Finanční management. Co je inflace? Reálný a nominální diskont. Zahrnutí inflace do výpočtu NPV

Rozměr: px
Začít zobrazení ze stránky:

Download "Finanční management. Co je inflace? Reálný a nominální diskont. Zahrnutí inflace do výpočtu NPV"

Transkript

1 Fačí maageme Zahuí flace do výpoču NPV Co je flace? defce měřeí pomocí CPI, PPI, defláou eálá a omálí velča měřeí v peěžích jedokách ebo v kupí síle běžé a sálé cey Reálý a omálí dsko zaedbáme-l daě (Fshe): ( 1+ ) ( )

2 Reálé ebo omálí hodoy? pokud flace působí a jedolvé kompoey hoovosího oku sejě, je jedo, zda počíáme v eálých č omálích hodoách: DCF T CF 1 ( 1+ ) T CF ( 1+ ) ( ) 1 1+ T CF ( ) ( 1+ ) ( ) CF 1 CF ( + ) ( 1+ ) [( 1+ ) ( 1+ )] ( 1+ ) ( 1+ ) Důvody po použí omálího CF ozdílý vývoj ce kompoe CF daňové odpsy Vlv daí a dsko výos je žší o daě (zápoý daňový ší) kombace flace a daí (Daby): veso ealzuje zdaěý výos: daě 1 ( ) 1+ ( ) [ 1+ ( ) ] ( 1+ ) ( ) ( 1 ) ( ) ( 1 ) ( 1 ) [ 1+ (1 )] ( + ) 1+ 1 ( 1 ) ( 1+ ) + (1 ) ( 1+ ) 1 + (1 ) + 2

3 Nomálí dsko jako fukce flace 70% 60% 50% omálí dsko 40% 30% bez daě daň 28% daň 35% eálý dsko 20% 18,7% 17,2% 13,3% 10% 0% 0% 5% 10% 15% 20% 25% 30% 35% 40% flace DCF je ovlvěa současou hodoou daňového šíu. Příklad: Dvě vesce A a B. Ivesce A emá daňové odpsy, vesce B má velké daňové odpsy je kapálově áočější. Iflace vede k výběu kapálově méě DCF áočých pojeků! A B Ivesčí ozhoduí s použím NPV Opmálí ačasováí vesce Zařízeí s ozdílou žvoosí Rozhoduí o áhadě sávajícího zařízeí Přebyečá kapaca NPV výdajů Kolísáí vyížeos 3

4 Opmálí ačasováí vesce kladé NPV ješě ezameá hed ealzova spočía NPV k oku, poé jeho současou hodou a y poova podoběj pozděj u opcí Zařízeí s ozdílou žvoosí očí ekvvaleí hodoy (vz doba poováí) Příklad (vyábě ebo kupova?): Společos Fuue, a. s., pořebuje každoočě kovových součásek po své výobky. Podle makegové sude bude popávka po výobcích fmy ješě ásledujících 20 le sejá (Sc!). Součásku můžee koup za 20 Kč/ks od exeího dodavaele. Váš ákupčí Vám dopoučl vlasí výobu součásky a vdí, že uspoříe 5 Kč/ks. Předložl Vám ásledující kalkulac: Náklady Kč/ks Kč/ok Je ué koup specálí soj za 2 ml. Kč, keý páce a maeál 5, budee účeě odpsy 10, odepsova 20 le, poo je očí odps 100 s. Celkem 15, Kč, což čí 10 Kč a Nákup 20, jedu součásku. Jak se ozhodee, když aleaví áklad kapálu je 10%? Rozhoduí o áhadě sávajícího zařízeí poováveje očí ekvvaleí hodoy Rozhoděe, zda je výhodé ahad dosavadí soj s povozím áklady 14 s. Kč očě a se zbykovou žvoosí 2 oky ovým sojem, keý sojí 15 s. Kč a má povozí áklady je 10 s. Kč očě. Žvoos ového soje jsou 3 oky. Oba soje mají sejou výobí kapacu, keá vede k žbám 18 s. Kč očě. Zaedbeje daě. Dsko je 6%. Rok 0 0 Rok Rok 2 4 RCF ového soje je 8 s. Kč sížeé o auu vesce, j. 6,38 Kč. Rok 0-15 Rok Rok 2 8 Rok 3 8 4

5 Přebyečá kapaca pokud ová vesce využívá přebyečou kapacu dosavadích sojů, je ué zváž, zda emusí dojí k dřívější áhadě ebo ozšířeí opě RCF s ohledem a dobu, kdy dojde k áhadě pozo a zůsakové hodoy a daňové aspeky NPV výdajů shodý efek ebo lze převés a shodý efek eí ué zjšťova výosy evím, zda je přjaá vaaa skuečě efekví Kolísáí vyížeos zvaže, zda eí možé využí jé kombace ež je ové soje Máe dva soje s eomezeou žvoosí, zůsaková cea je ulová. Kapaca jedoho soje je 1000 kusů očě. Povozí áklady jsou 2 Kč/kus. Musíe vyábě sezóě, poože valvos výobku je malá. Poo v změ a a jaře vyábíe je 50% kapacy, v léě a a podzm 100% kapacy. Dsko je 10%. Můžee zakoup ové soje s žším povozím áklady a o je 1 Kč/ks. Cea ového soje je 6 s. Kč, opě je jeho žvoos eomezeá. Zaedbeje daě. Jak pokyjee výobu? 5

6 Rozhodováí př kapálovém omezeí Máme možu pojeků {P} a kapálové omezeí K. Řešíme úlohu: { P} x { P} RCF max I x { 0;1 }! K RCF je očí ekvvaleí hoovosí ok vybíaé vesce I vesovaé posředky x bvaleí velča, kde vesce je č eí vybáa použí pealzačí (Lagageovy) fukce { } { } max RCF x λ I x K P P Lagageův mulplkáo max ( RCF λ I ) { P} x + λ K Řešeí: pomocí pacálích devací z podsay pealzačích fukcí: vybaé vesce budou splňova podmíku: ( RCF λ I ) 0 V lmím případě přejde po posledí vybaou vesc eovos a ovos: ( RCF λ I ) 0 Odud jž můžeme odvod zv. dex zskovos RCF I 6

7 Posup hledáí opmálího vesčího pláu Po všechy vesce vypočía dex zskovos j Seřad vesce podle klesajícího dexu zskovos j Vybía vesce v pořadí podle předcházejícího bodu ak dlouho, dokud je splěa podmíka omezeí kapálu Idex zskovos posledí zařazeé vesce je hledaým Lagageovým mulplkáoem 7

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský socálí fod Praha & EU: Ivesujee do vaší budoucos Ekooka podku aedra ekooky, aažersví a huaích věd Fakula elekroechcká ČVUT v Praze Ig. učerková Blaka, 20 Úrokový poče, základy fačí aeaky (BI-EP)

Více

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic Ivesičí čios Exisují růzá pojeí ivesičí čiosi: Z pohledu ekoomické eorie Podikové pojeí ivesic Klasifikace ivesic v podiku 1) Hmoé (věcé, fyzické, kapiálové) ivesice 2) Nehmoé (emaeriálí) ivesice 3) Fiačí

Více

2,3 ČTYŘI STANDARDNÍ METODY I, ČTYŘI STANDARDNÍ METODY II

2,3 ČTYŘI STANDARDNÍ METODY I, ČTYŘI STANDARDNÍ METODY II 2,3 ČTYŘI STADARDÍ METODY I, ČTYŘI STADARDÍ METODY II 1.1.1 Statické metody a) ARR - Average Rate of Retur průměrý ročí čistý zisk (po zdaěí) ARR *100 % ( 20 ) ivestic do projektu V čitateli výrazu ( 20

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

2. Finanční rozhodování firmy (řízení investic a inovací)

2. Finanční rozhodování firmy (řízení investic a inovací) 2. Fiačí rozhodováí firmy (řízeí ivestic a iovací) - fiačí rozhodováí je podmožiou fiačího řízeí (domiatí) - kompoety = složky: výběr optimálí variaty zdrojů fiacováí užití získaých prostředků uvážeí vlivu

Více

Souhrn vzorců z finanční matematiky

Souhrn vzorců z finanční matematiky ouh zoců z fčí ey Jedoduché úočeí polhůí předlhůí loí yádřeí Výpoče úou Výpoče úou poocí úooé szby Výpoče úou poocí úooých čísel úooých dělelů Výpoče úou součoý zoce oečý pál př edoduché polhůí úočeí oečý

Více

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost Číselé řady Defiice (Posloupost částečých součtů číselé řady). Nechť (a ) =1 je číselá posloupost. Pro všecha položme s = ak. Posloupost ( s ) azýváme posloupost částečých součtů řady. Defiice (Součet

Více

ÚLOHA VÍCE TĚLES V NEBESKÉ MECHANICE

ÚLOHA VÍCE TĚLES V NEBESKÉ MECHANICE ÚLOHA VÍCE TĚLES V NEBESKÉ ECHANICE SPECIFIKACE PROBLÉU Řeš úlohu ěles zaeá aléz pohyby ( foulova pohybové ovce a aléz ech řešeí) hoých bodů (esp ěles př zaedbáí duhoé oace) a eé působí pouze vzáeé gavačí

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

SP NV Normalita-vlastnosti

SP NV Normalita-vlastnosti SP - - NV Normala-vlasos Přpomeuí vlasosí Normálího rozděleí Charakerscká fukce Lévyho-Ldebergova věa - cerálí lmí věa -rozměré ormálí rozděleí -rozměré ormálí rozděleí Přpomeuí vlasosí Normálího rozděleí

Více

DLUHOPISY. Třídění z hlediska doby splatnosti

DLUHOPISY. Třídění z hlediska doby splatnosti DLUHOISY - dlouhodobý obchodovatelý ceý papír - má staoveou dobu splatost - vyadřue závaze emteta oblgace (dlužía) vůč matel oblgace (věřtel) Tříděí z hledsa doby splatost - rátodobé : splatost do 1 rou

Více

Přijímací zkouška na navazující magisterské studium 2016

Přijímací zkouška na navazující magisterské studium 2016 Přijímací zkouška a avazující magiserské sudium 2016 Sudijí program: Sudijí obor: Maemaika Fiačí a pojisá maemaika Variaa A Řešeí příkladů pečlivě odůvoděe. Věuje pozoros ověřeí předpokladů použiých maemaických

Více

Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU

Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU Metody hodoceí efektvost vestc Opakováí Typy vazeb v uzlové síťové grafu K čeu slouží stude využtelost Fačí odel vestčího záěru Časová hodota peěz Metody vyhodoceí Napšte strukturu propočtu Fačí odel FINANČNÍ

Více

β. Potom dopadající výkon bude

β. Potom dopadající výkon bude Učebí ex k předášce UFY Feselovy vzoce a jevy a ozhaí dvou posředí II Odazvos a popusos Ve vakuu je plošá husoa oku zářeí dáa Poygovým vekoem S c ε E B a zářvos (W/m je defováa jako časová sředí hodoa

Více

SPOŘENÍ. Spoření krátkodobé

SPOŘENÍ. Spoření krátkodobé SPOŘENÍ Krátkodobé- doba spořeí epřesáhe jedo úrokové období (obvykle 1 rok). Úroky jsou přpsováy a koc doby spořeí. Jedotlvé složky jsou úročey a základě jedoduchého úročeí. Dlouhodobé doba spořeí bude

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

Finanční řízení podniku. Téma: Časová hodnota peněz

Finanční řízení podniku. Téma: Časová hodnota peněz Fiačí řízeí podiku Téma: Časová hodota peěz Faktor času se ve fiačím řízeí uplatňuje a) při rozhodováí o ivesticích b) při staoveí trží cey majetku podiku c) při ukládáí volých peěžích prostředků d) při

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

Pojem času ve finančním rozhodování podniku

Pojem času ve finančním rozhodování podniku Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé

Více

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti Odezva a obecou periodickou budící fukci Iva Períková Kaedra mechaiky, pružosi a pevosi Obsah Fourierovy řady Odezva a polyharmoickou fukci Odezva a obecou periodickou fukci Odezva a jedokový skok Příklad

Více

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0 Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada

Více

Vícekanálové čekací systémy

Vícekanálové čekací systémy Vícekaálové čekací systémy taice obsluhy sestává z ěkolika kaálů obsluhy, racujících aralelě a avzájem ezávisle. Vstuy i výstuy systému mají oissoovský charakter. Jedotky vstuující do systému obsadí ejrve

Více

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n /9 POSLOUPNOSTI Zákldí pojmy: Defiice poslouposti Vlstosti poslouposti Určeí poslouposti Aritmetická posloupost Geometrická posloupost Užití poslouposti. Defiice poslouposti Př. Sestrojte grf fukce y =.x

Více

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a

Více

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti 8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:

Více

í č ě ě í č Á é ý ě š ě ě ť ž í ž í ž ě č š ší ú ší é íč í í é ě ě č č é ě í ž é ě š ý č í ě úč é ě ú ů í ů š ší é š é ů í ě ů č ů í ě š íí ž í š ě í íž í ů í í í ů é í ý é č ě é í é ů ě ě ž ší é ě é í

Více

Nalezení výchozího základního řešení. Je řešení optimální? ne Změna řešení

Nalezení výchozího základního řešení. Je řešení optimální? ne Změna řešení Sipleová etoda: - patří ezi uiverzálí etody řešeí úloh lieárího prograováí. - de o etodu iteračí, t. k optiálíu řešeí dospíváe postupě, krok za kroke. - výpočetí algoritus se v každé iteraci rozpadá do

Více

Ú É Á Č ď Ú ž Ů ž Á Á ž Á Ř É š Ú Ě Ě Ť ž Ú Í Č Ů Ú ů ž Ý ú ú Č ž ú ž ď ž ů ů ú š š ž Ů ž š Á ť Á ú Ů ž ť šť šť ž š ž ů ž ž Ů ž ž š ž š ž Ů Á šť šť ž šť ž š šť ž ž Ů Í ž ž ž š ž ŠÍ ž Á Ý š ž ž Ů ž ů Ů

Více

Světlo v izotropním látkovém prostředí a na rozhraní izotropní bezztrátové dielektrikum je charakterizováno skalární permitivitou ε = εε.

Světlo v izotropním látkovém prostředí a na rozhraní izotropní bezztrátové dielektrikum je charakterizováno skalární permitivitou ε = εε. Učebí ex k předášce UFY2 Feselovy vzoce a jevy a ozhaí dvou posředí I Svělo v zoopím lákovém posředí a a ozhaí zoopí bezzáové delekkum je chaakezováo skaláí pemvou ε εε a pemeablou μ μμ (kde μ po emagecké

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B) Přijímací řízeí pro akademický rok 24/5 a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata B) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

Generování dvojrozměrných rozdělení pomocí copulí

Generování dvojrozměrných rozdělení pomocí copulí Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta

Více

4EK311 Operační výzkum. 4. Distribuční úlohy LP část 2

4EK311 Operační výzkum. 4. Distribuční úlohy LP část 2 4EK311 Operačí výzkum 4. Distribučí úlohy LP část 2 4.1 Dopraví problém obecý model miimalizovat za podmíek: m z = c ij x ij i=1 j=1 j=1 m i=1 x ij = a i, i = 1, 2,, m x ij = b j, j = 1, 2,, x ij 0, i

Více

Přehled vztahů k problematice jednoduchého úročení a úrokové sazby

Přehled vztahů k problematice jednoduchého úročení a úrokové sazby Přehled vztahů k poblematice jedoduchého úočeí a úokové sazby Pozámka: Veškeé úokové sazby /předlhůtí i polhůtí/, diskotí sazby, míy iflace a sazby daě z příjmů je do uvedeých vzoců uto dosazovat v jejich

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

Využití účetních dat pro finanční řízení

Využití účetních dat pro finanční řízení Využtí účetích dat pro fačí řízeí KAPITOLA 4 V rác této kaptoly se zaěříe a časovou hodotu peěz (a to včetě oceňováí ceých papírů), která se prolíá celý vestčí rozhodováí, dále a fačí aalýzu (vycházející

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

FINANČNÍ MATEMATIKA- INFLACE

FINANČNÍ MATEMATIKA- INFLACE ojekt ŠABLONY NA GVM Gymázum Velké Mezříčí egstačí číslo pojektu: CZ..7/.5./34.948 V- ovace a zkvaltěí výuky směřující k ozvoj matematcké gamotost žáků středích škol FNANČNÍ MATEMATA- NFLACE Auto Jazyk

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že

Více

Ť ú ň ú ú ú ň Č Č Ť ť Ť ň Ž Ž Ť Ž Ž Ť Č ú Ť ú Ť ť ú Ž ň Ó ú Ť Ž Ť Ž ň Ť Ť Č Ž Ň Á Á ČÁ Č ŘÁČ Č ÁČ Á Ě Á Á Á Ž Á Ě Á Á ŮŽ Č Ř Ě Ř Á Á Á Ě Á Á Á Á Ň Ú Ú Ú ú ú ť Ú Ú ť Ý ĚŽ Ť Ž ú Ž ú ú Ú Ě ÚŘ É ň ú ŮĚ ú Ť

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Metody odhadu poptávky a nabídky v podmínkách nerovnovážného modelu

Metody odhadu poptávky a nabídky v podmínkách nerovnovážného modelu 4. eziárodí koferece Řízeí a odelováí fiačích rizik Osrava VŠB-TU Osrava, Ekooická fakula, kaedra Fiací.-. září 8 Meody odhadu popávky a abídky v podíkách erovovážého odelu Pavla Vodová Absrak Cíle ohoo

Více

Či ost katastrál í h úřadů po digitaliza i katastrál í h ap

Či ost katastrál í h úřadů po digitaliza i katastrál í h ap Či ost katastrál í h úřadů po digitaliza i katastrál í h ap Konference ISSS 2016. du a Základ í íl ) ě it aktuál í stav, kd katastr e ovitostí si e do ře slouží k o hra ě práv vlast íků a ezpeč osti realit

Více

3689/101/13-1 - Ing. Vítězslav Suchý, U stadionu 1355/16, 434 01 Most tel.: 476 709 704 mobil: 605 947 813 E-mail: vit.suchy@volny.

3689/101/13-1 - Ing. Vítězslav Suchý, U stadionu 1355/16, 434 01 Most tel.: 476 709 704 mobil: 605 947 813 E-mail: vit.suchy@volny. 3689/101/13-1 - o ceě : Bytu č. 2654/16 v č. p. 2654 v bloku č. 10 složeém z domů č.p. 2651, 2652, 2653, 2654 a 2655 a pozemcích p. č. 2450, 2449, 2448, 2447 a 2446. včetě příslušeství v katastrálím území

Více

ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY

ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY ÚROKOVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY 1. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(r) úrok v % z hodoty kapitálu za časové

Více

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a } Nekoečé řdy. Nekoečé číselé řdy.. Defiice ) Ozčme { } { } = L L ekoečou posloupost reálých čísel.,,,,, Nekoečá číselá řd je součet tvru = + + + L+ + L. Jedotlivá čísl,,, L,, L se zývjí čley řdy, čle obvykle

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

á ž é á á á ž ý ě í š ě ší á ů ý ž ě ý č í ý ů ů í ě é ě ý ů ě í í á í š í ě í í í í é ě ě í í í ě í ý ě íč í é á ý í ý č í ž ž é Í ý á í č í í í í í

á ž é á á á ž ý ě í š ě ší á ů ý ž ě ý č í ý ů ů í ě é ě ý ů ě í í á í š í ě í í í í é ě ě í í í ě í ý ě íč í é á ý í ý č í ž ž é Í ý á í č í í í í í á é á ě é í é í á Ž é á ěž ý č á íš č íí á í ý š ě ý ý ů íž í é é é ž é á ě ě ý á í ě š ě í ý ě á ů é í á č í í í é í ž é íč ý ž ý í í á í ý á á ý ý ží ý é č í í é í é ě í á č ě éč ě í í é Í Í í ě í ý

Více

ž ž é á Ú ý é ý Ú č č á ý ě Ú š á č ť ý á á č Č á ý Č š Í Í á á é ě ý ó á Š á á é é á Ú á Í á Í áš á Č á úč ů ž ž á Úč ů ž á úč ů á ě á á ž á ě ě ž š á Š á á Š á š č č Č é šť á ť é é é ě é š á č č Ó ý

Více

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0).

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0). ČÍSELNÉ VEKTORY Defce Uspořádou -tc čísel = (,,, ) zveme číselým vektoem Čísl,,, jsou složky ebol souřdce vektou Přozeé číslo zýváme ozměem ebo tké dmezí vektou Defce Vekto, jehož všechy složky se ovjí

Více

Ý Á Ý Č č í č í ě Č ň é Ž í Ž í í ý Ť ž í ě é ý í č Ž í č ě ě ší ž í ě ý í Ě Á ČÁ ň í Č Ú ý žší č í č í ě ť č ž í é č Č Ž úč Š Ú Č Ž í í ě ť Ž í ě Ú Č ě Ž í ě ŠÍě ú ěž ý š ě í Ž í í í í Ž í ě í š č í í

Více

ÁŠ Í č ť é ž é č Ó Ž í Ť Ž č íč š é Č í Í ČÁ É É Ě É í Á š í ď í Ž í é Ž é č í ť í í ž í Ž Ťí ě í ěť í ě š ě č í Ž Ť í š ě í Ž Ž í ť é í Ží í Ží í é ě é í í í é í í ž ě é šíť Ťí é Ž í ě í Ó ť í ť č í ž

Více

Křivočarý pohyb bodu.

Křivočarý pohyb bodu. Křočý pohb bodu. Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí

Více

í Ž é á é é ě í ě í ů ž é ší é í í í ž é ŽÍ Í ě á ř á é ě á í é Ú áří Í ě ž í í í í ě á š é ý ě ř í á é Ž ží á é ř Í Ší ů č í á č é é í í Ž š ř í č í ř áší ŠÍ úž é ý ěž ří č ý í Í ú é ř ě í ě ý ů ů é ž

Více

é é Ť í í íš ě é é á í Ěí é é á í Ť á Ž á Ť č é č í Ťá Í č é é ě ě í č š í é é ě ě ší Ť á ě á í š í é é á é ě Ť Í č é é í áš é Ť í á í á í í č é č í Ť

é é Ť í í íš ě é é á í Ěí é é á í Ť á Ž á Ť č é č í Ťá Í č é é ě ě í č š í é é ě ě ší Ť á ě á í š í é é á é ě Ť Í č é é í áš é Ť í á í á í í č é č í Ť Č č É á á é ě é č á í ž é Ťí ě á Ť ě é é í ž á Ž č ě č č č é í í ě í Ž é Ť é í é á ž ž á éč é á í á ž í ž Ťí í í č é á ď í á ž í í č í ě í č í ě š í ě í éž í Ť í šť á í á ě é í š Ť ž í í Ť ě ž í á ší é

Více

rámci Operač ího progra u Život í prostředí ke s íže í e isí TZL společ osti TŘINECKÉ ŽELEZÁRNY, a.s.

rámci Operač ího progra u Život í prostředí ke s íže í e isí TZL společ osti TŘINECKÉ ŽELEZÁRNY, a.s. Prů ěh realiza e projektů fi a ova ý h v rámci Operač ího progra u Život í prostředí ke s íže í e isí TZL společ osti TŘINECKÉ ŽELEZÁRNY, a.s. I g. Radi Kli ša, I g. To áš Gajdacz, Ing. Miroslav Pietrosz,

Více

Řešení soustav lineárních rovnic

Řešení soustav lineárních rovnic Řešeí sousv lieáríc rovic Sousv lieáríc rovic Sousvou m lieáríc rovic o ezámýc rozumíme sousvu : Kde ij i R M m m Čísl ij zýváme koeficiey sousvy čísl i soluí čley Uvedeou sousvu udeme zči Sm m M m Homogeí

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI SEMESTRÁ LNÍ PRÁ CE Lceč í tudum STTISTICKÉZPRCOVÁ NÍ DT PŘ I KONTROLE Ř ÍZENÍ JKOSTI Předmě t MTEMTICKÉPRINCIPY NLÝ ZY VÍCEROZMĚ RNÝ CH DT Ú ta epemetá lí bofamace, Hadec Ká loé Ig. Mata Růžčkoá PDF byl

Více

Metodika projektů generujících příjmy

Metodika projektů generujících příjmy Příloha: 9 Metodka projektů geerujících příjmy Účost: 23. 1. 2009 Verze č. 6.0 1. Výchozí podmíky - Obecá pravdla Postup u projektů geerujících příjmy vychází z čláku 55 Obecého ařízeí č. 1083/2006 a vyplývá

Více

ří á í í í Á ř á í ř í í č é ž í č í í í ří á á č čá á č é úč í Úč é ž í í Č í úř á í Íí á í é á ř ř ř á í ř ř á í ř í ú č í ř í ří í čá á č é úč é í á č ř á á í ř íú í á ů ů í é í ší ř ů ř á í Ž á í í

Více

Číslo materiálu VY_32_INOVACE_CTE_2.MA_17_Klopné obvody RS, JK, D, T. Střední odborná škola a Střední odborné učiliště, Dubno Ing.

Číslo materiálu VY_32_INOVACE_CTE_2.MA_17_Klopné obvody RS, JK, D, T. Střední odborná škola a Střední odborné učiliště, Dubno Ing. Číslo projeku CZ..7/.5./34.58 Číslo maeriálu VY_32_INOVACE_CTE_2.MA_7_Klopé obvody RS, JK, D, T. Název školy Auor Temaická oblas Ročík Sředí odborá škola a Sředí odboré učilišě, Dubo Ig. Miroslav Krýdl

Více

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo

Více

Č í ří í ř ž í í ř ě í ř í í ř č ř í ž í í š ě ž í š ě í ž ř í í ě íž í í ř í í í í ŽŠÍ ží í ě ř ž č ó ě í š í ě ř š í č í žší ží í ž ří í ě í š í ě í

Č í ří í ř ž í í ř ě í ř í í ř č ř í ž í í š ě ž í š ě í ž ř í í ě íž í í ř í í í í ŽŠÍ ží í ě ř ž č ó ě í š í ě ř š í č í žší ží í ž ří í ě í š í ě í ě úř í úř š ď Ú Ť Í Ú Í Í č ě úř ď í úř í úř ří š í č ú í í í ř í ě í ě ší ř ů í ú í ří í ž í Ž í í í ě í ří í í í ě í ň í žíč ú ó č ž ě í í š č ě šíú ě ú í ň í ř í ú í ř í í í ě í ří í í íž č ú í ží č

Více

ě Á úř š úř Ť Ú Í Ú Í Í Í Í ě úř úř úř ř š ú ř ú Ň ř ř Ž ě ě ó ř š ě ě ř š ě š ú ě ú ř ř ú ř ě ž ř ú ř ž ř š ě ó šť ě ú ž ů ž ř ř ž ř š Č š ě ů ž ř ů ě š ř ě ř ů ř ě Ú ř ř ř ů ě ť Ň ě ř š ň ř ř ř Ž ů ř

Více

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení Přijímací řízeí akademický rok 0/0 Kompletí zěí testových otázek matematické myšleí Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá odpověď. Které číslo doplíte místo otazíku? 6 8 8 6?.

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský sociálí fod Praha & EU: Ivestujeme do vaší budoucosti Teto materiál vzikl díky Operačímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Maažerské kvatitativí metody II - předáška č.1 - Dyamické

Více

Lineární programování

Lineární programování Lieárí programováí Adjugovaý problém lieárího programováí V případě řešeí problému lieárího programováí LP ma{ c T : A b 0} získáváme výchozí přípustou jedotkovou bázi u doplňkových proměých a za předpokladu

Více

asi 1,5 hodiny seznámit studenty se základními zákonitostmi křivočarého pohybu bodu Dynamika I, 3. přednáška Obsah přednášky : Doba studia :

asi 1,5 hodiny seznámit studenty se základními zákonitostmi křivočarého pohybu bodu Dynamika I, 3. přednáška Obsah přednášky : Doba studia : Dmk I, 3. předášk Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm

Více

é é í č é í ě í é é ř í í í ší č ý í í č ý š ě í říň ě é é í ě ů ý ž ů á í í ě č ž ří ř á í úč á č é ř í ž ě čá í á ž í ž ř é ý ý š ě č ř íň Č éř ř é í ýš ý í é ž í ů ý í ý ý ý ší é é í í ž á á í í é č

Více

Ř É Á ý ř ř ý č ř ě ř ů ř č ř ý ř ř č š ň ú Ó Á Í Ó ú Ú Č Š ň Č ě ě ě ě ř ý Š Š ř ý ě ř ř Š č ůž č Ž Č ůž ý š ý Ž Č ě ř Í ř ř ě č ě Ž ý Ž Č ř ý č ý ě ů č ě Š ě Š ř Í ů Č ů Í ý ě ň č Ž ěř č Ž ý Č ý č ě

Více

523/2006 Sb. VYHLÁŠKA

523/2006 Sb. VYHLÁŠKA 523/2006 Sb. VYHLÁŠKA ze de 21. listopadu 2006, kterou se staoví mezí hodoty hlukových ukazatelů, jejich výpočet, základí požadavky a obsah strategických hlukových map a akčích pláů a podmíky účasti veřejosti

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou

Více

M - Posloupnosti VARIACE

M - Posloupnosti VARIACE M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,

Více

Ž Ř Ú ň

Ž Ř Ú ň š Š Ý ó š ž Ý ú č š ý ý ů ý ůč š Á É ů č ě ž ž č ů ý ě ů ž ť ě ý ě ú ý ě ú ů ě š Ž ý ě ý ý ž ě ě ý ě š č ý š Ť š ó šš ž č ů š ě ý ý ě ý č ý ů ý č ží ž č š ě ý ý ý ě ě Í č ů č ú ě ů ě ě ž ůč š ý š ě ů ž

Více

á á č í ěž í č í č í á á í é úč í čá á á á á č ý č é čá č í ě í č ěž í č í ž á í í á á á č ěž í č í ž á í á í á í ý ů é í á é á í á í í ž í é á í ý š

á á č í ěž í č í č í á á í é úč í čá á á á á č ý č é čá č í ě í č ěž í č í ž á í í á á á č ěž í č í ž á í á í á í ý ů é í á é á í á í í ž í é á í ý š á á í čí í á í ží í ž ě áč í í é Ú á í á í á í í ý Ú í é í á í é á í í č ě í á ů é í í á ú ů í é ý ú ů ý í á í ú í č ů ěž ě ě á ú í č ů ěž ě ě ú í č ů ěž ě ě ú í č ů ěž ě ě ú í č ě ú í č ě á ě í Ú í é

Více

II. METODICKÉ PŘÍKLADY SESTAVENÍ VÝKAZU PAP

II. METODICKÉ PŘÍKLADY SESTAVENÍ VÝKAZU PAP Istituce i zazameaé operace jsou fiktiví. Ukázkové případy - sezam Případ Vykazující účetí Vykázaé Části I až XIII Straa jedotka (zkráceě až 3) A Půjčka od baky Město, v roce +1, T2 v roce +1, T7, T8,

Více

(3n + 1) 3n Příklady pro samostatnou práci

(3n + 1) 3n Příklady pro samostatnou práci ... 4. 5. 6. 0 0 0 a q koverguje pro q < geometrická řada diverguje harmoická řada koverguje srovejte s teleskopickou řadou + + utá podmíka kovergece + 4 + + 7 ití srovávací kritérium, srováí s ití podílové

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DA prof. Ig. Jří Holčík, CSc. INVESICE Isttut DO bostatstky ROZVOJE VZDĚLÁVÁNÍ a aalýz IV. LINEÁRNÍ KLASIFIKACE pokračováí Isttut bostatstky a aalýz (SUPPOR VECOR MACHINE SVM) SEPARABILNÍ

Více

Předmět: SM 01 ROVINNÉ PŘÍHRADOVÉ KONSTRUKCE

Předmět: SM 01 ROVINNÉ PŘÍHRADOVÉ KONSTRUKCE Přdmět: SM 0 ROVIÉ PŘÍHRADOVÉ KOSTRUKCE doc. Ig. Michl POLÁK, CSc. Fkult stvbí, ČVUT v Prz ROVIÉ PŘÍHRADOVÉ KOSTRUKCE: KOSTRUKCE JE VYTVOŘEA Z PŘÍMÝCH PRUTŮ, PRUTY JSOU AVZÁJEM POSPOJOVÁY V BODECH STYČÍCÍCH,

Více

ú ť š č ř ó Ě č ě ě ř ý ď ý é ř é é ř ř é ý ě ů č ú ř é ý Č ý ě Ť ž Č ě é č ě ě ě é ě Á ú ř ř ě ř é é ř é ž ě ř ý ě ě š ř ů Ť ě ý ř ě ě ř é é ř é ř é ý ě ů žš ý é ý ě ř é ž ř ě ř é ž ě č č ý ě ř é ě ř

Více

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI 6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.. ČÍSELNÉ POSLOUPNOSTI V této kpitole se dozvíte: jk defiujeme posloupost reálých ebo komplexích čísel; defiici vlstí evlstí limity poslouposti; defiici pojmů souvisejících

Více

TESTOVÁNÍ a DIAGNOSTIKA VÝROBNÍCH STROJŮ I

TESTOVÁNÍ a DIAGNOSTIKA VÝROBNÍCH STROJŮ I ESOVÁNÍ a DIAGNOSIKA VÝROBNÍCH SROJŮ I Leraura: Skra: Zdeěk Vorlíček: Solehlvos a dagoska výrobích srojů ČVU Praha 99 Vorlíček, Rudolf: Dagoska VS ČVU Praha 98 Ka.. Úvod: Proč se zabýváme esováím a dagoskou

Více

Přijímací zkoušky do navazujícího magisterského studia Učitelství fyziky pro 2. stupeň ZŠ a Učitelství fyziky pro SŠ pro akademický rok 2010/2011

Přijímací zkoušky do navazujícího magisterského studia Učitelství fyziky pro 2. stupeň ZŠ a Učitelství fyziky pro SŠ pro akademický rok 2010/2011 Přijíací zkoušky do avazujícího agiseského sudia čiesví fyziky po supeň ZŠ a čiesví fyziky po SŠ po akadeický ok / ) Při akceeačích závodech sauje závodí auoobi z kidu a ěří se čas, za keý uazí dáhu 4

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP Teováí hypoéz PRAVDĚPODOBNOST A STATISTIKA SP Teováí hypoéz Teováí hypoéz Nechť je áhodá proměá, kerá má diribučí fukci Fx, ϑ. Předpokládejme, že záme var diribučí fukce víme jaké má rozděleí a ezáme

Více

š ě ě ů ú ě ě š ř ů ú Ř ú Á Ě ÉÚ úč Č ú ř ě ó ů ř ů ě ě ó ž š ů ů ě ú ě ž ú ě Ý ú ř ú ř ř ú ž Á ú Ý Í Í Ú ž ú š š ň ň ř ě ž ř ř Ě Á Ě ů ř Ě Á Á ů Á Á Ý Ř ČÍ Ů Á Ů ú ě ú ř ú Ů ě ě ů ů ž ň ě ě Ň ú Ý Á Ř

Více

É Ř Á Ý Ý Ě Á í í Á í á ář Úč ř í í í í ý ř ň á í í á é ř é é á á ý í á á ň č á á á é á í í á í í á ží á ý á í í í ří č í í é á í ří í é á é ář Žá Ž í é í é á í ří á í ř á í ř á ří Š é á á č í í á ý ř

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

ú é ů ú ť ů ú š ň é ň é é é ž é Ý é Ý Ý é ú ů ú ů Ý ú é é ú ú Ú ů ů š é é ž é ú Ú Í ů ů é é é ú ú ó é é é é ú é ž é é ž ž ň é é é é é é É Š é ů é Š Š ú é ž ú ú é ú é é Ú ú ú Ý ů ó Š ú ú ň ů ň š ň š é é

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více