Využití rentgenových laserů v radiační fyzice a chemii
|
|
- Antonín Moravec
- před 6 lety
- Počet zobrazení:
Transkript
1 Využití rentgenových laserů v radiační fyzice a chemii Libor Juha Oddělení radiační a chemické fyziky Fyzikální ústav AV ČR, v.v.i. juha@fzu.cz
2 Proč studujeme interakci intenzivního rentgenového záření s hmotou? 1. Vývoj optických prvků určených pro vedení a fokusaci svazků rentgenových laserů nové generace vyžaduje exaktní odhad možného radiačního poškození jejich povrchu a nalezení postupů, jak se takovému poškození vyhnout nebo je minimalizovat. 2. Odhad poškození vnitřních stěn termonukleárních reaktorů (pro ICF i optických prvků) exponovaných intenzivním rentgenovým zářením z fúzního plazmatu. 3. Difrakčně-limitované nanostrukturování materiálů pro přípravu elektronických prvků ultra-vysoké integrace, optických mřížek, atp. 4. Využití stupně (prostorového rozdělení) poškození terčového materiálu ke stanovení parametrů pole záření. 5. Vytváření a zkoumání plazmatu s unikátními parametry - velmi hustého, relativně chladného, s rovnoměrně rozloženými vlastnostmi.
3 aktuální motivace: ELI beamlines
4 Warm Dense Matter (WDM) prohřátá hustá hmota parametr neideálnosti (coupling parameter; čím je větší, tím méně částic se nachází ve sféře, jejíž průměr je dán Debyeovou délkou)
5 objemový (volumetrický) ohřev v místě, kde oscilační frekvence elektronů (plazmová frekvence; Langmuirův kmitočet) v oscilujícím elektrickém poli je právě rovna frekvenci laserového záření, nabývá index lomu plazmatu nulovou hodnotu - EM vlna se nemůže plazmatem dále šířit a odráží se Langmuirův kmitočet je funkcí elektronové hustoty plazmatu e2 = ne e2 / 0 me laserová frekvence se rovná Langmuirovu kmitočtu při kritické elektronové hustotě nc [elektronů v cm3] = 1021 x -2 [ m] pro < 10 nm je tedy nc > 1025 cm-3 rtg. záření nevytvoří kritickou plochu, jeho energie se deponuje v objemu pod ozářeným povrchem pevné látky
6 FLASH (Free-electron LASer in Hamburg) dříve VUV FEL, TTF2 FEL Λ = laser je proladitelný od 7 do 60 nm tp = 25 fs, Evzorek= ~ 10 µj (1012 fotonů) rr = 2 Hz resp. 5 Hz injektor s Cs2Te fotokatodou poháněný 5ps UV laserovými impulzy
7
8 také dilute systems : malý účinný průřez resp. nízký výtěžek sledovaného děje
9 analýza tvaru kráteru vytvořeného svazkem FLASH při 21,7 nm tvar je parabolický, což plyne z gaussovského rozložení intenzity ve svazku {lat - atenuační délka; Epulse energie impulzu; Eth, - energie prahu ablace; r radiální polární souřadnice, ρ poloměr svazku ve fokusu} J. Chalupský a kol.: Opt. Express 15, 6036 (2007) E pulse r 2 d ( r ) = lat ln 2 E ρ th
10 10 surface level 0-10 depth (nm) DESORPTION -50 measured profile fitted profile ABLATION X cross-section [µ m] Desorpce indukovaná jedním impulzem laseru FLASH (21,7 nm) v PMMA. Desorpční účinnost ηd<10% zatímco ablační účinnost je 100%. Experimentální body jsou fitovány modelem počítajícím s gaussovským rozložením intenzity ve svazku.
11 Závislost erozní účinnosti na lokální dávce záření Erozní účinnost (material removal efficiency) určité molekulární pevné látky definujeme jako poměr dávkově závislé hustoty částic (atomů, molekul, iontů = malých těkavých fragmentů) odstraněných z ozářeného povrchu a celkové hustoty částic. nr ( ε ) η(ε) = n
12 Kráter vytvořený fokusovaným svazkem FLASH na 21,7 nm při plošné hustotě energie mírně nad ablačním prahem
13 Drsnosti povrchu desorbované, ablaované a přechodové oblasti
14 mikrofokusace 13,7-nm záření laseru s volnými elektrony FLASH mimoosou parabolou (OAP)
15 výsledky mikrofokusace mimoosou parabolou simulace; h.e. 0,3 nm; FWHM = = 300nm rok 2007 rok 2008: S. Bajt, A. Nelson, J. Krzywinski + LBL, LLNL, DESY, CL [Opt. Express 17, (2009)] P=F0/Fth Q S1/e 194,4 0,87 μm2 0,482 μm2 SFWHM 0,326 μm2 DQ D1/e FWHM 1,05 μm 0,784 μm 0,644 μm
16 závislost propustnosti Al fólie tloušťky 52 nm pro svazek FLASH fokusovaný OAP na intenzity W/cm2 [B. Nagler a kol.: Turning solid aluminium transparent by intense soft X-ray photo-ionization, Nature Physics 5, 693 (2009)]
17 elektronová struktura pevného hliníku (L slupka)
18 fotoionizace jednoho p elektronu ze slupky L
19 krátkovlnný (modrý) posuv absorpční L hrany; fotoionizace dalších p elektronů fotony o energii 92 ev již není z L slupky možná
20 výpočty: B. Nagler, S. Vinko, aj.
21 výpočty: B. Nagler, S. Vinko, aj. homogenní prozáření hmoty řešení problému gradientů Te a ne
22 dělení svazku v autokorelátoru
23 7 10 Al I intensity [counts] 6 10 Al I Al II-IV Al I Al III Al II,III Al II 5 10 Al III Al II wavelength [nm] OES hliníku exponovaného svazkem FLASH naladěným na 13,7 nm fokusovaným OAP na intenzitu převyšující 1016 W/cm2 [J. Cihelka a kol.: Optical emission spectroscopy of various materials irradiated by soft x-ray free-electron laser, Proc. SPIE 7361, 73610P (2009)]
24 simulace optických emisních spekter Al I kódem MARIA Al I spectral distribution Texc = 0.4 ev 0.8 ev 1.5 ev výpočty: F. Rosmej, O. Renner, aj. 1.0 Simulation vs experiment experimental data Al I Al II 2.5 intensity [a.u.] intensity [a.u.] wavelength [nm] wavelength [nm] excitační teplota plazmatu vychází kolem 0,8 ev 600
25 optické emisní spektrum Ce:YAG ozářeného 13,7 nm laserovým zářením na 1015 W/cm2 Al I 5 Intensity (10 counts) 6 Y II Y I, Y II Y I, Y II Y II 4 YI Al I Wavelength (nm) 500
26 T. Burian, J. Chalupský, V. Hájková, P. Boháček, L. Juha: LCLS (Linac Coherent Light Source) - hodnotný dar ke čtyřicátým narozeninám fyziky vysokých hustot energie, Čs. čas. fyz. 59, 357 (2009) čtyři kampaně commissioning / user beamtimes
27 AFM topografický obraz PMMA ozářeného jedním impulzem LCLS záření s energií fotonů 830 ev na fluenci výrazně převyšující (F = 3Fth) ablační práh.
28 Plocha původního povrchu PMMA poškozená ablací indukovanou jedním impulzem záření o vlnové délce 1,5 nm (830 ev) jako funkce energie impulzu. Je dobře patrné, že ablace jedním impuzem začíná na Fth = 100 mj/cm2. Škálováním výsledků z FLASH podle vlnové délky však odhadujeme hodnotu Fth = 420 mj/cm2. Podobný výsledek dávají i anorganická dielektrika, např. PbWO4 začíná ablaovat na 140 mj/cm2 LCLS záření o vlnové délce 1,5 nm a ne na 400 mj/cm2 dle škálování. Pozorujeme zřejmě účinek jednotlivých energetických fotonů.
29 300 pulzů 300 pulzů 300 pulzů Epulse~5*10-7mJ Epulse~5*10-6mJ Epulse~5*10-5mJ F ~ 0,4 mj/cm2 F ~ 4 mj/cm2 F ~ 40 mj/cm2 dmax= 80 nm dmax= 145 nm dmax= 660 nm Prahová fluence poškození PMMA jedním impulzem LCLS (830 ev) byla nalezena na Fth=100 mj/cm2. Neočekávaně dobrá stabilita zdroje výstřel od výstřelu (< 15 % r.m.s.) umožnila efektivně sledovat erozi materiálu indukovanou mnoha pulzy na fluencích pod prahem ablace jedním impulzem.
30 Ablační hloubka [nm] Ablační hloubka [nm] PMMA PI Fluence [J/cm ] H. Fiedorowicz a kol., WAT - Vojenská polytechnika ve Varšavě 0, ,01 0,1 2 1 Fluence [J/cm ] ablace PMMA a PI indukovaná nekoherentním kev-ovým zářením emitovaným z velké dvojité Xe@He trysky ozářené laserovým pulzem s obsahem 0,5 kj atenuační délky jsou na 1,24 nm pro: PMMA 3.0 µm a PI 2.5 µm
31 PbWO4 (LCLS na 2keV) PbWO4 (LCLS na 2keV) plynový atenuátor T = 0,01 plynový atenuátor T = 0,02 bez Be filtru s Be filtrem T = 0,2
32
33 J. Chalupský, T. Burian, M. Grisham, V. Hájková, S. Heinbuch, K. Jakubczak, L. Juha, T. Mocek, P. Pira, J. Polan, J. J. Rocca, B. Rus, J. Sobota, L. Vyšín: Fokusovaný svazek repetičního kapilárního laseru na 46,9 nm, Čs. čas. fyz. 58, 234 (2008)
34
35 závěrem v sekci výkonových systémů FZÚ je interakce XUV/rtg. záření s hmotou resp. plazmatem studována v širokém oboru interakčních parametrů od 100 nm až k několika Å od 10 fs do 10 ns od 106 W/cm2 nad 1017 W/cm2 od 0o do 90o
36 výhledy: klíčové výzkumné směry na ELI (a) rtg. koherentní zobrazování s atomárním rozlišením (b) rtg. holografie s atomárním rozlišením (c) časově rozlišená rtg./částicová difrakce/radiografie (d) sub-pikosekundová pulzní radiolýza: pohled na velmi časné fáze interakce ionizujícího záření s hmotou (e) ovlivňování a sledování vysoce zředěných systémů: molekulární a klastrové svazky, nanokapky a nanokrystality, povrchy a fázová rozhraní
37 poděkování Věra Hájková Jaromír Chalupský Tomáš Burian Luděk Vyšín Jaroslav Cihelka Michaela Kozlová Oldřich Renner Bedřich Rus
38 děkuji vám za pozornost
Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.
Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.
Metody povrchové analýzy založené na detekci iontů. Pavel Matějka
Metody povrchové analýzy založené na detekci iontů Pavel Matějka Metody povrchové analýzy založené na detekci iontů 1. sekundárních iontů - SIMS 1. Princip metody 2. Typy bombardování 3. Analyzátory iontů
Návrh stínění a témata k řešení
Výzkumné laserové centrum ELI Beamlines Návrh stínění a témata k řešení Veronika Olšovcová, Mike Griffiths, Richard Haley, Lewis McFarlene, Bedřich Rus a ELI team Plánované pilíře ELI Site to be determined
Využití laserů ve vědě. Vojtěch Krčmarský
Využití laserů ve vědě Vojtěch Krčmarský Spektroskopie Vědní obor zabývající se měřením emise a absorpce záření Zakladatelé: Jan Marek Marci, Isaac Newton Spektroskopické metody poskytují informaci o struktuře
Plazmová depozice tenkých vrstev oxidu zinečnatého
Plazmová depozice tenkých vrstev oxidu zinečnatého Bariérový pochodňový výboj za atmosférického tlaku Štěpán Kment Doc. Dr. Ing. Petr Klusoň Mgr. Zdeněk Hubička Ph.D. Obsah prezentace Úvod do problematiky
Generace vysocevýkonných laserových impulzů a jejich aplikace
Generace vysocevýkonných laserových impulzů a jejich aplikace J. Pšikal FJFI ČVUT v Praze, katedra fyzikální elektroniky FZÚ AV ČR, projekt ELI-Beamlines jan.psikal@fjfi.cvut.cz Obsah přednášky: 1. Elektromagnetické
Osnova. Stimulovaná emise Synchrotroní vyzařování Realizace vyzařování na volných elektronech FLASH XFEL
Osnova 1 2 Stimulovaná emise Synchrotroní vyzařování Realizace vyzařování na volných elektronech 3 FLASH XFEL 4 Diagnostika Rozpoznávání obrazu Medicína Vysoko parametrové plazma 5 Laserový svazek fokusovaný
Úvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Emise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál
Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických
Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur)
Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur) -přenesení dané struktury na povrch strukturovaného substrátu Princip - interakce
Úvod do fyziky plazmatu
Úvod do fyziky plazmatu Lenka Zajíčková, Ústav fyz. elektroniky Doporučená literatura: J. A. Bittencourt, Fundamentals of Plasma Physics, 2003 (3. vydání) ISBN 85-900100-3-1 Navazující a související přednášky:
Mezinárodní laserové centrum. ELI Beamlines. Ing. Martin Přeček, Ph.D. Fyzikální ústav AV ČR, v. v. i. Date:
Mezinárodní laserové centrum ELI Beamlines Ing. Martin Přeček, Ph.D. Fyzikální ústav AV ČR, v. v. i. Nejmodernější laserové technologie na světě Výzkumné a aplikační projekty zahrnující interakci světla
Světlo jako elektromagnetické záření
Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti
Záchyt pozitronů v precipitátech
Záchyt pozitronů v precipitátech koherentní precipitát materiál ve vakuu E elektrony pozitrony vakuum E F E, valenční č pás vakuum výstupní práce: povrchový potenciál: chemický potenciál: Záchyt pozitronů
Měření charakteristik pevnolátkového infračerveného Er:Yag laseru
Měření charakteristik pevnolátkového infračerveného Er:Yag laseru Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Abstrakt: Úkolem bylo proměření základních charakteristik záření pevnolátkového infračerveného
METODY ANALÝZY POVRCHŮ
METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější
Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT
pro transport částic Koncepce informatické fyziky, FJFI ČVUT Obsah Princip metody 1 Princip metody Náhodná procházka 2 3 Kódy pro MC Příklady použití Princip metody Náhodná procházka Příroda má náhodný
Metody charakterizace
Metody y strukturní analýzy Metody charakterizace nanomateriálů I Význam strukturní analýzy pro studium vlastností materiálů Experimentáln lní metody využívan vané v materiálov lovém m inženýrstv enýrství:
Bedřich Rus Fyzikální ústav AVČR, v.v.i. Praha 8. Mezinárodní laserové centrum ELI (Extreme Light Infrastrucure)
Bedřich Rus Fyzikální ústav AVČR, v.v.i. Praha 8 Mezinárodní laserové centrum ELI (Extreme Light Infrastrucure) ELI: projekt nejintenzivnějšího laseru na světě Světeln telné pulsy s energií ~kj a délced
Základy fyziky laserového plazmatu. Lekce 1 -lasery
Základy fyziky laserového plazmatu Lekce 1 -lasery Co je světlo a co je laser? Laser(akronym Light Amplification by Stimulated EmissionofRadiation česky zesilování světla stimulovanou emisí záření) Je
Stručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
Vybrané spektroskopické metody
Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky
VLIV PARAMETRŮ LASEROVÉHO POVRCHOVÉHO ZPRACOVÁNÍ NA MIKROSTRUKTURU OCELÍ
VLIV PARAMETRŮ LASEROVÉHO POVRCHOVÉHO ZPRACOVÁNÍ NA MIKROSTRUKTURU OCELÍ JIŘÍ HÁJEK, PAVLA KLUFOVÁ, ANTONÍN KŘÍŽ, ONDŘEJ SOUKUP ZÁPADOČESKÁ UNIVERZITA V PLZNI 1 Obsah příspěvku ÚVOD EXPERIMENTÁLNÍ ZAŘÍZENÍ
Laserové technologie v praxi I. Přednáška č.8. Laserové zpracování materiálu. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č.8 Laserové zpracování materiálu Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Lasery pro průmyslové zpracování materiálu E (ev) 0,12 1,17 1,17 1,2 1,5 4,17
Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
Jiří Oswald. Fyzikální ústav AV ČR v.v.i.
Jiří Oswald Fyzikální ústav AV ČR v.v.i. I. Úvod Polovodiče Zákládní pojmy Kvantově-rozměrový jev II. Luminiscence Si nanokrystalů III. Luminiscence polovodičových nanostruktur A III B V IV. Aplikace Pásová
Lasery optické rezonátory
Lasery optické rezonátory Optické rezonátory Optickým rezonátorem se rozumí dutina obklopená odrazovými plochami, v níž je pasivní dielektrické prostředí. Rezonátor je nezbytnou součástí laseru, protože
Metody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3
Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý
Chemie a fyzika pevných látek l
Chemie a fyzika pevných látek l p2 difrakce rtg.. zářenz ení na pevných látkch,, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie
Využití výkonových laserů ve strojírenské praxi svařování, dělení a další technologie
Využití výkonových laserů ve strojírenské praxi svařování, dělení a další technologie RNDr.Libor Mrňa, Ph.D. Ústav přístrojové techniky AV ČR Dendera a.s. VUT Brno, FSI, ÚST, odbor svařování a povrchových
INTERAKCE IONTŮ S POVRCHY II.
Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených
Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce
magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů
Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =
Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?
Pozitronový mikroskop
rychlé pozitrony z b + radioizotopu prostorové rozlišení 1 mm nedestruktivní mapování rozložení defektů mapování rozložení defektů mikrotvrdost dislokace (work hardening) D hranice zrn (Hall-Petch) 1/
- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence
ROZPTYLOVÉ a EMISNÍ metody - Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl - fluorescence - fosforescence Ramanova spektroskopie Každá čára Ramanova spektra je svými vlastnostmi závislá
Tajemství ELI - nejintenzivnějšího laseru světa
Tajemství ELI - nejintenzivnějšího laseru světa František Batysta Fakulta jaderná a fyzikálně inženýrská ČVUT Fyzikální ústav AV ČR 17. leden 2013 František Batysta Tajemství ELI - nejintenzivnějšího laseru
Jaderná fúze. Jednotka pro globální spotřebu energie 1Q = 1.05 10 21 J 2000 Q ročně (malá hustota) Σ 1850 1950 - Σ 1950 2050 -
Jaderná fúze Problém energie Jednotka pro globální spotřebu energie 1Q = 1.05 10 21 J Slunce zem Světová spotřeba energie 2000 Q ročně (malá hustota) Zásoby uhlí ~100 Q, zásoby ropy do 1850 0.004 Q/rok
Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou
Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou Autor práce: Petr Valenta Vedoucí práce: Ing. Ondřej Klimo, Ph.D. Konzultanti: prof. Ing. Jiří Limpouch,
CHARAKTERIZACE MATERIÁLU II
CHARAKTERIZACE MATERIÁLU II Vyučující a zkoušející Ing. Martin Kormunda, Ph.D. - CN320 Konzultační hodiny: Po 10-12, St 13 14 nebo dle dohody Doc. RNDr. Jaroslav Pavlík, CS.c. - CN Konzultační hodiny:
7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state )
7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state ) Steady-state měření Excitujeme kontinuálním světlem, měříme intenzitu emise (počet emitovaných fotonů) Obvykle nedetekujeme všechny
CHARAKTERIZACE MATERIÁLU II
CHARAKTERIZACE MATERIÁLU II Vyučující a zkoušející Ing. Martin Kormunda, Ph.D. - CN320 Konzultační hodiny: Po 10-12, St 13 14 nebo dle dohody Doc. RNDr. Jaroslav Pavlík, CS.c. - CN Konzultační hodiny:
Slunce ve vysokoenergetických oblastech spektra
Slunce ve vysokoenergetických oblastech spektra Spektroskopie (nejen) ve sluneční fyzice LS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Podmínky ve svrchních vrstvách sluneční
Využití infrastruktury CESNET pro distribuci signálu optických atomových hodin
Využití infrastruktury CESNET pro distribuci signálu optických atomových hodin Ondřej Číp, Martin Čížek, Lenka Pravdová, Jan Hrabina, Břetislav Mikel, Šimon Řeřucha a Josef Lazar (ÚPT AV ČR) Josef Vojtěch,
České vysoké učení technické v Praze. Katedra fyzikální elektroniky. Témata studentských prací pro školní rok 2014 15
Rámcové téma práce č. 1: Diodově čerpaný Er:YAG oku-bezpečný laser Typ práce: DP Vedoucí práce: Ing. M. Němec, Ph.D. 1 Kozultant(i): prof. Ing. H. Jelínková, DrSc. 2 Student: L. Indra Obsahem práce je
Rozměr a složení atomových jader
Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10
LCLS (Linac Coherent Light Source)
č. 6 Čs. čas. fyz. 59 (009) 357 LCLS (Linac Coherent Light Source) hodnotný dar ke čtyřicátým narozeninám fyziky vysokých hustot energie Tomáš Burian 1,, Jaromír Chalupský 1,, Věra Hájková 1, Pavel Boháček
Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
Lineární urychlovače. Jan Pipek jan.pipek@gmail.com 24.11.2011 Dostupné na http://fjfi.vzdusne.cz/urychlovace
Lineární urychlovače Jan Pipek jan.pipek@gmail.com 24.11.2011 Dostupné na http://fjfi.vzdusne.cz/urychlovace Lineární urychlovače Elektrostatické urychlovače Indukční urychlovače Rezonanční urychlovače
Chemie a fyzika pevných látek p2
Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: Lasery - druhy
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Lasery - druhy Laser je tvořen aktivním prostředím, rezonátorem a zdrojem energie. Zdrojem energie, který může
Interakce fluoroforu se solventem
18. Vliv solventu Interakce fluoroforu se solventem Fluorescenční charakteristiky fluoroforu se mohou měnit podle toho, jaké je jeho okolí změna kvantového výtěžku posun excitačního či emisního spektra
Lasery RTG záření Fyzika pevných látek
Lasery RTG záření Fyzika pevných látek Lasery světlo monochromatické koherentní malá rozbíhavost svazku lze ho dobře zfokusovat aktivní prostředí rezonátor fotony bosony laser stejný kvantový stav učební
Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.
Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka
Metody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. 2 Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
Pozorování Slunce s vysokým rozlišením. Michal Sobotka Astronomický ústav AV ČR, Ondřejov
Pozorování Slunce s vysokým rozlišením Michal Sobotka Astronomický ústav AV ČR, Ondřejov Úvod Na Slunci se důležité děje odehrávají na malých prostorových škálách (desítky až stovky km). Granule mají typickou
Fyzikální podstata DPZ
Elektromagnetické záření Vlnová teorie vlna elektrického (E) a magnetického (M) pole šíří se rychlostí světla (c) Charakteristiky záření: vlnová délka (λ) frekvence (ν) Fyzikální podstata DPZ Petr Dobrovolný
DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj
DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE TEZE K DISERTAČNÍ PRÁCI České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Katedra jaderné chemie Ing. Martina Toufarová STUDIUM REAKTIVITY
Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce
Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.
Přednáška IX: Elektronová spektroskopie II.
Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném
PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A)
PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A) GARANT PŘEDMĚTU: Prof. RNDr. Tomáš Šikola, CSc. (ÚFI) VYUČUJÍCÍ PŘEDMĚTU: Prof. RNDr. Tomáš Šikola, CSc., Ing. Stanislav Voborný, Ph.D. (ÚFI) JAZYK
ELI BEAMLINES VÝSTAVBA NEJINTENZIVNĚJŠÍHO LASERU SVĚTA
ELI BEAMLINES VÝSTAVBA NEJINTENZIVNĚJŠÍHO LASERU SVĚTA HRADEC KRÁLOVÉ CÍL PROJEKTU Hlavním cílem ELI Beamlines je: vybudování nejintenzivnějšího laserového zařízení na světě. V něm budou realizovány výzkumné
Metody nelineární optiky v Ramanově spektroskopii
Metody nelineární optiky v Ramanově spektroskopii Využití optických nelinearit umožňuje přejít od tradičního studia rozptylu světla na fluktuacích, teplotních elementárních excitacích, ke studiu rozptylu
Laserové technologie v praxi I. Přednáška č.4. Pevnolátkové lasery. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č.4 Pevnolátkové lasery Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Dělení pevnolátkových laserů podle druhu matrice a dopantu Matrice (nosič): Dopant: Alexandrit
Secondary Ion mass spectrometry (SIMS)
Secondary Ion mass spectrometry (SIMS) Interakce iontů s povrchy Srážky s ionty a elektrony Implantace iontů Tvorba poruch Emisní jevy: zpětně nebo dopředně rozptýlené ionty odprašování emise atomárních
F7030 Rentgenový rozptyl na tenkých vrstvách
F7030 Rentgenový rozptyl na tenkých vrstvách O. Caha PřF MU Prezentace k přednášce Numerické simulace Příklady experimentů Vybrané vztahy Sylabus Elementární popis vlnového pole: Rtg vlna ve vakuu; Greenova
Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok
Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok 2014-15 Stavba hmoty Elementární částice; Kvantové jevy, vlnové vlastnosti částic; Ionizace, excitace; Struktura el. obalu atomu; Spektrum
MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5
MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated
AFM analýza dentinových povrchů po laserové expozici
AFM analýza dentinových povrchů po laserové expozici Roman Kubínek Zdeňka Zapletalová Milan Vůjtek Radko Novotný Jan Peřina jr. Hana Chmelíčková Katedra experimentální fyziky Přírodovědecké fakulty Univerzity
Světlo x elmag. záření. základní principy
Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =
Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky
Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky 1. Vysvětlete pojmy kulová a rovinná vlnoplocha. 2. Pomocí Hyugensova principu vysvětlete konstrukci tvaru vlnoplochy v libovolném budoucím
Něco o laserech. Ústav fyzikální elektroniky Přírodovědecká fakulta Masarykovy univerzity 13. května 2010
Něco o laserech Ústav fyzikální elektroniky Přírodovědecká fakulta Masarykovy univerzity 13. května 2010 Pár neuspořádaných faktů LASER = Light Amplification by Stimulated Emission of Radiation Zdroj dobře
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu
Laserové technologie v praxi I. Přednáška č.2. Základní konstrukční součásti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č.2 Základní konstrukční součásti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Konstrukce laseru 1 - Aktivní prostředí 2 - Čerpací zařízení 3 - Optický
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části
Nepředstavitelně krátké laserové impulsy
Nepředstavitelně krátké laserové impulsy (pokračování článku z Vesmír 92, 2/80, 2013) Hana Turčičová V tomto dodatečném článku si přiblížíme další fyzikální metody, které postupem let vedly ke zkrácení
Barevné principy absorpce a fluorescence
Barevné principy absorpce a fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 27.9.2007 2 1 Světlo je elektromagnetické vlnění Skládá se z elektrické složky a magnetické
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura
Základy Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických
Vzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/09.0042
Vzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/09.0042 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
Charakteristiky optického záření
Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární
Fotonické nanostruktury (nanofotonika)
Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (nanofotonika) Jan Soubusta 4.11. 2015 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5. PERIODICKÉ
HMOTNOSTNÍ SPEKTROMETRIE
HMOTNOSTNÍ SPEKTROMETRIE MASS SPECTROMETRY (MS) Alternativní názvy (spojení s GC, LC, CZE, ITP): Hmotnostně spektrometrický (selektivní) detektor Mass spectrometric (selective) detector (MSD) Spektrometrie
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou fotonu Charakterizace záření
Detektory. požadovaná informace o částici / záření. proudový puls p(t) energie. čas příletu. výstupní signál detektoru. poloha.
Detektory požadovaná informace o částici / záření energie čas příletu poloha typ citlivost detektoru výstupní signál detektoru proudový puls p(t) E Q p t dt účinný průřez objem vnitřní šum vstupní okno
12LPZ. Jaroslav Nejdl, nejdl@fzu.cz 24. 11. 2014
Plazmový zdroj rentgenového záření 12LPZ Jaroslav Nejdl, nejdl@fzu.cz FJFI ČVUT v Praze 24. 11. 2014 Jaroslav Nejdl, nejdl@fzu.cz (FzÚ AV ČR) LPZ 2014: 6. Plazmový zdroj RTG 24. 11. 2014 1 / 10 Úvod Interakcí
Nabídkový list spolupráce 2014
Nabídkový list spolupráce 2014 Fyzikální ústav AV ČR v Praze Centrum pro inovace a transfer technologií www.citt.cz 2014 Kontaktní osoba prof. Jan Řídký, DrSc. e-mail: ridky@fzu.cz citt@fzu.cz tel: 266
Analýza vrstev pomocí elektronové spektroskopie a podobných metod
1/23 Analýza vrstev pomocí elektronové a podobných metod 1. 4. 2010 2/23 Obsah 3/23 Scanning Electron Microscopy metoda analýzy textury povrchu, chemického složení a krystalové struktury[1] využívá svazek
Balmerova série, určení mřížkové a Rydbergovy konstanty
Balmerova série, určení mřížkové a Rydbergovy konstanty V tomto laboratorním cvičení zkoumáme spektrální čáry 1. řádu vodíku a rtuti pomocí difrakční mřížky (mřížkového spektroskopu). Známé spektrální
Nebezpečí ionizujícího záření
Nebezpečí ionizujícího záření Radioaktivita versus Ionizující záření Radioaktivita je schopnost jader prvků samovolně se rozpadnout na jádra menší stabilnější. Rozeznáváme pak radioaktivitu přírodní (viz.
Využití magneticko-rezonanční tomografie v měřicí technice. Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň
Využití magneticko-rezonanční tomografie v měřicí technice Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň Osnova Podstata nukleární magnetické rezonance (MR) Historie vývoje MR Spektroskopie MRS Tomografie MRI
Glass temperature history
Glass Glass temperature history Crystallization and nucleation Nucleation on temperature Crystallization on temperature New Applications of Glass Anorganické nanomateriály se skelnou matricí Martin Míka
Šíření tepla. Obecnéprincipy
Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření
Fyzika IV Dynamika jader v molekulách
Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment
Spektrometrické metody. Reflexní a fotoakustická spektroskopie
Spektrometrické metody Reflexní a fotoakustická spektroskopie odraz elektromagnetického záření - souvislost absorpce a reflexe Kubelka-Munk funkce fotoakustická spektroskopie Měření odrazivosti elmg záření
10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita
Chování a vlastnosti nanočástic ovlivňuje velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita K. Záruba Optická mikroskopie Elektronová mikroskopie (SEM, TEM) Fotoelektronová
Zdroje optického záření
Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon