rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil
|
|
- Kamil Matoušek
- před 6 lety
- Počet zobrazení:
Transkript
1 3.3 Obecé soustav sl soustava sl seskupeí sl působících a těleso vláští případ: svaek sl (papsk všech sl soustav se potíaí v edo bodě) soustava ovoběžých sl (papsk všech sl soustav sou aváe ovoběžé) ová soustava sl (papsk všech sl soustav leží v edé ově) ový svaek sl ová soustava ovoběžých sl Vkla u obce Kadov, ~3 t
2 3.3. Postoová soustava sl a oetů sl Výsledý úček výsledý úček soustav sl { } a oetů { } učíe edukcí edotlvých sl soustav k počátku a vektoový součte edukovaých sl a oetů sl O O ψ a O... bvekto + ( ) + O oet sl 2
3 3 Slové složk: cosα cosβ cos γ 3 oetové složk: ( ) + ( ) ( ) + + Délka (velkost) vektou : ( ) /2 Délka (velkost) vektou : ( ) /2 sěové úhl: cosα cosβ cos γ cosλ cosµ cosν 3
4 Váeý úhel vektoů a O : ψ. O O cos ψ + + cos ψ ( + + ) cos α cos λ + cos β cos µ + cos γ cos ν Obecě cos ψ 4
5 Zvláští případ:. O, a O sou váeě kolé soustavu le ahadt edou slou působící v takové papsku, ab eí statcký oet k počátku bl ove O. Pak ovce ekvvalece oetu posuuté síl a oetu O : učuí ovc papsku posuuté síl... tv. hlaví os soustav sl O O O * - 5
6 , O výsledý účke e edá síla působící papsku pocháeící počátke O, O výsledý účke e dvoce sl působící v ově kolé k papsku vektou O a otáčeící oete d O O O d * - d d, O soustava sl e v ovováe 6
7 Příklad: Vpočtěte výsledý úček 2 sl vhlede k počátku 7
8 8 Úloha ovováh R R R R R R Je dáa soustava sl { }. Uveďte tuto soustavu do ovováh soustavou sl { }. + + OR O R Ve složkách: (6 ovc - 6 eáých)
9 9 Úloha ekvvalece R R R R R R Je dáa soustava sl { }. Nahaďte tuto soustavu soustavou sl { }, tak ab úček obou soustav bl steý. OR O R Ve složkách: (6 ovc - 6 eáých)
10
11
12 Ekvvaletí ahaeí sosutav dvěa oběžý sla Náhada daé soustav sl { } dvěa oběžý sla a d 2 d 2 d 2 2. d. Složíe - 2 2
13 Ekvvaletí ahaeí soustav dvěa oběžý sla Náhada soustav { } slou C působící v hlaví ose soustav c a hlaví oete C Defce: C, C, C a C sou koaálí ψ 2 ψ C C O cosψ O sψ C 3
14 Nulové přík soustav sl přík ke kteý á soustava sl ulový statcký oet Nahadíe-l soustavu sl dvě oběžý sla, pak každá příka potíaící současě papsk těchto sl e ulovou příkou soustav. 2 4
15 3.3.2 Postoová soustava ovoběžých sl e vláští případe obecé postoové soustav, kd papsk všech sl soustav sou váeě ovoběžé. { } { } O Po.: pokud á síla opačou oetac ež edotkový vekto, uvažuee se aéke íus. 5
16 6 Výsledý úček (k počátku O) ( ) ( ) ( ) f f f f f O O ( )... defce vektoového souču O Velkost a oetace výsledce: O O e-l >... shodá oetace s e-l <... opačá oetace ež
17 Obecě a O výsledý účke e edá síla působící v hlaví ose soustav. Rovce učuí papsek posuuté síl (t.. hlaví osu c) O O c 7
18 Příklad: Učete výsledý úček soustav ovoběžých sl { } působících v papscích ovoběžých s osou Po všech síl soustav: O Pak:, ( ) O ( ) (- ) O 8
19 Působště výsledce: (- ) O 9
20 Příklad 2: Učete výsledý slový úček skup břee, kteá působí vlastí tíhou a stopí desku. Uvažute tíhové chleí g /s 2. 5 kg 2 2 kg 4,5,5, kg 3 25 kg,5,5 () 2
21 odel:,5,5 G 2 G G 4 G 3 P P 2 P 4 P 3 3 3,5,5,5 () G G +G 2 +G 3 +G N G *.5+G 2 *.5+G 3 *3+G 4 *3 5*.5+2*.5+4*3+25*357 N -(G *.5+G 2 *7.5+G 3 *4.5+G 4 *9 5*.5+2*7.5+4*4.5+25*9-98 N /G 57/ /G 98/
22 G 35 N Výsledek: G G 2 G 3 G 4,8,5,5,5 3 3,5 6,29,5 () 22
23 3.3.3 Rová soustava sl a oetů sl Předpoklad Všech síl soustav leží v edé ově. Všech oet sou kolé a tuto ovu. *) Souřadý ssté volíe tak, že ova - e totožá s ovou sl. O *) Po.: Slový oet ůžee ahadt dvocí sl působících v ově kolé a vekto tohoto oetu. O 23
24 Rová soustava sl a oetů e vláští případe postoové soustav. Všech vtah (výsledý úček, podík ovováh a ekvvalece) odvoeé po obecou postoovou soustavu sl a oetů platí také po soustavu ovou. Tto vtah však ůžee edodušt uvážeí, že složk všech sl soustav ve sěu os sou ulové a složk všech oetů soustav ve sěech os a sou ulové. O 24
25 Učeí složek vektou síl v ově ) obecé defce po 3D poocí kosů sěových úhlů cosα cosγ sα γ α 25
26 Výsledý úček (edukcí k počátku)... slový (posouvaící) + (síla působící v počátku O) ( ) - O +... oetový (otáčvý) + ( - ) ( ) - + Otáčvý úček popsue edá eulová složka oetu : Platí: ( ) + - O 26
27 potože, ovu - potože, leží v ově - Soustavu sl ožo ahadt edou slou, po kteou platí: a - O Učue velkost, sě a oetac výsledce Učue papsek výsledce: O + O - O... ovce papsku posuuté výsledce tv. hlaví os soustav sl 27
28 Zvláští případ:, O výsledý účke e edá síla působící papsku pocháeící počátke, O výsledý účke e dvoce sl působící v ově - a otáčeící oete d O, O soustava sl e v ovováe 28
29 Podík ovováh Soustava sl { } e v ovováe, estlže e eí výsledý úček ulový: splěo detck ( ) - ( ) - ( - ) splěo detck 3 podík 29
30 3 Úloha ovováh k l l k l l k l l OR O R R Je dáa soustava sl { } a oetů { }. Uveďte tuto soustavu do ovováh soustavou k sl { l } k l l k l l OR O R Ve složkách: Podík řeštelost: 3 ovce - 3 eáé deteat soustav
31 3 Úloha ekvvalece Je dáa soustava sl { }a oetů { }. Nahaďte tuto soustavu soustavou k sl { l } tak, ab úček obou soustav bl steý. Ve složkách: Podík řeštelost: 3 ovce - 3 eáé deteat soustav Příklad úloh ovováh/ekvvalece ové soustav sl - v cvčeí + k l l k l l k l l OR O R R + k l l k l l OR O R
32 Příklad. Učete výsledý úček vhlede k počátku (edukute k počátku) 32
33 33
34 Příklad. Uveďte předchoí soustavu do ovováh poocí Q Q 2. 34
35 35
36 3.3.4 Rová soustava ovoběžých sl e vláští případe obecé postoové soustav, kd papsk všech sl soustav sou váeě ovoběžé a leží v edé ově. O α { } { } {f,, f } {cos α,, s α } Po.: pokud á síla opačou oetac ež edotkový vekto, uvažuee se aéke íus. 36
37 Výsledý úček cos α ' cos α ' cos α ' s α ' s α ' s α ' ( cos α ' s α ') O O O Velkost a oetace výsledce: Papsek výsledce (hl. os): O - 37
38 Příklad: Učete výsledý úček ové soustav ovoběžých sl { } působících v papscích ovoběžých s osou Po všech síl soustav: α π/2 (cos α, s α ), Pak: O ( α α ) cos ' s ' O O 38
39 Papsek výsledce: O t. příka s osou ve vdáleost - O / od počátku O. - O / 39
40 4
41 Otáčíe-l vše sla kole ech působšť, ab bl stále ovoběžé, pak se otáčí výsledce okolo pevého bodu C, kteý se aývá statcký střede soustav. 4
3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso
3.3 Soustav s a sových oetů soustava s a oetů sesupeí s a oetů s působících a těeso váští případ: svae s (paps všech s soustav se potíají v jedo bodě) soustava ovoběžých s (paps všech s soustav jsou aváje
3.3.3 Rovinná soustava sil a momentů sil
3.3.3 Rová soustava s a oetů s Předpoady Všechy síy soustavy eží v edé rově. Všechy oety sou oé a tuto rovu. *) Souřadý systé voíe ta, že rova - e totožá s rovou s. y O *) Po.: Sový oet ůžee ahradt dvocí
Stavební mechanika 1 (K132SM01)
Stavebí mechaka (K32S) Předáší: doc. Ig. atěj Lepš, Ph.D. Kateda mechak K32 místost D234 koutace Čt 9:3-: e-ma: matej.eps@fsv.cvut.c http://mech.fsv.cvut.c/~eps/teachg/de.htm 4. Soustav s a statckých mometů
Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228)
Stavebí statka - vyučující Dooručeá lteratura Ig. Vladmíra chalcová, h.d. Katedra stavebí mechaky (228) místost: LH 47/ tel.: (59 732) 348 e mal: vladmra.mchalcova@vsb.c www: htt://fast.vsb.c/mchalcova
Aspekty stavební konstrukce z hlediska projektanta
Geoete hot - otvae spekt stavebí kostuke hledska poektata Kostukčí ssté Zatížeí Mateál Dee pvků (hot, půře) Po deováí (štěí aáháí pvku) potřebuee át: Roložeí hot v postou (ploše). Těžště. vdáleost hot
Téma 2 Přímková a rovinná soustava sil
Stavebí statka,.ročík bakalářského studa Téma 2 Přímková a rová soustava sl Přímková soustava sl ový svazek sl Statcký momet síly k bodu a dvojce sl v rově Obecá rová soustava sl ová soustava rovoběžých
SMR 1. Pavel Padevět
SMR Pavel Padevět Oganzace předmětu Přednášející Pavel Padevět, K 3, D 09 e-mal: pavel.padevet@fsv.cvut.cz Infomace k předmětu: https://mech.fsv.cvut.cz/student SMR Heslo: odné číslo bez lomítka (případně
Analytická geometrie
MATEMATICKÝ ÚSTAV Slezská uverzt N Rybíčku, 746 0 Opv DENNÍ STUDIUM Alytcká geoetre Té 5.: Shodá zobrzeí Defce 5.. Zobrzeí f eukldovského prostoru E do eukldovského prostoru E se zývá shodé (zoetrcké),
Ing. Lenka Lausová Ing. Vladimíra Michalcová, Ph.D.
Stavebí statka,.oík bakaláského studa Stavebí statka - vyuující Ig. Leka Lausová Ig. Vladmía chalcová, h.d. Kateda stavebí mechaky (8) LH 45 Úvod do studa edmtu a Stavebí fakult VŠB-TU Ostava www: htt://fast.vsb.c/lausova
Téma 11 Prostorová soustava sil
Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra
Přímková a rovinná soustava sil
STAVEBNÍ STATIKA Ing. Lenka Lausová LH 47/1 tel. 59 73 136 římková a ovinná soustava sil lenka.lausova@vsb.c http://fast1.vsb.c/lausova Základní pojmy: Jednotková kužnice 1) Souřadný systém 1 sin potilehlá
4. Analytická geometrie v prostoru
. alcá geomee v oso V aalcé geome so geomecé obe chaaeová omocí číselých údaů. Vlasos geomecých obeů so sdová v edom e í osoů: ooměý eledovsý oso, o. E (oso), dvooměý eledovsý oso, o. E (ova), edooměý
Konstrukci (jejíčásti) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině).
. íl působící na tělso/dsku.. Zadání úloh, přdpoklad Úloha: obcněji matmatick popsat mchanické účink atížní na konstukci a účink částí konstukc navájm. Konstukci (jjíčásti) budm idaliovat jako tuhá (ndfomovatlná)
S k l á d á n í s i l
S l á d á í s i l Ú o l : Všetřovat rovováhu tří sil, působících a tuhé těleso v jedom bodě. P o t ř e b : Viz sezam v desách u úloh a pracovím stole. Obecá část: Při sládáí soustav ěolia sil působících
Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém
Vysoká škola báňskb ská Technická univeita Ostava Stavební statika Cvičení 1 římková a ovinná soustava sil římková soustava sil ovinný svaek sil Statický moment síly k bodu a dvojice sil v ovině Obecná
Konstrukci (její části) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině).
. íl působící na tělso/dsku.. Zadání úloh, přdpoklad Úloha této kapitol: obcněji matmatick popsat mchanické účink atížní na konstukci a účink částí konstukc navájm. Konstukci (jjí části) budm idaliovat
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
5. Geometrické průřezové charakteristiky 5.1 Těžiště
5. Geoetrké průřeové harakterstk 5. Těžště Těžště bod, který vžd proháí výslede gravtačíh sl působííh a hotý objekt (soustavu objektů) ačíe C g [, ] (a) Těžště soustav hotýh bodů v rově 3 3 {, } F x F
Obecná soustava sil a momentů v prostoru
becá soustava sil a mometů v prostoru Zcela obecé atížeí silami a momet a těleso v prostoru (vede a 6 rovic) Saha o převráceí (akce) Specifické případ Vikla u obce Kadov, ~30 t Svaek sil paprsk všech sil
Analytická geometrie
MATEMATICKÝ ÚSTAV Slezská uverzta Na Rybíčku, 746 0 Opava DENNÍ STUDIUM Aalytcká geometre Téma 3.: Aí zobrazeí Dece 3.. Zobrazeí aího prostoru A do aího prostoru A se azývá aí zobrazeí, estlže má ásleduící
Rovinná a prostorová napjatost
Rovinná a prostorová napjatost Vdělme v bodě tělesa elementární hranolek o hranách d, d, d Vnitřní síl ve stěnách hranolku se projeví jako napětí na příslušné ploše a le je roložit do směrů souřadnicových
11. cvičení z Matematiky 2
11. cvičení z Mateatiky. - 6. května 16 11.1 Vypočtěte 1 x + y + z dv, kde : x + y + z 1. Věta o substituci á analogický tva a podínky pouze zanedbatelné nožiny nyní zahnují i plochy, oviny atd.: f dv
Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228)
Stveí sttk,.oík kláského stud Stveí sttk - edášející Ig. Vldmí chlcová, h.d. Kted stveí mechky (8) místost: LH 47/ tel.: (59 73) 348 e ml: vldm.mchlcov@vs.c Úvod do stud edmtu Stveí fkult VŠB-TU Ostv www:
Výslednice, rovnováha silové soustavy.
Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky
nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0).
ČÍSELNÉ VEKTORY Defce Uspořádou -tc čísel = (,,, ) zveme číselým vektoem Čísl,,, jsou složky ebol souřdce vektou Přozeé číslo zýváme ozměem ebo tké dmezí vektou Defce Vekto, jehož všechy složky se ovjí
Hlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů
Mechanka dynaka Hlavní body Úvod do dynaky. Dynaka tanslačních pohybů Dynaka otačních pohybů Úvod do dynaky Mechanka by byla neúplná, kdyby se nezabývala, důvody poč se tělesa dávají do pohybu, zychlují,
7. Analytická geometrie
7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp
Komplexní čísla, komplexně sdružená čísla, opačná komplexní čísla, absolutní hodnota (modul) komplexního čísla. z 2 z 1
Komplexí čísla, komplexě sdružeá čísla, opačá komplexí čísla, absolutí hodota (modul) komplexího čísla Defiice komplexího čísla Komplexí číslo je uspořádaá dvojice reálých čísel = (, ) (, ). je reálá,
š š Ť ř ň š ú ř ý ž š ř ě Š ě š ř ň š ú ř ý ž ř ý ě ř š ř ň š ú ý ř ý ž ě ě š š ě ě ě ž ž š ě ř ý ěž ů ň ů ý š ř ý ř ě ž ř ě ž ý ž ý ř š ř š ě ř ý š ý ě ž ř ě ž ě ř ěž ř ž ř ň ř ý ý š ě ě ž ň ř ý ř ě ý
Přímková a rovinná soustava sil
Přímková a rovinná soustava sil 1) Souřadný systém - v prostoru - v rovině + y + 2) Síla P ( nebo F) - vektorová veličina - působiště velikost orientace Soustavy sil - přehled Soustavy sil můžeme rodělit
Stavební statika. Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228) Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava
Stavebí statka,.ročík bakalářského studa Stavebí statka - ředášející Stavebí statka Ig. Vladmíra chalcová, h.d. Katedra stavebí mechaky (8) místost: LH 47/ tel.: (59 73) 348 Úvod do studa ředmětu a Stavebí
Soustava hmotných bodů
Soustava hmotných bodů Těleso soustava hmotných bodů Tuhé těleso - pevný předmět jehož rozměr se nemění každé těleso se skládá z mnoha částc síla působící na -tou částc výsledná síla působící na předmět
Hartre-Fock method (HF)
Cofgurato Iteracto (CI) Coupled Clusters (CC) Perturbato Theory (PT, MP) Electro correlato H Ψ = EΨ Bor-Oppehemer approxmato Model of depedet electros Product wave fucto (Slater determat) MO LCAO Hartre-Fock
Stavební mechanika 1 (132SM01)
Stavební mechanika 1 (132SM01) Přednáší: Ing. Jiří Němeček, Ph.D. Kateda stavební mechanik K132 místnost 331a e-mail: jii.nemecek@fsv.cvut.c http://mech.fsv.cvut.c/ Liteatua: Kabele a kol., Stavební mechanika
TĚŽIŠTĚ A STABILITA. Těžiště tělesa = bod, kterým stále prochází výslednice tíhových sil všech jeho hmotných bodů, ať těleso natáčíme jakkoli
SAIKA - těžště ĚŽIŠĚ A SABILIA ěžště tělesa bod, kterým stále prochází výsledce tíhových sl všech jeho hmotých bodů, ať těleso atáčíme jakkol bod, ke kterému astává rovováha mometů způsobeých tíhou jedotlvých
6.1 Shrnutí základních poznatků
6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice
1.7.2 Moment síly vzhledem k ose otáčení
.7. oment síly vzhledem k ose otáčení Předpoklady 70 Pedagogická poznámka Situaci tochu komplikuje skutečnost, že žáci si ze základní školy pamatují součin a mají pocit, že se pouze opakuje notoicky známá
1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE
ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE V této kaptole se dozvíte: jak je oecě defováa kolmost (ortogoalta) vektorů; co rozumíme ortogoálí a ortoormálí ází; co jsou to tzv relace ortoormalty a Croeckerovo delta;
VZÁJEMNÉ SILOVÉ PŮSOBENÍ VODIČŮ S PROUDEM A MAGNETICKÉ POLE
Příklady: 1A. Jakou silou působí homogenní magnetické pole na přímý vodič o délce 15 cm, kterým prochází proud 4 A, a svírá s vektorem magnetické indukce úhel 60? Velikost vektoru magnetické indukce je
Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254
Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé
Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).
37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým
Souřadnicové výpočty I.
Geodézie přednáška 7 Souřadnicové výpočt I. Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Výpočet směrníku a délk stran v základním i podrobném bodovém poli
Křivočarý pohyb bodu.
Křočý pohb bodu. Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
1.7.4 Těžiště, rovnovážná poloha
74 ěžiště, rovovážá poloha Předpoklady: 00703 Př : Polož si sešit a jede prst tak, aby espadl Záleží a místě, pod kterým sešit podložíš? Proč? Musíme sešit podložit prstem přesě uprostřed, jiak spade Sešit
Projekty - Vybrané kapitoly z matematické fyziky
Projekty - Vybrané kapitoly z matematické fyziky Klára Švarcová klara.svarcova@tiscali.cz 1 Obsah 1 Průlet tělesa skrz Zemi 3 1.1 Zadání................................. 3 1. Řešení.................................
asi 1,5 hodiny seznámit studenty se základními zákonitostmi křivočarého pohybu bodu Dynamika I, 3. přednáška Obsah přednášky : Doba studia :
Dmk I, 3. předášk Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm
Základní pojmy Přímková a rovinná soustava sil
Stavební statka, 1.ročník bakalářského studa Základní pojmy římková a rovnná soustava sl Základní pojmy římková soustava sl ovnný svaek sl Statcký moment síly k bodu a dvojce sl v rovně Obecná rovnná soustava
Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.
Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní
Statika 1. Úvod & Soustavy sil. Miroslav Vokáč 22. února ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč.
1. přednáška Úvod & Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 22. února 2016 Konzultační hodiny Ing. Miroslav Vokáč, Ph.D. Kloknerův ústav, ČVUT v Praze Šolínova 7 166 08
Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r
Newtonův avitační zákon: Gavitační pole ezi dvěa tělesy o hotnostech 1 a, kteé jsou od sebe vzdáleny o, působí stejně velké síly vzájené přitažlivosti, jejichž velikost je přío úěná součinu hotností 1
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém
GONIOMETRIE. 1) Doplň tabulky hodnot: 2) Doplň, zda je daná funkce v daném kvadrantu kladná, či záporná: PRACOVNÍ LISTY Matematický seminář.
/ 9 GONIOMETRIE ) Doplň tabulk hodnot: α ( ) 0 0 5 60 90 0 5 50 80 α (ra sin α cos α tg α cotg α α ( ) 0 5 0 70 00 5 0 60 α (ra sin α cos α tg α cotg α ) Doplň, zda je daná funkce v daném kvadrantu kladná,
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost
FYZIKA I. Newtonovy pohybové zákony
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKULTA STROJNÍ YZIKA I Newtoovy pohybové zákoy Prof. RNDr. Vlé Mádr, CSc. Prof. Ig. Lbor Hlváč, Ph.D. Doc. Ig. Ire Hlváčová, Ph.D. Mgr. Art. Dgr Mádrová
6 Pohyb částic v magnetickém poli
Pohb částic v magnetickém poli V této části si ukážeme, jak homogenní magnetické pole ovlivňuje pohb částic. Soustavu souřadnic volíme vžd tak, ab vektor magnetickéindukce Bsměřovalposměruos (obr.).. Lorentova
Střední škola automobilní Ústí nad Orlicí
Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,
Pohyb tělesa, základní typy pohybů, pohyb posuvný a rotační. Obsah přednášky : typy pohybů tělesa posuvný pohyb rotační pohyb geometrie hmot
Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační Obsah přednášky : typy pohybů tělesa posuvný pohyb otační pohyb geoetie hot Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační posuvný
P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,
P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Syntetická geometrie I
Shodnost Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Definice (Vzdálenost) Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB
Dynamika tuhého tělesa. Petr Šidlof
Dnaika tuhého tělesa Pet Šidlof Dnaika tuhého tělesa Pvní věta ipulsová F dp dt a t Zchlení těžiště Výslednice vnějších sil F A F B F C Celková hbnost soustav p p i Hotnost soustav i těžiště soustav se
Obr Lineární diskrétní systém
Mtetcé odel Uvžue leárí dsrétí ssté (or.. ). Or.. Leárí dsrétí ssté Steě u spotýc sstéů t u dsrétíc sstéů exstue ěol ožostí půsou věšío popsu cováí, teré vdřuí vt e výstupí velčou ( ) dsrétí vstupí velčou
Těžiště a moment setrvačnosti Nalezení práce polohy těžiště a momentu setrvačnosti vůči zadané ose u homogenních těles v třírozměrném prostoru.
Těžiště a momet setrvačosti Naleeí práce polohy těžiště a mometu setrvačosti vůči adaé ose u homogeích těles v tříroměrém prostoru. Př. 1 Najděte těžiště a momet setrvačosti kulové vrstvy vůči rotačí ose
Mongeova projekce - úlohy polohy
Mongeova projekce - úlohy polohy Mgr. František Červenka VŠB-Technická univerzita Ostrava 16. 2. 2010 Mgr. František Červenka (VŠB-TUO) Mongeova projekce - úlohy polohy 16. 2. 2010 1 / 14 osnova 1 Mongeova
Syntetická geometrie I
Shodnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB = BA pozitivně definitní
10 částic. 1,0079 1, kg 1, kg. 1, kg. 6, , kg 0, kg 1,079g
..7 oláí veličiy I Předpoklady: 0 Opakováí z iulé hodiy: Ato uhlíku A C C je přibližě x těžší ež ato H. Potřebujee,0 0 atoů uhlíku C abycho dohoady získali g látky. Pokud áe,0 0 částic látky, říkáe, že
CVIČNÝ TEST 20. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 20 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Jsou dána tři celá čísla A, B, C. Zvětšíme-li číslo A o 1, číslo
Vlastní čísla a vlastní vektory
5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi
s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m.
Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Označme v a velikost rychlosti atleta, v t velikost rychlosti trenéra. Trenér do prvního setkání ušel dráhu s 1
ZÁKLADY STAVEBNÍ MECHANIKY
VYSOKÉ UČENÍ TECHNICKÉ V BNĚ AKULTA STAVEBNÍ ING. JIŘÍ KYTÝ, CSc. ING. ZBYNĚK KEŠNE, CSc. ING. OSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ ECHANIKY ODUL BD0-O SILOVÉ SOUSTAVY STUDIJNÍ OPOY PO STUDIJNÍ
1. MONGEOVO PROMÍTÁNÍ
Mongeovo promítání 1 1. MONGEOVO PROMÍTÁNÍ 1.1 Základní pojmy V Mongeově promítání promítáme na dvě navzájem kolmé průmětny. Vodorovná průmětna se nazývá půdorysna a značí se, svislá průmětna se nazývá
Pracovní listy PRAVOÚHLÁ AXONOMETRIE
Techická uiverita v Liberci Fakulta řírodovědě-huaití a edagogická Katedra ateatik a didaktik ateatik PRVOÚHLÁ XONOMETRIE Petra Pirklová Liberec, lede 208 2. V ravoúhlé aooetrii obrate růět bodů [2; 5;
( ) ( ) ( ) ( ) Skalární součin II. Předpoklady: 7207
78 Skalární součin II Předpoklady: 707 Pedagogická poznámka: Hodina má tři části, považuji tu prostřední za nejméně důležitou a proto v případě potřeby omezuji hlavně ji Na začátku hodiny je důležité nechat
ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce
1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé
LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM
LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM - predpokladejme, e name linearni a kvadraticke moment k osam, a chceme urcit moment k osam a. - souradnice elementu ds k posunutm osam jsou potom: = - d
Rovinná napjatost a Mohrova kružnice
Rovinná napjatost a ohrova kružnice Dvojosý stav napjatosti - ukák anačení orientace napětí v rovině x Na obr. vlevo dole jsou vnačen složk napětí. Kladná orientace napětí x a je v případě, že vektor směřují
Základy stavby výrobních strojů Tvářecí stroje I KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ
KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ URČEN ENÍ PRÁCE KLIKOVÉHO LISU URČEN ENÍ SETRVAČNÍKU KLIKOVÉHO LISU KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ KLIKOVÁ HŘÍDEL OJNICE KLIKOVÁ HŘÍDEL BERAN LOŽISKOVÁ TĚLESA
STAVEBNÍ STATIKA. Ing. Petr Konečný, Ph.D. LPH 407/3. tel
STAVEBNÍ STATIKA Ing. Petr Konečný, Ph.D. LPH 47/3 tel. 59 732 1394 petr.konecny@vsb.c http://fast1.vsb.c/konecny roklad síly v rovině síla pod úhlem γ - (k ose ) až -18 až +18 x A γ P P P x γ + x P x
Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.
Příklad 1: 3;4 3;4 = =4 9 2;1,78 = = 4 9 4=16 9 =1,78 =2 =2 2 4 9 =16 9 1 = 1+ =0,49 = 1+ =0,872 =0 =10 6+ 2,22=0 =3,7 6+ 2,22=0 =3,7 + =0 3,7+3,7=0 0=0 =60,64 =0 =0 + =0 =3,7 á čá 5+ 2,22=0 =3,7 5+ 2,22+
1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ PRUŽNOST A PEVNOST I Řešené příklad Výpočet osových kvadratických momentů Pátek, 9. května 8 Jan Tihlařík 1 Osové kvadratické moment průřeů
Vektory II. Předpoklady: Umíme už vektory sčítat, teď zkusíme opačnou operací rozklad vektoru na složky.
5 Vektor II Předpoklad: 4 Umíme už vektor sčítat, teď zkusíme opačnou operací rozklad vektoru na složk Př : Na obrázku je nakreslena síla Nakresli do obrázku síl a tak, ab platilo = + Kolik má úloha řešení?
Nalezení výchozího základního řešení. Je řešení optimální? ne Změna řešení
Sipleová etoda: - patří ezi uiverzálí etody řešeí úloh lieárího prograováí. - de o etodu iteračí, t. k optiálíu řešeí dospíváe postupě, krok za kroke. - výpočetí algoritus se v každé iteraci rozpadá do
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
1. Základy měření neelektrických veličin
. Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost
Dynamika tuhého tělesa
Dnaika tuhého tělesa Pet Šidlof ECHNCKÁ UNVERZA V LBERC Fakulta echatonik, infoatik a eioboových studií ento ateiál vnikl v áci pojektu ESF CZ..7/../7.47 Reflexe požadavků půslu na výuku v oblasti autoatického
Cyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme
Těžiště. Fyzikální význam těžiště:
ěžště Fykální výnam těžště: a) hmotný bod se soustředěnou hmotností útvaru b) bod, ve kterém le hmotný útvar vystavený tíe podepřít prot posunutí anž by docháelo k rotac ěžště je chápáno jako statcký střed
Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie C. t 1 = v 1 g = b gt t 2 =2,1s. t + gt ) 2
Řešení úloh. kola 47. ročníku fyzikální olympiády. Kategorie C Autořiúloh:R.Baník(3),I.Čáp(),M.Jarešová(6),J.Jírů()aP.Šedivý(4,5,7).a) Pohybtělesajerovnoměrnězrychlenýsezrychlením g. Je-li v rychlost u
Hledané složky vektoru tvoří odvěsny pravoúhlého trojúhelníku:
7 Vektor III Předpoklad: 006 Pedagogická ponámka: Příklad, 4, 5 je možné vnechat, důležité je, ab alespoň 5 minut blo na příklad 7 Pedagogická ponámka: Úvodní příklad vužívám k prokoušení látk minulé hodin
Pružnost a plasticita II
Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Kresa Ph.D. Katera stavební mechank Řešení nosných stěn metoou sítí 3 Řešení stěn metoou sítí metoa sítí (metoa konečných ferencí) těnová
Pro dvojkloubové a trojkloubové rámy se sklonem stojek menším než cca 15 (viz obrázek), lze pro vzpěrnou délku stojek použít tento přibližný vztah:
SOUPY PŘÍČE TROJOUBOVÁ H Vpěné él: Po vojloubové a tojloubové á se slone stoje enší než cca 5 (v obáe), le po vpěnou élu stoje použít tento přblžný vtah: l s h 4+ 3, + E e, s. h h Opovíající vpěná éla
Goniometrie a trigonometrie
Goniometrie a trigonometrie Vzorce pro goniometrické funkce Nyní si řekneme něco o velmi důležitých vlastnostech a odvodíme si také některé velmi důležité vzorce pro výpočty s goniometrickými funkcemi.
1.2. NORMA A SKALÁRNÍ SOUČIN
2 NORMA A SKALÁRNÍ SOUČIN V této kapitole se dozvíte: axiomatickou defiici ormy vektoru; co je to ormováí vektoru a jak vypadá Euklidovská orma; axiomatickou defiici skalárího (také vitřího) součiu vektorů;
DVĚ METODY ŘEŠENÍ PROBLEMATIKY ŠÍŘENÍ ELEKTROMAGNETICKÝCH VLN
DVĚ TODY ŘŠNÍ ROBLTIKY ŠÍŘNÍ LKTROGNTICKÝCH VLN. ikš J. Novák. Novák České vsoké učení technické v ae Fakulta stavební Kateda fik bstakt V páci jsou uveden dvě etod řešení šíření elektoagnetického pole
7. Gravitační pole a pohyb těles v něm
7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově
MATEMATIKA III. Program - Křivkový integrál
Matematia III MATEMATIKA III Program - Křivový integrál 1. Vypočítejte řivové integrály po rovinných řivách : a) ds, : úseča, spojující body O=(0, 0), B = (1, ), b) ( + y ) ds, : ružnice = acos t, y= a