ř Ť ř ě é ě č á á č Í ě ě š ř ů á č č ú č ů ě ě š ř ů á ě ř š á ř šš é é ďě á á š á ě ě š ř ů á á ě č Ú á č č Í á ě úř á ě ř ě č á č č ř ě é á á Š á ř úč ř ě č ř ě é úč ř ě á Ť š ě č ů Ť š á ě

Více

č é é ž í č í ě ě í é ě á á Ó í í í í č á é á á ř žč ářů í ž ží Žň š ě ě ě é ď á í ů ň á ž ž ří ě á ý ř ř á á í š ří ě č í í ř á í í í ž ů ě é ů íš í

č é é ž í č í ě ě í é ě á á Ó í í í í č á é á á ř žč ářů í ž ží Žň š ě ě ě é ď á í ů ň á ž ž ří ě á ý ř ř á á í š ří ě č í í ř á í í í ž ů ě é ů íš í Ý Ý Ý Ť Ý Ý Ť Ý ň ň Ý Ť ÝŤřĚň ňř ť Č ů é ě é ří č ě č í š íč š č í ř á á í ů ů ě é ř á é á é č í ř á ý í á í ě š ů é ě á í ř í Ž ý ů č ě š á é Ží í é š í ě ý á ířá č á é á á ó ží í áž á č ý í ř ý ů é č

Více

E M B L E M A T I C K É M Y S T É R I U M Z A H R A D Y

E M B L E M A T I C K É M Y S T É R I U M Z A H R A D Y E M B L E M A T I C K É M Y S T É R I U M Z A H R A D Y Z a h r a d a j e v e s v é p o d s t a t ě f e n o m é n e m č l o v ě k e m u s p o ř á d a n é h o p ř í r o d n í h o j s o u c n a. J a k o

Více

č ňé ď í ďí É ý ě á ě ž č í í ť á é áž ě í í ě í ě ř á áž ě í í áž ě í í ň Í č í č č í

č ňé ď í ďí É ý ě á ě ž č í í ť á é áž ě í í ě í ě ř á áž ě í í áž ě í í ň Í č í č č í ňé ď ď É ý ě á ě ž ť á é áž ě ě ě ř á áž ě áž ě ň Í Í š Á Í Ó á ď ů á ď á á á ě á ý ě é Í Í é á ě é é Ú ý ů ň ě é á á ů ě á á áš é á á á á á á á ť Č ď ů ý ů ě á ď ý ď ď ý á ě ů á ď á á ů é á á ě ý á ý

Více

é ť ř ý ý ť ř ý ř ý ť ř ý ř é ř ť ř ý Ú Ů Č ř ú Ů ý Í ř é ř é ř ý ů š é š é š š ý

é ť ř ý ý ť ř ý ř ý ť ř ý ř é ř ť ř ý Ú Ů Č ř ú Ů ý Í ř é ř é ř ý ů š é š é š š ý é é úř é ř ů ď ď ú ů ř é ř ř ú é Ž ř é é ů é ř ř ů é ř ř é ú ř ř š ů š é ř ř ř é ť ř ý ý ť ř ý ř ý ť ř ý ř é ř ť ř ý Ú Ů Č ř ú Ů ý Í ř é ř é ř ý ů š é š é š š ý ť ř ý úř Í ř ř ý Ž ý ý ř š Ť ý ů Ř ý Ť š

Více

í á í ří ě ů í ů á é á č ý čá í ří ě ší ří ě í í ů í á šť á í í í ů á é á č ý čá í ří ě ší ř í é í í ů í á í á ů ý šť á í á í ř š í á ů í í Ť íúč ř í

í á í ří ě ů í ů á é á č ý čá í ří ě ší ří ě í í ů í á šť á í í í ů á é á č ý čá í ří ě ší ř í é í í ů í á í á ů ý šť á í á í ř š í á ů í í Ť íúč ř í č í ří á č ě í ě ší ř ů í ýů ě í č í í ů š á í ě ň š á č í í ů š á á č í á á á é ď í ě é é é ů ň í ě é á á ě é ť ý í á í ů ó á ď č í áň ř á ě ý ř č ě č ř ě č č í á ý ů ý á ě ý Í č ý čá í á ť č á í č ě

Více

ď Í óč á ě ú óí í ť ú í ý ý Ě Í ý ě í ě í ě í ě Í Í Í ó í Í í í É ó í í á ě í í ě í ó ří č ý Ýú í í í Í ě ú Ě ě Í í Í á ý ý í É í í Í Í óí Ó ě á í Í á

ď Í óč á ě ú óí í ť ú í ý ý Ě Í ý ě í ě í ě í ě Í Í Í ó í Í í í É ó í í á ě í í ě í ó ří č ý Ýú í í í Í ě ú Ě ě Í í Í á ý ý í É í í Í Í óí Ó ě á í Í á ď Í óč á ě ú óí ť ú ý ý Ě Í ý ě ě ě ě Í Í Í ó Í É ó á ě ě ó ř č ý Ýú Í ě ú Ě ě Í Í á ý ý É Í Í óí Ó ě á Í á é ě ó É Í á Ě ř é ů ř á ú č ř ě ý á ó ď ý Ú ř ř ú ř ó Ť ó ó Íě ě ú ý ě ý é Í ě Í ů ů é á ě á

Více

ú ú ť ú ú ú ú ú ú ú ú ú ť ť ú ú ť ú ú ú ť ó ú ť Ý ú ú ú ú ú ú ú ó

ú ú ť ú ú ú ú ú ú ú ú ú ť ť ú ú ť ú ú ú ť ó ú ť Ý ú ú ú ú ú ú ú ó É Š ú ú ú ť ú ú ú ť ú ú ú ú ú ť ú ú ú ú ú ú ú ú ú ť ú ú ť ú ú ú ú ú ú ú ú ú ť ť ú ú ť ú ú ú ť ó ú ť Ý ú ú ú ú ú ú ú ó ú ú ú ú ú ú ú ú ť ú ú ď ú ť ť ú ú ú ú ú ť Ú Á ú ť ú ú ú ú ú ú ú ó ť ú ú ú Á Ú Ť ú ú

Více

í í ú ř Í ř í á í é é é Í á ý ň ř í š í č í í á í í é í í í á á ó ě Í í ě í í í í í řá ů čč ř č á í í í ě á ě ě í á í š ť Í ě Í ř ě í ě č Í ř é č š ě

í í ú ř Í ř í á í é é é Í á ý ň ř í š í č í í á í í é í í í á á ó ě Í í ě í í í í í řá ů čč ř č á í í í ě á ě ě í á í š ť Í ě Í ř ě í ě č Í ř é č š ě ú ř Í ř á é é é Í á ý ň ř š č á é á á ó Í řá ů čč ř č á á á š ť Í Í ř č Í ř é č š á č ý č é ó á č ř ů á č č š á ů á Í á á é č ú ó ť ý Í ř č é Í č š á ř á é á ř á ř ů ř ř á áž á Í ý é é č ý čů á é é é č

Více

Algebraické výrazy. Mnohočleny 1) Sčítání (odčítání) mnohočlenů:

Algebraické výrazy. Mnohočleny 1) Sčítání (odčítání) mnohočlenů: Algeicé ýz Výz = ždý zápis, eý je spáě oře podle zásd o zápisech čísel, poěých, ýsledů opecí, hodo fcí. Npř. π,,... Výz číselé s poěo Výzo spi oří loeé ýz s ezáo e jeoeli ( sí ý ede podí, ýz á ssl poze

Více

í š ž í í í š č ě é áž ž ě ě ý š ý á ž ž í í á á ů ě ě Š á á č á áž é á č á á č á í ř ý é é š ě š ě á á á ó é ě í ě í ž č ž čí í í á í ř č ý ý á í č é

í š ž í í í š č ě é áž ž ě ě ý š ý á ž ž í í á á ů ě ě Š á á č á áž é á č á á č á í ř ý é é š ě š ě á á á ó é ě í ě í ž č ž čí í í á í ř č ý ý á í č é ÁŇ Š Á ů čí á Š á á ě ů ž í č é á í čá í í í é í ě í é í á í ž ě ě ř ě č é á í ý ř áš í á í é ě ší ý ř Š á ě ě é é ší č í ří Ž Ž é ř á í ý ý á í ě ř ě č í Š á úč č í í é č í á Š á í í á í í é ě é ř é é

Více

Ž é í á á á í Ó é Ó é Ť í í Ž á í í á Ó í í ě í ě ě á á é ň é á é á ě Ó á í í á í ě Ů Č í á í é é á í í í é í á í Č á é Ť ě Íí ě í á ě á í í í í é éť

Ž é í á á á í Ó é Ó é Ť í í Ž á í í á Ó í í ě í ě ě á á é ň é á é á ě Ó á í í á í ě Ů Č í á í é é á í í í é í á í Č á é Ť ě Íí ě í á ě á í í í í é éť é í é Č í Ť ž é í ž í á í Ť ě á ě á í í á í ě ě Ž í á ě é á í é é é í íí í í é Í Ťí í í é ě í é í í ě á á Ťí í í ž Š Ťí á Í é é í á ě Ó é é ř Í é ě é Ť á ě é é Ťí ě ě í í ě í í í ň í áě í é ě é í á á í

Více

Přijímací zkoušky do navazujícího magisterského studia Učitelství fyziky pro 2. stupeň ZŠ a Učitelství fyziky pro SŠ pro akademický rok 2011/2012

Přijímací zkoušky do navazujícího magisterského studia Učitelství fyziky pro 2. stupeň ZŠ a Učitelství fyziky pro SŠ pro akademický rok 2011/2012 řijíí ouš do ujíío iseséo sudi čielsí fi po. supeň Š čielsí fi po SŠ po deiý o 0/0 Koouč o poloěu 0 oosi se ůže oáče ole odooé os. N oouči je iuo eé láo. N oi lá isí áží o oosi. ou á oouč úloou los, uí-li

Více

ř é ř ň é úř ř ř č ý ř é ř é ý ů ř é é č č č ú ž Ů ý č é č ú ř ň ů č é č ýúč ý ř ř č é ř č ř ř č č ý ř Í ý č ý ý éč č é ř ý ý ů ý č ýúř č č č ř é č ýú

ř é ř ň é úř ř ř č ý ř é ř é ý ů ř é é č č č ú ž Ů ý č é č ú ř ň ů č é č ýúč ý ř ř č é ř č ř ř č č ý ř Í ý č ý ý éč č é ř ý ý ů ý č ýúř č č č ř é č ýú ŘÍ Ň ř ň č ů ř ň č č ř é ř ň é úř ř ř č ý ř é ř é ý ů ř é é č č č ú ž Ů ý č é č ú ř ň ů č é č ýúč ý ř ř č é ř č ř ř č č ý ř Í ý č ý ý éč č é ř ý ý ů ý č ýúř č č č ř é č ýúř č č é č ý č č ř ů č ř ř é Š

Více

Á ÝÚ ě ý é Ž ýš ý ý ů ř é ů é ě ř Ž ě š ý ú ě Ž ú š ř ý é ě ě ě ý ě ř ý ěř ý ý ř ý ěř ě é ř é š é é ý ě ě é ě ý ě ř é é ě ú ň ů Ť š Ž é ě ů ě ý ě ě ř

Á ÝÚ ě ý é Ž ýš ý ý ů ř é ů é ě ř Ž ě š ý ú ě Ž ú š ř ý é ě ě ě ý ě ř ý ěř ý ý ř ý ěř ě é ř é š é é ý ě ě é ě ý ě ř é é ě ú ň ů Ť š Ž é ě ů ě ý ě ě ř ĚĚ Ý Í Í Ů ťňě ó é Ýš ě ó ď ó Í š ř š Ž ú ů úř ú ě é Ýš Ú ý ě š ý š ř š úř ě ú ě Ř ýúř é ž ř řš ý Ř ň ě ě ú ě Ě ě é Ú Ó ě é ř Ž ů Á ÝÚ ě ý é Ž ýš ý ý ů ř é ů é ě ř Ž ě š ý ú ě Ž ú š ř ý é ě ě ě ý ě ř ý

Více

é ý ř ř é ě ř ů ě ě ě ý Ů ě ě š ř ů ý š ř é ůč ě ě š ř ů ě ř ř ú ý ů ý ů š ř é ř ř ř ů ú ú é ř ř ř ř é š é ý ř ř ř úř ř é ř ď ř ř ě ž ě

é ý ř ř é ě ř ů ě ě ě ý Ů ě ě š ř ů ý š ř é ůč ě ě š ř ů ě ř ř ú ý ů ý ů š ř é ř ř ř ů ú ú é ř ř ř ř é š é ý ř ř ř úř ř é ř ď ř ř ě ž ě ě ž ůč ý ř ď ř é ý ř ř é ě ř ů ě ě ě ý Ů ě ě š ř ů ý š ř é ůč ě ě š ř ů ě ř ř ú ý ů ý ů š ř é ř ř ř ů ú ú é ř ř ř ř é š é ý ř ř ř úř ř é ř ď ř ř ě ž ě ř ě ř ř ř ě ř ř ú ř ř ě é ú ý ú ů ě ě š ř ů ě ř ů

Více

á š Ž š

á š Ž š Ě ĚŘ Ť š Č Ý Ě Č Ý ĚŘ Ý á š Ž š á úč éř š ě ě é ř š ě Š á é ě Č Ó Č ě ý č é ě Ú ž éš á éř š ě á ú ý č Č ů Ž š ě č é á úř ó š Š š ř á ř š ř á ř š ě ř ě ý ě ř ý ů Í ř é é ě á é ř š ě úř ř Ť š ě ě á á ď ř

Více

íř ž ý ů ů ý ě ě č é áž é é ž í ě řá á é ří í ž ě é ší ž ří ě áží é ů í ě ě č ě á ú é ř í í š é ž á ě í š í á ě é ý ý ý ý í ů í í ě ší á ě í í ůž á í

íř ž ý ů ů ý ě ě č é áž é é ž í ě řá á é ří í ž ě é ší ž ří ě áží é ů í ě ě č ě á ú é ř í í š é ž á ě í š í á ě é ý ý ý ý í ů í í ě ší á ě í í ůž á í ů čí ř ě é áří á á č í ě ý á í ž ž í á ří é ý é é á ý ž á í ě ó ó ě ý ý ř í ě š á é í ř ě é í á í í ě čá í á í č ě ý ů í ě á ý ý ě ž íš ž ě í ů ž ů ž ý á í é ě í ý í ř í í ě í á á á ší á Í ě á í ě í ě

Více

Teplota. 3 kt. Boltzmanova konstanta k = J K -1. definice teploty. tlaky v obou částech se vyrovnají

Teplota. 3 kt. Boltzmanova konstanta k = J K -1. definice teploty. tlaky v obou částech se vyrovnají Teploa laky obou čásech se yroají 1 m1 1 m rooáe budou sředí kieické eergie obou druhů molekul sejé: 1 1 m m 1 1 ěžší molekuly se pohybují pomaleji ež lehčí sejé musí edy bý i objemoé kocerace: 1 když

Více

á ž č á ě ě Ž ě é é á Ť ě é ě Í é ě č ě Ť é ú ě Í čá é á ě Í ě č čá č Í š Í čá á éí ě Ů á š Í á é ěů ď ě é é á Í á č Íé ě é Í ú č á Ú é ě á ě ž á ě ě

á ž č á ě ě Ž ě é é á Ť ě é ě Í é ě č ě Ť é ú ě Í čá é á ě Í ě č čá č Í š Í čá á éí ě Ů á š Í á é ěů ď ě é é á Í á č Íé ě é Í ú č á Ú é ě á ě ž á ě ě Ů č č á á ť á é á ť š č ě é é á á š Í á ě ě é ú č é Ů č ž é á é á ť ž ě é á á ěť ě č ě ě č ú á á Í é ď ž č ě é č ž á ťď č ď ť á á ě é á ě ď ú ž č ž Ť ě á Ý Ť š ě Ó á á č ú ě č ě ž ď Í é ž é ť ě é á ě é

Více

Ú Č é ř ř č é Í Ž š ř ě é š Ó č ř Í ř é ě ě ě ř ě ú ň ý č ů ř ř ě é č č é ě ř č ň ň é ř ě ě Í č Í Ů Í č ě ůč Ů š ů é říš é Č ůčí ů č ě č č ř š ž Ů ě é

Ú Č é ř ř č é Í Ž š ř ě é š Ó č ř Í ř é ě ě ě ř ě ú ň ý č ů ř ř ě é č č é ě ř č ň ň é ř ě ě Í č Í Ů Í č ě ůč Ů š ů é říš é Č ůčí ů č ě č č ř š ž Ů ě é č ý ů č ů ý č č Š Č Ť ý ř é č Í ě ě č Ú Č é ř ř č é Í Ž š ř ě é š Ó č ř Í ř é ě ě ě ř ě ú ň ý č ů ř ř ě é č č é ě ř č ň ň é ř ě ě Í č Í Ů Í č ě ůč Ů š ů é říš é Č ůčí ů č ě č č ř š ž Ů ě é ůčč ů ě ž Č

Více