Universita Karlova v Praze Přírodovědecká fakulta Katedra fyziologie rostlin

Rozměr: px
Začít zobrazení ze stránky:

Download "Universita Karlova v Praze Přírodovědecká fakulta Katedra fyziologie rostlin"

Transkript

1 Universita Karlova v Praze Přírodovědecká fakulta Katedra fyziologie rostlin Úloha karotenoidů v průběhu ontogeneze vyšších rostlin a adaptace ke stresovým podmínkám Souhrn disertační práce Daniel Haisel Praha 2009

2 Školitel: RNDr. Jana Pospíšilová, CSc. Ústav experimentální botaniky AVČR, v.v.i. Laboratoř stresové fyziologie Na Karlovce 1a, Praha 6 Školitel-konzultant: RNDr. Marie Kočová, CSc. Universita Karlova, Přírodovědecká fakulta Katedra genetiky a mikrobiologie Albertov 8, Praha 2 1

3 2

4 Obsah Obsah 3 1. Úvod 5 2. Cíle práce 7 3. Metody 8 4. Výsledky Karotenoidy během ontogeneze rostlin při kultivaci in vitro a po 9 převedení do ex vitro podmínek 4.2. Karotenoidy v průběhu vodního stresu a následné rehydratace Závěry Seznam publikací v disertační práci Publikační činnost autora 17 3

5 4

6 1. Úvod Rostlinné karotenoidy jsou žluté, oranžové nebo červené pigmenty terpenoidního charakteru, které nejsou rozpustné ve vodě, ale v tucích. Z toho vyplývá jejich umístění na membránách chloroplastů a chromoplastů. Ve fotosyntetických pletivech je jejich barva často překryta chlorofylem, ale můžeme je pozorovat v pozdním stadiu vývoje listů, v květech, v plodech a také v kořenech. Z rostlinného materiálu byl poprvé izolován -karoten již počátkem 19. století a nedlouho poté byly v podzimních listech identifikovány i další fotosyntetické karotenoidy lutein, neoxanthin, violaxanthin a zeaxanthin. Kromě vyšších rostlin jsou karotenoidy přítomné též v buňkách řas a některých mikroorganizmů. Přírodní produkce karotenoidů se ročně pohybuje v řádu stovek milionů tun. Poněvadž tyto pigmenty mají široké praktické uplatnění především jako barviva a léčiva, syntetizují se v současnosti také uměle nebo se pro jejich výrobu využívá moderních metod genového inženýrství. Karotenoidy se vyskytují též v živočišné říši (např. -karoten ve vaječných žloutkách, astaxanthin v rybách způsobující oranžové až červené zbarvení nebo peří ptáků zbarvené nejčastěji ketokarotenoidy), ale jsou také nenahraditelnou součástí stravy člověka a dalších savců jako provitamin A v poslední době se jim připisuje značný význam při ochraně před některými typy nádorových onemocnění. Lutein a zaexanthin jsou používány jako účinná léčiva pro pacienty s makulární degenerativní nemocí. V tělech živočichů se však karotenoidy nesyntetizují a musí být proto přijímány ve formě rostlinné potravy. Struktura karotenoidů je odvozena z tetraterpenoidního skeletu, který je u nich tvořen dvěma iononovými kruhy spojenými 18-ti uhlíkovým řetězcem konjugovaných dvojných vazeb, který je díky absorpci ve viditelné části spektra zodpovědný za jejich barevnost (odtud jejich název chromofor). Karotenoidy rozdělujeme na karoteny a xantofyly. Karoteny jsou uhlovodíky bez dalších substituentů, z nichž je v rostlinách nejvíce zastoupen -karoten a v menší míře též -karoten, které se od sebe liší pouze polohou dvojné vazby v jednom z iononových kruhů. Xantofyly mají na svém skeletu různé substituenty, u vyšších rostlin nejčastěji hydroxy- a epoxy-skupiny a jsou většinou odvozeny od -karotenu. Výjimkou je lutein, který je odvozen z -karotenu. U řas a fototrofních bakterií mohou být na základním skeletu navázané též acetylové, aldehydové, keto-, carboxy-, carbomethoxy- a methoxyskupiny. V chromoplastech plodů a květů se karotenoidy vyskytují jako volné pigmenty nebo estericky vázané na mastné kyseliny. Rostlinné karotenoidy mají základní funkce jako světlosběrné pigmenty při fotosyntéze, ochranu proti fotoinhibici, strukturní funkci v pigment-proteinových komplexech a jako prekurzor biosyntézy kyseliny abscisové. Světlosběrná funkce karotenoidů je pro rostliny nezbytná kvůli absorpci v modré oblasti světelného záření. Absorbovaná energie je dále předávána chlorofylu. U vyšších rostlin tuto funkci plní převážně lutein a neoxanthin. 5

7 Ochranná funkce karotenoidů ve vyšších rostlinách je hlavně na dvou úrovních. V reakčním centru obou fotosystémů rostlin a řas má důležitou úlohu -karoten, který chrání fotosyntetický aparát před fotooxidativním poškozením zhášením tripletového stavu chlorofylu a singletového kyslíku. Druhým ochranným mechanismem ve vyšších rostlinách je xantofylový cyklus, důležitý proces probíhající na thylakoidní membráně. Během stresových podmínek je světlosběrný karotenoid violaxanthina deepoxidován přes antheraxanthin na zeaxanthin, který má ochrannou funkci spočívající v přeměně nadbytečné energie singletového chlorofylu na teplo. Tato enzymaticky řízená reakce je vratná a po překonání stresových podmínek je zeaxanthin zpětně epoxidován na violaxanthin. Strukturní funkci v pigment-proteinových komplexech plní všechny karotenoidy přítomné ve vyšších rostlinách. Navázání pigmentů způsobuje konformační změny pigmentproteinových komplexů fotosyntetického aparátu a umožňuje tím jejich stabilizaci a plnou funkčnost. Každý z karotenoidů má svojí specifickou funkci a tomu odpovídá i jejich umístění v pigment-proteinových komplexech, např. lutein a neoxanthin jsou ve světlosběrných komplexech a -karoten v reakčním centru fotosystému. Biosyntéza kyseliny abscisové. Karotenoidy neoxanthin a violaxanthin jsou prekurzory při biosyntéze kyseliny abscisové, rostlinného hormonu, který se zapojuje do kontroly vodního režimu rostlin a mnoha dalších procesů. Navzdory velkému množství literatury věnující se karotenoidům, která vyšla od jejich objevení do současnosti, zůstává stále ještě mnoho nevyřešených otázek. V předložené disertační práci se pokusím alespoň na některé z nich odpovědět. 6

8 3. Cíle práce Cílem této disertační práce bylo zjistit, jaké úlohy mají karotenoidy v průběhu ontogeneze rostlin rostoucích v odlišných podmínkách prostředí a v odpovědi rostlin na stresové podmínky. Experimenty, které jsou součástí předložené práce, se postupně snažily zodpovědět především tyto otázky: 1) Jak se mění složení karotenoidů a jejich funkce v průběhu kultivace rostlin v in vitro podmínkách a po jejich převedení do ex vitro podmínek? 2) Je přítomnost sacharózy v mediu nezbytná pro dostatečnou tvorbu karotenoidů? 3) Jak ovlivňují podmínky kultivace in vitro (ozářenost, koncentrace sacharózy, koncentrace CO 2 ) schopnost aklimace rostlin do ex vitro podmínek? 4) Mohou karotenoidy dostatečně ochránit rostliny před fotoinhibicí při přenosu z nízké ozářenosti in vitro na podstatně vyšší ozářenost ex vitro? 5) Jaká je úloha karotenoidů v ochraně přirozeně rostoucích rostlin proti možné fotoinhibici vznikající v důsledku vodního stresu? 6) Jak tvorbu a funkci karotenoidů ovlivňují fytohormony, především kyselina abscisová nebo cytokininy? 7) Jak se s vodním stresem a následnou možnou fotoinhibicí vyrovnávají geneticky modifikované rostliny se zvýšenou produkcí cytokininů? 7

9 3. Metody Rostlinný materiál Rostlinný materiál a kultivační podmínky jsou uvedeny pro větší přehlednost u příslušných kapitol výsledků. HPLC fotosyntetických pigmentů Fotosyntetické pigmenty byly 2x extrahovány acetonem ze vzorků listů (6 cm 2 ) a po centrifugaci byly oba čiré suprnatanty spojeny. Po vysušení proudem plynného dusíku byly pigmenty rozpuštěny v 0,3 cm 3 acetonu a analyzovány pomocí HPLC, částečně na starší a částečně na nové sestavě. Starší sestava HPLC Sestava Spectra-Physics (San José, USA) tvořená absorpčním detektorem Spectra 100 s nastavenou vlnovou délkou 445 nm, pumpou s mísičem gradientu SP8800 a integrátorem ChromJet. K dělení pigmentů byla použita kolona s reverzní fází Sepharon SGX C18 (Tessek, Praha) o rozměrech mm a průměru částic 5 m. Dávkovací smyčka pro nanesení vzorků má objem 0,01 cm 3. Mobilní fází o průtokové rychlosti 1 cm 3 min -1 byl lineární gradient mezi směsí acetonitril:metanol:voda (80:12:6) a metanolem v čase 8-12 min. Celková délka chromatografie byla 30 min. Novější sestava HPLC Sestava ECOM (Praha, Česká republika) složená z absorpčního detektoru s nastavenou vlnovou délkou 445 nm, gradientové pumpy a autosampleru. K dělení pigmentů byla použita kolona s reverzní fází (Watrex Nucleosil C18, 5 m particle size, mm, ECOM, s r.o., Prague, Czech Republic). Dávkovací smyčka pro nanesení vzorků má objem 0,01 cm 3. Mobilní fází o průtokové rychlosti 1 cm 3 min -1 byl lineární gradient mezi směsmi acetonitril:metanol:voda (80:12:10) a metanolem:ethylacetát (95:5) v čase 2-6 min. Celková délka chromatografie byla 25 min. 8

10 4. Výsledky 4.1. Karotenoidy během ontogeneze rostlin při kultivaci in vitro a po převedení do ex vitro podmínek Vliv ozářenosti a přítomnosti sacharózy v mediu Rostliny pěstované in vitro bývají poškozovány fotoinhibicí při nižších hodnotách ozářenosti než rostliny pěstované v klimatizovaných boxech, sklenících nebo volné přírodě. V následujících pokusech jsme se snažili zjistit, zda rostliny pěstované mixotrofně se lépe vyrovnávají s nadbytkem světelné energie než rostliny pěstované plně autrofně. Sledovali jsme rozdíly v ontogenezi in vitro pěstovaných rostlin Nicotiana tabacum L. cv. Samsun při dvou hodnotách ozářenosti 50 (LL) a 200 (HL) mol m -2 s -1 a bez sacharózy (0%) nebo se sacharózou (3%) v médiu. Získali jsme tím 4 varianty pěstování rostlin tabáku 0%LL (kontrola), 0%HL, 3%LL a 3%HL. Obsah -karotenu, pigmentu nacházejícího se převážně v reakčních centrech obou fotosystémů, u všech variant pěstování v období od 14. do 42. dne kultivace klesal výrazněji u rostlin pěstovaných za vyšší ozářenosti. Zde nebyl zaznamenán větší vliv sacharózy na průběh ontogeneze. U světlosběrného pigmentu luteinu docházelo u variant 3%HL a 3%LL k mírnému nárůstu jeho obsahu do 36. dne kultivace a k mírnému snížení 42. den kultivace. U varianty 0%LL a zejména 0%HL docházelo ke snižování obsah luteinu po celou dobu kultivace. Obsah neoxanthinu se u varianty 3%HL zvyšoval po celou dobu kultivace, u varianty 3%LL se prakticky neměnil a u variant 0%LL a 0%HL se snižoval podobně jako obsah luteinu. U rostlin pěstovaných za vyšší ozářenosti se tedy obsah světlosběrných pigmentů v přítomnosti sacharózy zvyšoval, zatímco u rostlin bez sacharózy v médiu jsme zaznamenali jejich pokles již od počátku sledovaného období. Obsah pigmentů xantofylového cyklu se u rostlin pěstovaných při nižší ozářenosti příliš neměnil, k poklesu došlo až mezi 36. a 42. dnem. Naproti tomu při vyšší ozářenosti byl sice jejich obsah mezi 14. a 22. den kultivace vyšší než u variant 0%LL a 3%LL, ale po celou dobu kultivace se jejich obsah snižoval (výrazněji u rostlin pěstovaných bez sacharózy) a po 42. dnech byl nejnižší u varianty 0%HL. Stupeň deepoxidace (DEPS, [(Zea+0,5*Ant)/(Zea+Ant+Vio)]) byl výrazně vyšší při vyšší ozářenosti a u všech variant se snižoval v průběhu kultivace s vyjímkou varianty 0%LL kde mírně narůstal. Stupeň deepoxidace vztažený k obsahu chlorofylu (DEPSC, [(Zea+0,5*Ant)/(Chl a+b)]), byl výrazně 9

11 vyšší u varianty 0%HL než u ostatních variant. Během ontogeneze se DEPSC snižoval s vyjímkou varianty 0%LL podobně jako DEPS. Na obsah a funkci karotenoidů v průběhu ontogeneze v in vitro podmínkách měla tedy vliv jak hladina ozářenosti, tak i přítomnost nebo nepřítomnost sacharózy v médiu. Ochranná funkce pigmentů xantofylového cyklu se projevila jejich zvýšeným obsahem při kultivaci za vyšší ozářenosti a výraznější pokles u rostlin pěstovaných bez sacharózy byl pravděpodobně způsoben vyšší mírou poškození těchto rostlin, což potvrdily i výsledky měření jiných fotosyntetických parametrů, například obsahu chlorofylu, apod. Aklimace rostlin pěstovaných in vitro k ex vitro podmínkám Pro studium vlivu in vitro podmínek na aklimaci rostlin v nových ex vitro podmínkách jsme použili pokusný model z předchozí kapitoly. Rostliny Nicotiana tabacum L. cv. Samsun byly pěstovány 35 dní in vitro za 4 různých výše uvedených podmínek 3%HL, 3%LL, 0%HL a 0%LL. Rostliny z každé z těchto variant pěstování in vitro jsme přesadili a kultivovali ex vitro při dvou různých hladinách ozářenosti 200 a 700 mol m -2 s -1. Změny v obsahu fotosyntetických pigmentů jsme sledovali 1, 2, 5 a 7 dní po přesazení. Obsah -karotenu se po přesazení ex vitro příliš neměnil u rostlin předpěstovaných na sacharózovém médiu, zatímco u rostlin pěstovaných in vitro bez sacharózy došlo k jeho nárůstu, výrazněji u 0%HL, o 35% při 200 mol m -2 s -1 a o 25% při 700 mol m -2 s -1. Světlosběrné karotenoidy lutein a neoxanthin zaznamenaly u sacharózových variant v prvních dvou dnech kultivace při ozářenosti 200 mol m -2 s -1 pokles a následně až od sedmého dne nárůst nad úroveň při přesazení. Při 700 mol m -2 s -1 byl stejný průběh pouze u 3%LL, zatímco u 3%HL se obsah luteinu téměř neměnil a obsah neoxanthinu se zvýšil o 50%. Bezsacharózové varianty 0%LL a 0%HL zaznamenaly při obou hodnotách ozářenosti postupný nárůst obsahu světlosběrných karotenoidů, který po sedmi dnech činil 30-50%, pouze u 3%HL došlo při 700 mol m -2 s -1 nejprve k poklesu obsahu těchto pigmentů o 5%. Obsah pigmentů xantofylového cyklu se po přesazení zvýšil během sedmi dnů u obou LL variant při ozářnosti ex vitro 200 mol m -2 s -1 o 15% a při 700 mol m -2 s -1 o 35-40%. Naproti tomu obě HL varianty se od sebe výrazně lišily zatímco u 3%HL se obsah pigmentů xantofylového cyklu při ozářenosti 200 mol m -2 s -1 téměř neměnil a při 700 mol m -2 s -1 se zvýšil o 10%, u 0%HL došlo během 7 dní kultivace ex vitro k nárůstu o 60-70%. Tyto výsledky ukázaly, že odlišné podmínky in vitro měly za následek i rozdílné změny ve složení karotenoidů po přesazení ex vitro. Zatímco u -karotenu a světlosběrných karotenoidů měla na rozdíly vliv hlavně přítomnost nebo nepřítomnost sacharózy v in vitro podmínkách, u pigmentů xantofylového cyklu bylo totéž pozorováno pouze u HL variant, kdežto u LL variant se vliv sacharózy neprojevil. Celkově však došlo po sedmidenní kultivaci ex vitro ke snížení rozdílu v obsahu karotenoidů mezi jednotlivými variantami pěstování in vitro. 10

12 Vliv CO 2 na obsah karotenoidů V rámci studia vlivu obsahu CO 2 v in vitro podmínkách na obsah karotenoidů jsme ke kultivaci rostlin Nicotiana tabacum L. použili dva typy kultivačních nádob pečlivě utěsněné skleničky (G-rostliny) a polykarbonátové nádoby s víčkem propustným pro plyny (Magenta GA-7, M-rostliny). V pevně uzavřených skleničkách docházelo hlavně ve světelné fázi fotoperiody k poklesu obsahu CO 2 vlivem jeho spotřeby při fotosyntéze, kdežto v Magentách se CO 2 pravidelně doplňoval z okolí. Nevýhodou Magent však bylo rychlejší vysychání kultivačního média, což jsme se snažili omezit častějšími pasážemi. Po 6-ti týdenní kultivaci in vitro jsme pomocí HPLC zjistili obsah jednotlivých karotenoidů. V obsahu světlosběrného karotenoidu neoxanthinu se rostliny z obou typů pěstování téměř nelišily, naproti tomu obsah dalšího světlosběrného karotenoidu luteinu byl o 7% vyšší u M-rostlin. Obsah -karotenu byl rovněž vyšší u M-rostlin, ale daleko výrazněji, o 35%. Naproti tomu obsah pigmentů xantofylového cyklu byl vyšší u G-rostlin o 30% a zároveň byl vyšší i stupeň deepoxidace, ale pouze o 14%. Obsah pigmentů xantofylového cyklu vztažený na obsah chlorofylu byl u G-rostlin téměř dvojnásobný oproti M-rostlinám. Z uvedených výsledků vyplývá, že nedostatek CO 2 během in vitro kultivace byl pro G-rostliny větším stresem, než eventuelní úbytek vlhkosti u M-rostlin. Vliv CO 2 a kyseliny abscisové na aklimaci rostlin k ex vitro podmínkám V první sérii pokusů byl sledován pouze vliv zvýšené koncentrace CO 2 na 1200 mg m -3 (CE) v průběhu 28-denní aklimace rostlin k ex vitro podmínkám. Po převedení do ex vitro podmínek se obsah karotenoidů zvyšoval pouze u rostlin pěstovaných při normální koncentraci CO mg m -3 (CA). Proto ve srovnání s rostlinami rostoucími při (CA), rostliny aklimované při CE měly nižší obsah -karotenu, luteinu, neoxanthinu i pigmentů xantofylového cyklu, ale vyšší stupeň jejich deepoxidace. Při dalším, podrobnějším studiu vlivu obsahu CO 2 na aklimaci rostlin k ex vitro podmínkám jsme použili rostliny kultivované in vitro při nízké (G-rostliny) a normální koncentraci CO 2 (M-rostliny). Kromě vlivu CO 2 byl v těchto pokusech sledován i vliv aplikace ABA s cílem zabránit počátečnímu vadnutí rostlin. Po 6-ti týdenní kultivaci in vitro byly rostliny přesazeny do květináčků s pískem a část zalita 5 M roztokem ABA a část destilovanou vodou. Rostliny byly následně pěstovány v různých koncentracích CO 2 (CA a CE) po dobu 28 dní. Obsah fotosyntetických pigmentů byl analyzován 2, 7 a 28 dní po převedení do ex vitro podmínek. 11

13 Celkový obsah karotenoidů byl u M-rostlin vyšší než u G-rostlin pouze u rostlin zalitých roztokem ABA. Během kultivace ex vitro se rozdíly mezi G- a M-rostlinami postupně snižovaly. Obsah pigmentů xantofylového cyklu byl vyšší u G-rostlin a podobné rozdíly byly zjištěny i po ex vitro kultivaci. Jejich obsah byl vždy nižší při zvýšené koncentraci CO 2 během ex vitro kultivace a nejnižší byl u M-rostlin zalitých ABA rostoucích v podmínkách CE. Naproti tomu DEPS byl podobný u G- a M-rostlin, vyšší při pěstování v CE Karotenoidy v průběhu vodního stresu a následné rehydratace Vliv kyseliny abscisové a benzyladeninu na fotosyntetické pigmenty v průběhu vodního stresu a rehydratace V rámci studiu úlohy rostlinných hormonů v odpovědi rostlin na vodní stres jsme sledovali vliv kyseliny abscisové (ABA) a benzyladeninu (BA) na fotosyntetické pigmenty, fluorescenci chlorofylu a ultrastrukturu chloroplastů u čtyř druhů rostlin (Phaseolus vulgaris, Nicotiana tabacum, Beta vulgaris a Zea mays) během vodního stresu a následné rehydratace. 100 M ABA nebo 10 M BA byly přidány do substrátu bezprostředně před nástupem vodního stresu, kontrolní rostliny byly zality vodou. V průběhu vodního stresu jsou karotenoidy důležité zejména jako prekurzory biosyntézy ABA a pro ochranu fotosyntetického aparátu před oxidačním stresem vzniklým v důsledku nadbytku energie světelného záření. Celkový obsah karotenoidů (Car) byl nejvyšší u kukuřice a nejnižší u fazolu. U všech kontrolních rostlin docházelo ke snížení obsahu Car během vodního stresu a tento trend pokračoval i po rehydrataci. Naproti tomu u rostlin ošetřených ABA nebo BA docházelo během vodního stresu k nárůstu obsahu karotenoidů, a tento nárůst byl u fazolu a cukrové řepy výraznější po aplikaci ABA, zatímco u kukuřice a tabáku po aplikaci BA. U všech hormony ošetřených rostlin došlo ke snížení obsahu karotenoidů po rehydrataci, ale jen na úroveň před stresem, tedy jejich konečný obsah byl výrazně vyšší než u kontrolních rostlin. Obsah světlosběrných pigmentů luteinu a neoxanthinu se snižoval u kontrolních rostlin během vodního stresu a tento pokles u luteinu pokračoval i po rehydrataci, zatímco obsah neoxanthinu po rehydrataci narůstal. U rostlin ošetřených ABA a BA docházelo k nárůstu obsahu neoxanthinu s výjimkou tabáku ošetřeného BA, kde ke změně obsahu nedošlo. Naproti tomu se obsah luteinu u rostlin ošetřených hormony příliš neměnil nebo mírně snižoval. Po rehydrataci se obsah neoxanthinu a luteinu snižoval u všech rostlin. Obsah pigmentů xantofylového cyklu se výrazněji zvyšoval během vodního stresu u rostlin ošetřených ABA a BA, nejvíce u kukuřice, zatímco u kontrolních rostlin byl tento 12

14 nárůst menší, u fazolu a tabáku téměř nulový. Po následné rehydrataci došlo ke snížení obsahu pigmentů xantofylového cyklu, u fazolu dokonce pod úroveň kontrolních rostlin. Naproti tomu u kukuřice byl po rehydrataci jejich obsah na dvojnásobné úrovni oproti nestresovaným rostlinám. U všech rostlin byl po rehydrataci obsah pigmentů xantofylového cyklu vyšší u rostlin ošetřených ABA než u rostlin ošetřených BA. Dosažené výsledky potvrdily naši hypotézu, že ABA a BA mohou pozitivně ovlivnit odpověď rostlin na vodní stres. Stupeň deepoxidace pigmentů xantofylového cyklu (DEPS) se u kontrolních rostlin během vodního stresu zvýšil, nejvíce u kukuřice. Nárůst stupně deepoxidace jsme pozorovali také u rostlin fazolu, cukrové řepy a tabáku ošetřených před stresem ABA a BA. Po rehydrataci zůstal stupeň deepoxidace zvýšený u všech rostlin ošetřených vodou, ale u rostlin cukrové řepy a tabáku ošetřených ABA a BA klesal, stejně jako u rostlin fazolu ošetřených BA. Stupeň deepoxidace vztažený k obsahu chlorofylu (DEPSC) se během vodního stresu výrazně zvýšil u všech rostlin a tento nárůst pokračoval u rostlin ošetřených vodou i po rehydrataci. U rostlin fazolu, cukrové řepy a tabáku ošetřených ABA a BA došlo po rehydrataci ke snížení stupně deepoxidace vztaženého na obsah chlorofylu, výrazněji po aplikaci BA, zatímco u kukuřice byla po rehydrataci změna minimální. U všech rostlin kromě fazolu však byl po rehydrataci podstatně vyšší než před vodním stresem. Tyto výsledky ukázaly, že předpůsobení BA a zejména ABA může přispívat k ochraně fotosyntetického aparátu během následného vodního stresu. Vliv vneseného genu trans-zeatin O-glukosyltransferázy na obsah karotenoidů v průběhu vodního stresu trasgenních rostlin V rámci širšího studia interakcí mezi cytokininy a ABA jsme v následujících experimentech sledovali reakce rostlin na současné zvýšení endogenní hladiny obou těchto fytohormonů. K tomuto účelu jsme použili trasgenní rostliny tabáku s genem pro trans-zeatin O-glukosyltransferázu vneseným pod konstitutivním (35S:ZOG1) nebo senescencí indukovaným (SAG12:ZOG1) promotorem. Hladina endogenní ABA byla zvýšena působením vodního stresu. Porovnávali jsme 3 patra rostlin nejmladší, střední a nejstarší před stresem, v průběhu 7 dní vodního stresu a 7 dní následné rehydratace. Zvýšený obsah cytokininů u trasgenních rostlin ovlivnil nejen celkový obsah a složení karotenoidů ale také jejich změny v průběhu ontogeneze. Celkový obsah karotenoidů byl u WT a SAG:ZOG nejvyšší u středních listů, zatímco u 35S:ZOG byl nejvyšší u nejmladších listů. Naproti tomu nejméně karotenoidů obsahovaly nejmladší listy u WT a nejstarší listy u obou transformantů. V průběhu vodního stresu došlo k postupnému nárůstu obsahu karotenoidů u nejmladších a středních listů, u 35S:ZOG pomaleji než u zbylých dvou typů rostlin. V závěrečné fázi stresu byl největší obsah karotenoidů u SAG:ZOG v mladých listech, u ostatních rostlin byl téměř vyrovnaný. U nejstarších listů jsme na počátku stresu zaznamenali mírný nárůst obsahu karotenoidů, který byl ve střední fázi stresu následován 13

15 poklesem jejich obsahu. Při silném stresu docházelo k úplné degradaci karotenoidů doprovázené částečným odumřením starých listů. Po rehydrataci docházelo k rychlejšímu úbytku karotenoidů u středních listů než u nejmladších listů, nejvýrazněji u WT. Obsah světlosběrných karotenoidů luteinu a neoxanthinu v nejmladších listech narůstal postupně, zatímco u středních listů až při silnějším stresu a u nejstarších listů po počátečním nárůstu (neoxanthin) nebo stagnaci (lutein) jejich obsah klesal. Po rehydrataci se obsah luteinu u mladých listů výrazněji neměnil, zatímco u středních listů klesal, nejvýrazněji u WT. Obsah neoxanthinu po rehydrataci mírně klesal v mladých i středních listech u obou transformantů a výrazněji u WT. U WT rostlin docházelo k postupnému nárůstu obsahu pigmentů xantofylového cyklu po celou dobu stresu, naproti tomu u 35S:ZOG až v konečné fázi stresu a u SAG:ZOG docházelo jen k nepatrným změnám. Z detailního porovnání změn měřených parametrů v průběhu vodního stresu jsme dospěli k závěru, že oba typy transgenních rostlin reagují na vodní stres lépe než netransgenní rostliny. 14

16 4. Závěry Na základě výsledků, jichž jsme dosáhli během experimentů uvedených v této disertační práci, jsme dospěli k následujícím odpovědím na otázky položené v cílech této práce: 1. V průběhu ontogeneze rostlin v in vitro podmínkách se složení i obsah karotenoidů měnil v závislosti na podmínkách kultivace (obsahu sacharózy v mediu, hladiny ozářenosti, koncetrace CO 2 ). Podobně tomu bylo i po převedení rostlin do ex vitro podmínek 2. Sacharóza v mediu ovlivnila ochrannou funkci karotenoidů u rostlin pěstovaných při vyšší ozářenosti, při nízké ozářenosti na ni měla jen nepatrný vliv. 3. Vyšší ozářenost v kombinaci se sacharózou v kultivačním mediu in vitro měla pozitivní vliv na obsah karotenoidů v prvních dnech aklimace k ex vitro podmínkám, postupně se rozdíly vzniklé odlišnou kultivací in vitro zmenšovaly. 4. Změny ve složení a obsahu karotenoidů po převádění rostlin z in vitro do ex vitro byly velmi závislé na předchozí in vitro kultivaci a na podmínkách během následné aklimace. K nárůstu obsahu -karotenu a pigmentů xantofylového cyklu docházelo u rostlin rostoucích ex vitro při normální koncentraci CO 2. Naproti tomu, u rostlin rostoucích při zvýšené koncentraci CO 2 nedocházelo ke zvyšování obsahu karotenoidů, ale u těchto rostlin byl zvýšen stupeň deepoxidace pigmentů xantofylového cyklu. 5. V důsledku vodního stresu docházelo ke zvyšování obsahu pigmentů xantofylového cyklu i jejich stupně deepoxidace, což rostlinám napomáhalo vyrovnat se s těmito nepříznivými podmínkami a zabránit poškození rostlin fotoinhibicí. 6. Aplikace ABA a benzyladeninu (BA) při vodním stresu stimulovala syntézu karotenoidů včetně pigmentů xantofylového cyklu a tím i napomáhala k ochraně rostlin před oxidativním poškozením. 7. Zvýšený obsah cytokininů u transgenních rostlin ovlivnil nejen celkový obsah a složení karotenoidů ale také jejich změny v průběhu ontogeneze. 15

17 6. Seznam publikací v disertační práci Poster 1 Haisel, D., Tichá, I.: Ontogenetic changes in contents of photosynthetic pigments in tobacco plantlets grown in vitro. - Acta Physiol. Plant. 25(Suppl.): Publikace 1 Tichá, I., Čáp, F., Pacovská, P., Hofman, P., Haisel, D., Čapková, V., Schäffer, C.: Culture on sugar medium enhances photosynthetic capacity and high light resistance of plantlets grown in vitro. - Physiol. Plant. 102: , Publikace 2 Haisel, D., Hofman, P., Vágner, M., Lipavská, H., Tichá, I., Schäfer, C., Čapková, V.: Ex vitro phenotype stability is affected by in vitro cultivation. - Biol. Plant. 44: , Publikace 3 Hofman, P., Haisel, D., Komenda, J., Vágner, M., Tichá, I., Schäfer, C., Čapková, V.: Impact of in vitro cultivation conditions on stress responses and on changes in thylakoid membrane proteins and pigments of tobacco during ex vitro acclimation. - Biol. Plant. 45: , Publikace 4 Haisel, D., Pospíšilová, J., Synková, H., Čatský, J., Wilhelmová, N., Plzáková, Š.: Photosynthetic pigments and gas exchange of in vitro grown tobacco plants as affected by CO 2 supply. - Biol. Plant. 42: , Publikace 5 Pospíšilová, J., Synková, H., Haisel, D., Čatský, J., Wilhelmová, N., Šrámek, F.: Effect of elevated CO2 concentration on acclimation of tobacco plantlets to ex vitro conditions. - J. exp. Bot. 50: , Publikace 6 Pospíšilová, J., Haisel, D., Synková, H., Čatský, J., Wilhelmová, N., Plzáková, Š., Procházková, D., Šrámek, F.: Photosynthetic pigments and gas exchange of in vitro grown tobacco plants during ex vitro acclimation. - Plant Cell Tissue Organ Cult. 61: , 2000 Publikace 7 Haisel, D., Pospíšilová, J., Synková, H., Schnáblová, R., Baťková, P.: Effects of abscisic acid or benzyladenine on pigment contents, chlorophyll fluorescence, and chloroplast ultrastructure during water stress and after rehydration. - Photosynthetica 44: , Publikace 8 Haisel, D., Vaňková, R., Synková, H., Pospíšilová, J.: The impact of trans-zeatin O-glucosyltransferase gene over-expression in tobacco on pigment content and gas exchange. - Biol. Plant. 51: 49-58,

18 7. Publikační činnost autora Pospíšilová, J., Synková, H., Haisel, D., Baťková, P.: Effect of abscisic acid on photosynthetic parameters during ex vitro transfer of micropropagated tobacco plantlets. - Biol. Plant. 53: 11-20, Procházková, D., Haisel, D., Wilhelmová, N.: Antioxidant protection during ageing and senescence in chloroplasts of tobacco with modulated life span. - Cell Biochem. Funct. 26: , Haisel, D., Vaňková, R., Synková, H., Pospíšilová, J.: The impact of trans-zeatin O-glucosyltransferase gene over-expression in tobacco on pigment content and gas exchange. - Biol. Plant. 51: 49-58, Pospíšilová, J., Synková, H., Haisel, D., Semorádová, Š.: Acclimation of plantlets to ex vitro conditions: effects of air humidity, irradiance, CO2 concentration and abscisic acid. - Acta Hort. 748: 29-38, Mýtinová, Z., Haisel, D., Wilhelmová, N.: Photosynthesis and protective mechanisms during ageing in transgenic tobacco leaves with over-expressed cytokinin oxidase/dehydrogenase and thus lowered cytokinin content. - Photosynthetica 44: , Haisel, D., Pospíšilová, J., Synková, H., Schnáblová, R., Baťková, P.: Effects of abscisic acid or benzyladenine on pigment contents, chlorophyll fluorescence, and chloroplast ultrastructure during water stress and after rehydration. - Photosynthetica 44: , Kosová, K., Haisel, D., Tichá, I.: Photosynthetic performance of two maize genotypes as affected by chilling stress. - Plant Soil Environ. 51: , Kutík, J., Holá, D., Kočová, M. Rothová, O., Haisel, D., Wilhelmová, N., Tichá, I.: The ultrastructure and dimensions of chloroplasts in leaves of three maize (Zea mays L.) inbred lines and their F1 hybrids grown under moderate chilling stress - Photosynthetica 42: , Pechová, R., Kutík, J., Holá, D., Kočová, M., Haisel, D., Vičánková, A.: The ultrastructure of chloroplasts, content of photosynthetic pigments, and photochemical activity of maize (Zea mays L.) as influenced by different concentrations of the herbicide amitrole. - Photosynthetica 41: , Hofman, P., Haisel, D., Komenda, J., Vágner, M., Tichá, I., Schäfer, C., Čapková, V.: Impact of in vitro cultivation conditions on stress responses and on changes in thylakoid membrane proteins and pigments of tobacco during ex vitro acclimation. - Biol. Plant. 45: , Haisel, D., Hofman, P., Vágner, M., Lipavská, H., Tichá, I., Schäfer, C., Čapková, V.: Ex vitro phenotype stability is affected by in vitro cultivation. - Biol. Plant. 44: , Kadleček, P., Tichá, I., Haisel, D., Čapková, V., Schäfer, Ch.: Importance of in vitro pretreatment for ex vitro acclimation and growth. - Plant. Sci. 161: , Pospíšilová, J., Haisel, D., Synková, H., Čatský, J., Wilhelmová, N., Plzáková, Š., Procházková, D., Šrámek, F.: Photosynthetic pigments and gas exchange of in vitro grown tobacco plants during ex vitro acclimation. - Plant Cell Tissue Organ Cult. 61: , Haisel, D., Pospíšilová, J., Synková, H., Čatský, J., Wilhelmová, N., Plzáková, Š.: Photosynthetic pigments and gas exchange of in vitro grown tobacco plants as affected by CO 2 supply. - Biol. Plant. 42: , Pospíšilová, J., Synková, H., Haisel, D., Čatský, J., Wilhelmová, N., Šrámek, F.: Effect of elevated CO2 concentration on acclimation of tobacco plantlets to ex vitro conditions. - J. exp. Bot. 50: ,

19 Pospíšilová, J., Tichá, I., Kadleček, P., Haisel, D., Plzáková, Š.: Acclimatization of micropropagated plants to ex vitro conditions. - Biol. Plant. 42: , Tichá, I., Čáp, F., Pacovská, D., Haisel, D., Čapková, V., Schäffer, C.: Photosynthesis and photoinhibition in tobacco plantlets grown in vitro: an ontogenetic approach. - In: Garab, G. (ed.): Photosynthesis: Mechanisms and Effects. Pp Kluwer Academic Publishers, Dorrecht Tichá, I., Čáp, F., Pacovská, P., Hofman, P., Haisel, D., Čapková, V., Schäffer, C.: Culture on sugar medium enhances photosynthetic capacity and high light resistance of plantlets grown in vitro. - Physiol. Plant. 102: , Wilhelmová N., Wilhelm J., Kutík J., Haisel D.: Changes in French bean cotyledon composition associated with modulated life-span. - Photosynthetica 34: , Synková H., Wilhelmová N., Holá D., Haisel D., Šesták Z.: Comparison of chlorophyll fluorescence kinetics and photochemical activities of isolated chloroplasts in genetic analysis of Lycopersicon esculentum Mill. hybrids. - Photosynthetica 34: , Kutík, J., Holá, D., Kočová, M. Rothová, O., Haisel, D., Wilhelmová, N., Tichá, I.: The ultrastructure and dimensions of chloroplasts in leaves of three maize (Zea mays L.) inbred lines and their F1 hybrids grown under moderate chilling stress. -Photosynthetica 42: , Pechová, R., Kutík, J., Holá, D., Kočová, M., Haisel, D., Vičánková, A.: The ultrastructure of chloroplasts, content of photosynthetic pigments, and photochemical activity of maize (Zea mays L.) as influenced by different concentrations of the herbicide amitrole. - Photosynthetica 41: , Hofman, P., Haisel, D., Komenda, J., Vágner, M., Tichá, I., Schäfer, C., Čapková, V.: Impact of in vitro cultivation conditions on stress responses and on changes in thylakoid membrane proteins and pigments of tobacco during ex vitro acclimation. - Biol. Plant. 45: , Haisel, D., Hofman, P., Vágner, M., Lipavská, H., Tichá, I., Schäfer, C., Čapková, V.: Ex vitro phenotype stability is affected by in vitro cultivation. - Biol. Plant. 44: , Kadleček, P., Tichá, I., Haisel, D., Čapková, V., Schäfer, Ch.: Importance of in vitro pretreatment for ex vitro acclimation and growth. - Plant. Sci. 161: , Pospíšilová, J., Haisel, D., Synková, H., Čatský, J., Wilhelmová, N., Plzáková, Š., Procházková, D., Šrámek, F.: Photosynthetic pigments and gas exchange of in vitro grown tobacco plants during ex vitro acclimation. - Plant Cell Tissue Organ Cult. 61: , Haisel, D., Pospíšilová, J., Synková, H., Čatský, J., Wilhelmová, N., Plzáková, Š.: Photosynthetic pigments and gas exchange of in vitro grown tobacco plants as affected by CO2 supply. - Biol. Plant. 42: , Pospíšilová, J., Synková, H., Haisel, D., Čatský, J., Wilhelmová, N., Šrámek, F.: Effect of elevated CO2 concentration on acclimation of tobacco plantlets to ex vitro conditions. - J. exp. Bot. 50: , Pospíšilová, J., Tichá, I., Kadleček, P., Haisel, D., Plzáková, Š.: Acclimatization of micropropagated plants to ex vitro conditions. - Biol. Plant. 42: , Tichá, I., Čáp, F., Pacovská, P., Hofman, P., Haisel, D., Čapková, V., Schäffer, C.: Culture on sugar medium enhances photosynthetic capacity and high light resistance of plantlets grown in vitro. - Physiol. Plant. 102: ,

Stomatální vodivost a transpirace

Stomatální vodivost a transpirace Vodní režim rostlin Stomatální vodivost a transpirace Vliv faktorů prostředí - obecně Změny během dne Interakce různých faktorů Aklimace Adaxiální a abaxiální epidermis Ontogeneze Matematické modelování

Více

Fotosyntéza Ekofyziologie. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni

Fotosyntéza Ekofyziologie. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni Fotosyntéza Ekofyziologie Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni Fyziologické a ekologické aspekty fotosyntézy vliv stresů a proměnného prostředí na fotosyntézu; mechanismy

Více

Tkáňové kultury rostlin. Mikropropagace

Tkáňové kultury rostlin. Mikropropagace Tkáňové kultury rostlin Mikropropagace IN VITRO KULTURY (EXPLANTÁTOVÉ KUTLURY, ROSTLINNÉ EXPLANTÁTY) Izolované rostliny, jejich orgány, pletiva či buňky pěstované in vitro ve sterilních podmínkách Na kultivačních

Více

Dominantní FL ječmene jarního

Dominantní FL ječmene jarního Materová Zuzana SGS OU Hlavní cíl prezentace Kvantitativní vyhodnocení vlivu dopadající radiace na obsah volných FL v listech ječmene jarního srovnání napříč experimenty KFY (-) Podmínka srovnatelnosti

Více

Fotosyntéza Světelné reakce. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni

Fotosyntéza Světelné reakce. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni Fotosyntéza Světelné reakce Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni Literatura Plant Physiology (L.Taiz, E.Zeiger), kapitola 7 pdf verze na požádání www.planthys.net Fotosyntéza

Více

FOTOSYNTÉZA. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1

FOTOSYNTÉZA. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1 FOTOSYNTÉZA Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1 Fotosyntéza (z řec. phos, photós = světlo) je anabolický děj probíhající u autotrofních organismů (řasy,

Více

EXTRAKCE, CHROMATOGRAFICKÉ DĚLENÍ (C18, TLC) A STANOVENÍ LISTOVÝCH BARVIV

EXTRAKCE, CHROMATOGRAFICKÉ DĚLENÍ (C18, TLC) A STANOVENÍ LISTOVÝCH BARVIV Úloha č. 7 Extrakce a chromatografické dělení (C18 a TLC) a stanovení listových barviv -1 - EXTRAKCE, CHROMATOGRAFICKÉ DĚLENÍ (C18, TLC) A STANOVENÍ LISTOVÝCH BARVIV LISTOVÁ BARVIVA A JEJICH FYZIOLOGICKÝ

Více

aneb Fluorescence chlorofylu jako indikátor stresu

aneb Fluorescence chlorofylu jako indikátor stresu Měření fotosyntézy rostlin pomocí chlorofylové fluorescence aneb Fluorescence chlorofylu jako indikátor stresu Fotosyntéza: Fotosyntéza je proces, ve kterém je světelná energie zachycena světlosběrnými

Více

Fyziologie rostlin. 9. Fotosyntéza část 1. Primární fáze fotosyntézy. Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014

Fyziologie rostlin. 9. Fotosyntéza část 1. Primární fáze fotosyntézy. Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014 Fyziologie rostlin 9. Fotosyntéza část 1. Primární fáze fotosyntézy Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014 Fotosyntéza 1. část - úvod - chloroplasty - sluneční záření -

Více

Název: Fotosyntéza. Autor: Mgr. Jiří Vozka, Ph.D. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy

Název: Fotosyntéza. Autor: Mgr. Jiří Vozka, Ph.D. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Název: Fotosyntéza Autor: Mgr. Jiří Vozka, Ph.D. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: chemie, biologie, matematika, fyzika Ročník: 5. Tématický celek:

Více

ení k tvorbě energeticky bohatých organických sloučenin

ení k tvorbě energeticky bohatých organických sloučenin Fotosyntéza mimořádně významný proces, využívající energii slunečního zářenz ení k tvorbě energeticky bohatých organických sloučenin (sacharidů) z jednoduchých anorganických látek oxidu uhličitého a vody

Více

Fluorescence chlorofylu

Fluorescence chlorofylu Pro připomenutí Fluorescence chlorofylu Princip Fotochemické a nefotochemické zhášení fluorescence Excitace chlorofylu: plantphys.info Analýza zhášení (quenching analysis) Temnostní adaptace Kautského

Více

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN FYZIOLOGIE ROSTLIN Fyziologie rostlin, Biologie, 2.ročník 25 Podobor botaniky, který studuje životní funkce a individuální vývoj rostlin. Využívá poznatků z dalších odvětví biologie jako je morfologie,

Více

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA: BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,

Více

Vyjádření fotosyntézy základními rovnicemi

Vyjádření fotosyntézy základními rovnicemi FOTOSYNTÉZA Fotochemický proces, při němž fotosynteticky aktivní pigmenty v zelených částech rostlin přijímají energii světelného záření a přeměňují ji na energii chemickou. Ta je dále využita při biologických

Více

FOTOSYNTÉZA. Princip, jednotlivé fáze

FOTOSYNTÉZA. Princip, jednotlivé fáze FOTOSYNTÉZA Princip, jednotlivé fáze FOTOSYNTETICKÉ PIGMENTY - chlorofyl a modrozelený - chlorofyl b žlutozelený + karoteny, xantofyly žluté a oranžové zbarvení CHLOROFYL a, b CHLOROFYL a - nejdůležitější

Více

1- Úvod do fotosyntézy

1- Úvod do fotosyntézy 1- Úvod do fotosyntézy Prof. RNDr. Petr Ilík, Ph.D. KBF a CRH, PřF UP FS energetická bilance na povrch Země dopadá 2/10 10 energie ze Slunce z toho 30% odraz do kosmu 47% teplo 23% odpar vody 0.02% pro

Více

Vodní režim rostlin. Regulace výměny plynů otevřeností průduchů. fotosyntézy Efektivita využití vody Globální změna klimatu Antitranspiranty

Vodní režim rostlin. Regulace výměny plynů otevřeností průduchů. fotosyntézy Efektivita využití vody Globální změna klimatu Antitranspiranty Vodní režim rostlin Regulace výměny plynů otevřeností průduchů Stomatální limitace rychlosti transpirace a rychlosti fotosyntézy Efektivita využití vody Globální změna klimatu Antitranspiranty Regulace

Více

5 Potratovost. Tab. 5.1 Potraty,

5 Potratovost. Tab. 5.1 Potraty, 5 Potratovost Počet potratů se dlouhodobě snižuje a tento trend pokračoval i v roce. Registrovaných 7 potratů bylo 35,8 tisíce, čímž bylo opět překonáno historické minimum. Počet umělých přerušení těhotenství

Více

ROSTLINNÁ BUŇKA A JEJÍ ČÁSTI

ROSTLINNÁ BUŇKA A JEJÍ ČÁSTI Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248 M o d e r n í b i o l o g i e reg. č.: CZ.1.07/1.1.32/02.0048 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Fotosyntéza světelná fáze. VY_32_INOVACE_Ch0214.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Fotosyntéza světelná fáze. VY_32_INOVACE_Ch0214. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

CONTRIBUTION TO UNDERSTANDING OF CORRELATIVE ROLE OF COTYLEDON IN PEA (Pisum sativum L.)

CONTRIBUTION TO UNDERSTANDING OF CORRELATIVE ROLE OF COTYLEDON IN PEA (Pisum sativum L.) CONTRIBUTION TO UNDERSTANDING OF CORRELATIVE ROLE OF COTYLEDON IN PEA (Pisum sativum L.) PŘÍSPĚVEK K POZNÁNÍ KORLAČNÍ FUNKCE DĚLOHY U HRACHU (Pisum sativum L.) Mikušová Z., Hradilík J. Ústav Biologie rostlin,

Více

Stanovení antioxidační aktivity a redukční síly na ječmeni jarním (Hordeum vulgare, L. cv. Bonus)

Stanovení antioxidační aktivity a redukční síly na ječmeni jarním (Hordeum vulgare, L. cv. Bonus) Stanovení antioxidační aktivity a redukční síly na ječmeni jarním (Hordeum vulgare, L. cv. Bonus) Autor: Bc. Ursula Ferretti Spoluautor: Mgr. Jakub Nezval Ostravská Univerzita v Ostravě Přírodovědecká

Více

EFFECT OF CADMIUM ON TOBACCO CELL SUSPENSION BY-2

EFFECT OF CADMIUM ON TOBACCO CELL SUSPENSION BY-2 EFFECT OF CADMIUM ON TOBACCO CELL SUSPENSION BY-2 Štěpán Z., Klemš M., Zítka O., Havel L. Department of Plant Biology, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic

Více

Otázky a odpovědi. TIENS Kardi krillový olej s rakytníkem řešetlákovým

Otázky a odpovědi. TIENS Kardi krillový olej s rakytníkem řešetlákovým TIENS Kardi krillový olej s rakytníkem řešetlákovým 1. Co je TIENS Kardi krillový olej s rakytníkem řešetlákovým? TIENS Kardi je výživový doplněk obsahující olej z antarktického krillu, olej z plodů rakytníku

Více

Regulace růstu a vývoje

Regulace růstu a vývoje Regulace růstu a vývoje REGULACE RŮSTU A VÝVOJE ROSTLINNÉHO ORGANISMU a) Regulace na vnitrobuněčné úrovni závislost na rychlosti a kvalitě metabolických drah, resp. enzymů a genů = regulace aktivity enzymů

Více

Vodní režim rostlin. Regulace výměny plynů otevřeností. průduchů. Stomatální limitace rychlosti transpirace a rychlosti. Efektivita využití vody

Vodní režim rostlin. Regulace výměny plynů otevřeností. průduchů. Stomatální limitace rychlosti transpirace a rychlosti. Efektivita využití vody Vodní režim rostlin Regulace výměny plynů otevřeností průduchů Stomatální limitace rychlosti transpirace a rychlosti fotosyntézy Efektivita využití vody Globální změna klimatu Antitranspiranty Regulace

Více

Závěrečná zpráva projektu specifického výzkumu Zakázka č. 0447/2107

Závěrečná zpráva projektu specifického výzkumu Zakázka č. 0447/2107 Závěrečná zpráva projektu specifického výzkumu Zakázka č. 0447/2107 Název projektu: Vliv stresu na fyziologické parametry a kolísání endogenních látek u rodu Triticum Odpovědný řešitel: Katedra biologie

Více

Nové směry v rostlinných biotechnologiích

Nové směry v rostlinných biotechnologiích Nové směry v rostlinných biotechnologiích Tomáš Moravec Ústav Experimentální Botaniky AV ČR Praha 2015-05-07 Praha Prvních 30. let transgenních rostlin * V roce 2014 byly GM plodiny pěstovány na ploše

Více

Fotosyntéza (2/34) = fotosyntetická asimilace

Fotosyntéza (2/34) = fotosyntetická asimilace Fotosyntéza (2/34) = fotosyntetická asimilace FOTO - protože k fotosyntéze je třeba fotonů Jedná se tedy o zachycování sluneční energie a přeměnu jednoduchých anorganických látek (CO 2 a H 2 O) na složitější

Více

Metodika fotoautotrofní kultivace rostlin za podmínek in vitro. Dostupný z

Metodika fotoautotrofní kultivace rostlin za podmínek in vitro. Dostupný z Ševčíková, Hana Dostupný z http://www.nusl.cz/ntk/nusl-263431 Dílo je chráněno podle autorského zákona č. 121/2000 Sb. Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL). Datum stažení:

Více

BRASSINOSTEROIDS AND WATER STRESS BRASSINOSTEROIDY A VODNÍ STRES

BRASSINOSTEROIDS AND WATER STRESS BRASSINOSTEROIDY A VODNÍ STRES BRASSINOSTEROIDS AND WATER STRESS BRASSINOSTEROIDY A VODNÍ STRES Vlašánková E.*, Kohout L.**, Klemš M.*, Hradilík J.* *Ústav botaniky a fyziologie rostlin, Agronomická fakulta, Mendelova zemědělská a lesnická

Více

Stanovení biomarkerů oxidativního stresu u kapra obecného (Cyprinus carpio L.) po dlouhodobém působení simazinu Hlavní řešitel Ing.

Stanovení biomarkerů oxidativního stresu u kapra obecného (Cyprinus carpio L.) po dlouhodobém působení simazinu Hlavní řešitel Ing. Stanovení biomarkerů oxidativního stresu u kapra obecného (Cyprinus carpio L.) po dlouhodobém působení simazinu Hlavní řešitel Ing. Alžběta Stará Vedoucí projektu dr. hab. Ing. Josef Velíšek, Ph.D. 1 Úvod

Více

Vodní režim rostlin. Úvod Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, lišejníky, kapradiny, vyšší rostliny) a homoiohydrické.

Vodní režim rostlin. Úvod Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, lišejníky, kapradiny, vyšší rostliny) a homoiohydrické. Vodní režim rostlin Úvod Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, lišejníky, kapradiny, vyšší rostliny) a homoiohydrické. Obsah vody, RWC, vodní potenciál a jeho komponenty: charakteristika,

Více

Ekosystém. tok energie toky prvků biogeochemické cykly

Ekosystém. tok energie toky prvků biogeochemické cykly Ekosystém tok energie toky prvků biogeochemické cykly Ekosystém se sestává z abiotického prostředí a biotické složky (společenstva) a jejich vzájemných interakcí. Ekosystém si geograficky můžeme definovat

Více

Název: POZOROVÁNÍ PLASTIDŮ,VAKUOL, BUNĚČNÉ STĚNY Autor: Paed.Dr.Ludmila Pipková

Název: POZOROVÁNÍ PLASTIDŮ,VAKUOL, BUNĚČNÉ STĚNY Autor: Paed.Dr.Ludmila Pipková Název: POZOROVÁNÍ PLASTIDŮ,VAKUOL, BUNĚČNÉ STĚNY Autor: Paed.Dr.Ludmila Pipková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět: biologie Mezipředmětové vztahy: ekologie Ročník: 2.a 3.

Více

Autor: Katka Téma: fyziologie (fotosyntéza) Ročník: 1.

Autor: Katka  Téma: fyziologie (fotosyntéza) Ročník: 1. Fyziologie Fotosyntéza Celým názvem: fotosyntetická asimilace - vznikla při ohrožení, že již nebudou anorg. l. rostliny začaly dělat fotosyntézu v atmosféře vzrostl počet O 2 = 1. energetická krize - nejdůležitější

Více

14. Fyziologie rostlin - fotosyntéza, respirace

14. Fyziologie rostlin - fotosyntéza, respirace 14. Fyziologie rostlin - fotosyntéza, respirace Metabolismus -přeměna látek a energií (informací) -procesy: anabolický katabolický autotrofie Anabolismus heterotrofie Autotrofní organismy 1. Chemoautotrofy

Více

sekundy Femtosekundová spektroskopie, aneb

sekundy Femtosekundová spektroskopie, aneb Femtosekundová spektroskopie, aneb co všechno se může stát za biliontinu sekundy Tomáš Polívka Laboratoř optické spektroskopie Časový vývoj Časové rozlišení ( ) = interval mezi dvěma následujícími obrázky

Více

PSI (Photon Systems Instruments), spol.s.r.o.

PSI (Photon Systems Instruments), spol.s.r.o. PSI (Photon Systems Instruments), spol.s.r.o. Drásov EXKURZE STUDENTŮ PŘÍRODOVĚDECKÉ FAKULTY MASARYKOVY UNIVERZITY V PSI, Listopad 2014 PŘEDSTAVENÍ SPOLEČNOSTI Společnost PSI již 20 let vyvíjí a vyrábí

Více

Vodní režim rostlin. Mechanizmy pohybu průduchů. Obecné charakteristiky. Reakce průduchů na vlhkost vzduchu. Reakce průduchů na vodní stres

Vodní režim rostlin. Mechanizmy pohybu průduchů. Obecné charakteristiky. Reakce průduchů na vlhkost vzduchu. Reakce průduchů na vodní stres Vodní režim rostlin Mechanizmy pohybu průduchů Obecné charakteristiky Reakce průduchů na světlo Reakce průduchů na vodní stres Reakce průduchů na vlhkost vzduchu Reakce průduchů na CO 2 Reakce průduchů

Více

Bi8240 GENETIKA ROSTLIN

Bi8240 GENETIKA ROSTLIN Bi8240 GENETIKA ROSTLIN Prezentace 09 Genetické modifikace pro zlepšení výţivy člověka doc. RNDr. Jana Řepková, CSc. repkova@sci.muni.cz Nový trend zlepšení výţivy lidí Výţiva a zdraví člověka Prevence

Více

Závěrečná práce studentského projektu Fotosyntéza - Rostlinná barviva

Závěrečná práce studentského projektu Fotosyntéza - Rostlinná barviva Gymnázium Jana Nerudy Závěrečná práce studentského projektu Fotosyntéza - Rostlinná barviva Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti Pod vedením vedoucích práce Mgr. Jiřího Vozky,

Více

Minulost, současnost a budoucnost práce v embryologické laboratoři RNDr. Kateřina Wagnerová, Mgr. Pavlína Motlová, MUDr.

Minulost, současnost a budoucnost práce v embryologické laboratoři RNDr. Kateřina Wagnerová, Mgr. Pavlína Motlová, MUDr. Minulost, současnost a budoucnost práce v embryologické laboratoři RNDr. Kateřina Wagnerová, Mgr. Pavlína Motlová, MUDr. Pavel Texl Sanatorium Helios, Brno Úvod Obor asistované reprodukce prodělal od svého

Více

Aplikované vědy. Hraniční obory o ţivotě

Aplikované vědy. Hraniční obory o ţivotě BIOLOGICKÉ VĚDY Podle zkoumaného organismu Mikrobiologie (viry, bakterie) Mykologie (houby) Botanika (rostliny) Zoologie (zvířata) Antropologie (člověk) Hydrobiologie (vodní organismy) Pedologie (půda)

Více

Téma pro doktorský studijní program zahájení v roce 2016/2017

Téma pro doktorský studijní program zahájení v roce 2016/2017 zahájení v roce 2016/2017 Fytoindikátory horské travinné vegetace: východní Krkonoše Phytoindicators of mountain grasslands: east Giant Mountains Cílem výzkumu je analyzovat a zhodnotit indikátory vegetace

Více

Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje.

Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje. KOLOBĚH LÁTEK A TOK ENERGIE Látky jako uhlík, dusík, kyslík a voda v ekosystémech kolují. Energii se do ekosystémů dostává z vnějšku a opět z něj vystupuje. Základní podmínky pro život na Zemi. Světlo

Více

Česká republika. Obrázek 1: Přehled o vývoji počtů nově přijímaných žáků v ČR. 1. ročníku SŠ. 1

Česká republika. Obrázek 1: Přehled o vývoji počtů nově přijímaných žáků v ČR. 1. ročníku SŠ. 1 Česká republika Přehled o nově přijímaných žácích Celkový počet žáků nově přijatých do denního studia na středních a vyšších odborných školách ve školním roce 2011/2012 činil 124 719, z toho do studia

Více

Analýza kofeinu v kávě pomocí kapalinové chromatografie

Analýza kofeinu v kávě pomocí kapalinové chromatografie Analýza kofeinu v kávě pomocí kapalinové chromatografie Kofein (obr.1) se jako přírodní alkaloid vyskytuje v mnoha rostlinách (např. fazolích, kakaových bobech, černém čaji apod.) avšak nejvíce je spojován

Více

VLIV SPEKTRÁLNÍHO SLOŽENÍ FOTOSYNTETICKY AKTIVNÍ RADIACE NA INDUKCI FOTOSYNTÉZY TERMOOPTICKÝ JEV

VLIV SPEKTRÁLNÍHO SLOŽENÍ FOTOSYNTETICKY AKTIVNÍ RADIACE NA INDUKCI FOTOSYNTÉZY TERMOOPTICKÝ JEV VLIV SPEKTRÁLNÍHO SLOŽENÍ FOTOSYNTETICKY AKTIVNÍ RADIACE NA INDUKCI FOTOSYNTÉZY TERMOOPTICKÝ JEV 1 Vladimír Špunda, 2 Otmar Urban, 1 Martin Navrátil 1 Přírodovědecká fakulta, Ostravská univerzita v Ostravě,

Více

KBF/FOSY Fotosyntéza a stres LRR/FOSY Fotosyntéza

KBF/FOSY Fotosyntéza a stres LRR/FOSY Fotosyntéza KBF/FOSY Fotosyntéza a stres LRR/FOSY Fotosyntéza Prof. RNDr. Petr Ilík, Ph.D. RNDr. Martina Špundová, Ph.D. KBF a CRH, PřF UP FS biol. proces uchovávající en. slunce život na Zemi - závislý na energii

Více

Fotosyntéza. Ondřej Prášil

Fotosyntéza. Ondřej Prášil Fotosyntéza 5 Ondřej Prášil prasil@alga.cz 384-340430 Karotenoidy - polyisopreny Pomocné pigmenty, strukturní funkce a disipace energie Tetraterpeny (40 C) vytvořené z 8 isoprenových jednotek, délka 30

Více

Vylepšování fotosyntézy

Vylepšování fotosyntézy Vylepšování fotosyntézy Využití fotosyntézy potraviny energie (paliva) Obojího bude podle predikcí potřebovat lidstvo čím dál tím víc. Energetické využití fotosyntézy potřeba nahrazení fosilních paliv

Více

Systém monitorování zdravotního stavu obyvatelstva ve vztahu k životnímu prostředí

Systém monitorování zdravotního stavu obyvatelstva ve vztahu k životnímu prostředí Systém monitorování zdravotního stavu obyvatelstva ve vztahu k životnímu prostředí Subsystém 6 Zdravotní stav Výsledky studie Zdraví dětí 2016 Tělesná hmotnost a vadné držení těla Úvod Prevalenční dotazníkové

Více

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D. Fyziologie buňky RNDr. Zdeňka Chocholoušková, Ph.D. Přeměna látek v buňce = metabolismus Výměna látek mezi buňkou a prostředím Buňka = otevřený systém probíhá výměna látek i energií s prostředím Některé

Více

ROLE ETYLENU PŘI KULTIVACI ČESNEKU V PODMÍNKÁCH IN VITRO VITRO

ROLE ETYLENU PŘI KULTIVACI ČESNEKU V PODMÍNKÁCH IN VITRO VITRO ROLE ETYLENU PŘI KULTIVACI ČESNEKU V PODMÍNKÁCH IN VITRO ROLE ETYLENU PŘI KULTIVACI ČESNEKU V PODMÍNKÁCH IN VITRO Fišerová, H., 1 Spálovský, M., 1 Staňková, Z., 1 Kozák, V., 1 Křižan, B., 2 Havel, L. 1

Více

COMPARISON OF PHOTOSYNTHETIC ACTIVITY IN CULTURE AND WEED BEETS POROVNÁNÍ FOTOSYNTETICKÉ AKTIVITY PLEVELNÝCH A KULTURNÍCH ŘEP

COMPARISON OF PHOTOSYNTHETIC ACTIVITY IN CULTURE AND WEED BEETS POROVNÁNÍ FOTOSYNTETICKÉ AKTIVITY PLEVELNÝCH A KULTURNÍCH ŘEP COMPARISON OF PHOTOSYNTHETIC ACTIVITY IN CULTURE AND WEED BEETS POROVNÁNÍ FOTOSYNTETICKÉ AKTIVITY PLEVELNÝCH A KULTURNÍCH ŘEP Hnilička R., Pulkrábek J. Department of Crop Production, Faculty of Agrobiology,

Více

Sekvenční injekční analýza laboratoř na ventilu (SIA-LOV) (Stanovení obsahu heparinu v injekčním roztoku)

Sekvenční injekční analýza laboratoř na ventilu (SIA-LOV) (Stanovení obsahu heparinu v injekčním roztoku) Sekvenční injekční analýza laboratoř na ventilu (SIA-LOV) (Stanovení obsahu heparinu v injekčním roztoku) Teorie: Sekvenční injekční analýza (SIA) je další technikou průtokové analýzy, která umožňuje snadnou

Více

Struktura bílkovin očima elektronové mikroskopie

Struktura bílkovin očima elektronové mikroskopie Struktura bílkovin očima elektronové mikroskopie Roman Kouřil Katedra Biofyziky (http://biofyzika.upol.cz) Centrum regionu Haná pro biotechnologický a zemědělský výzkum Přírodovědecká fakulta, Univerzita

Více

Laboratoř růstových regulátorů Miroslav Strnad. ové kultury. Olomouc. Univerzita Palackého & Ústav experimentální botaniky AV CR

Laboratoř růstových regulátorů Miroslav Strnad. ové kultury. Olomouc. Univerzita Palackého & Ústav experimentální botaniky AV CR Laboratoř růstových regulátorů Miroslav Strnad Tkáňov ové kultury Olomouc Univerzita Palackého & Ústav experimentální botaniky AV CR DEFINICE - růst a vývoj rostlinných buněk, pletiv a orgánů lze účinně

Více

Měření množství dopadající energie světla. Fotoinhibice, fotopoškození a fotoprotekční mechanismy

Měření množství dopadající energie světla. Fotoinhibice, fotopoškození a fotoprotekční mechanismy Fotoinhibice, fotopoškození a fotoprotekční mechanismy Měření množství dopadající energie světla Ozářenost: W.m -2 (= J.s -1.m -2 ) (osvětlenost: ln.m -2 = lux)? Fotonová (kvantová) ozářenost: mol.s -1.m

Více

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán

Více

TVORBA VÝNOSŮ PŠENICE OZIMÉ A SILÁŽNÍ KUKUŘICE PŘI RŮZNÉM ZPRACOVÁNÍ PŮDY Forming of winter wheat and silage maize yields by different soil tillage

TVORBA VÝNOSŮ PŠENICE OZIMÉ A SILÁŽNÍ KUKUŘICE PŘI RŮZNÉM ZPRACOVÁNÍ PŮDY Forming of winter wheat and silage maize yields by different soil tillage TVORBA VÝNOSŮ PŠENICE OZIMÉ A SILÁŽNÍ KUKUŘICE PŘI RŮZNÉM ZPRACOVÁNÍ PŮDY Forming of winter wheat and silage maize yields by different soil tillage Badalíková B., Bartlová J. Zemědělský výzkum, spol. s

Více

Vzdělávací materiál. vytvořený v projektu OP VK. Anotace. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu:

Vzdělávací materiál. vytvořený v projektu OP VK. Anotace. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: Vzdělávací materiál vytvořený v projektu P VK Název školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková

FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74 Katedra experimentální biologie rostlin, Z. Lhotáková proteinové komplexy thylakoidní membrány - jsou kódovány jak plastidovými tak jadernými geny 1905

Více

Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké

Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké Fotosyntéza Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké rostliny. Zelené rostliny patří mezi autotrofy

Více

Česká republika. Obrázek 1: Přehled o vývoji počtů nově přijímaných žáků v ČR. ročníku SŠ. 1

Česká republika. Obrázek 1: Přehled o vývoji počtů nově přijímaných žáků v ČR. ročníku SŠ. 1 Česká republika Přehled o nově přijímaných žácích Celkový počet žáků nově přijatých do denního studia na středních a vyšších odborných školách ve školním roce 2010/2011 činil 133 140, z toho do studia

Více

Vzestup vodní hladiny za pomoci svíčky

Vzestup vodní hladiny za pomoci svíčky Středoškolská technika 2013 Setkání a prezentace prací středoškolských studentů na ČVUT Vzestup vodní hladiny za pomoci svíčky Pham Nhat Thanh Gymnázium Cheb Nerudova 7, 350 02 Cheb Úvod Naším úkolem je

Více

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku 5. Příjem, asimilace a fyziologické dopady anorganického dusíku Zdroje dusíku dostupné v půdě: Amonné ionty + Dusičnany = největší zdroj dusíku v půdě Organický dusík (aminokyseliny, aminy, ureidy) zpracování

Více

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík,

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík, DÝCHÁNÍ ROSTLIN systém postupných oxidoredukčních reakcí v živých buňkách, při kterých se z organických látek uvolňuje energie, která je zachycena jako krátkodobá energetická zásoba v ATP, umožňují enzymatické

Více

Glutation jako marker fotoxidativního stresu u rostlin vystavených různým intenzitám záření. In-vitro studie.

Glutation jako marker fotoxidativního stresu u rostlin vystavených různým intenzitám záření. In-vitro studie. Glutation jako marker fotoxidativního stresu u rostlin vystavených různým intenzitám záření. In-vitro studie. Dominik Chmelík, Miloš Barták, Jaroslava Dubová, Julie Rotkovská Ústav experimentální biologie,

Více

Dokumentace projektu. Fotoluminiscence. Autorky: Kateřina Limburská, Tereza Fleková Vedoucí projektu: Zdeněk Polák. 21. 7. 29. 7.

Dokumentace projektu. Fotoluminiscence. Autorky: Kateřina Limburská, Tereza Fleková Vedoucí projektu: Zdeněk Polák. 21. 7. 29. 7. Dokumentace projektu Fotoluminiscence Autorky: Kateřina Limburská, Tereza Fleková Vedoucí projektu: Zdeněk Polák 21. 7. 29. 7. 2014 Plasnice Úvod Lidé jsou fascinování světlem už od pravěku. Tehdy bylo

Více

FYZIKA VE FYZIOLOGII ROSTLIN

FYZIKA VE FYZIOLOGII ROSTLIN FYZIKA VE FYZIOLOGII ROSTLIN Martina Špundová Katedra biofyziky PřF UP Olomouc TRANSPORT VODY V ROSTLINÁCH 1. chemický a vodní potenciál 2. transport vody v rostlinách 3. metody a přístroje pro stanovení

Více

VYUŽITÍ BEZKONTAKTNÍ VODIVOSTNÍ DETEKCE PRO HPLC SEPARACI POLYKARBOXYLÁTOVÝCH DERIVÁTŮ CYKLENU. Anna Hamplová

VYUŽITÍ BEZKONTAKTNÍ VODIVOSTNÍ DETEKCE PRO HPLC SEPARACI POLYKARBOXYLÁTOVÝCH DERIVÁTŮ CYKLENU. Anna Hamplová VYUŽITÍ BEZKOTAKTÍ VODIVOSTÍ DETEKCE PRO HPLC SEPARACI POLYKARBOXYLÁTOVÝCH DERIVÁTŮ CYKLEU Anna Hamplová Univerzita Karlova v Praze, Přírodovědecká fakulta, Katedra analytické chemie Albertov 6, 128 43

Více

OBSAH ODOLNOST ENERGOSÁDRY PROTI ZMRAZOVACÍM CYKLŮM THE FROST RESISTANCE OF FLUE GAS DESULFURIZATION (FGD) GYPSUM

OBSAH ODOLNOST ENERGOSÁDRY PROTI ZMRAZOVACÍM CYKLŮM THE FROST RESISTANCE OF FLUE GAS DESULFURIZATION (FGD) GYPSUM ODOLNOST ENERGOSÁDRY PROTI ZMRAZOVACÍM CYKLŮM THE FROST RESISTANCE OF FLUE GAS DESULFURIZATION (FGD) GYPSUM Pavla Rovnaníková, Jitka Meitnerová Stavební fakulta VUT v Brně Abstract: The properties of flue

Více

Co vás dnes čeká: Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková

Co vás dnes čeká: Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková Co vás dnes čeká: Přednáška 2: Specifika rostlinné buňky trocha opakování vakuola buněčná stěna plastidy Fotosyntetické struktury plastidy struktura, typy fotosyntetické pigmenty a jejich lokalizace Sluneční

Více

9 Ověření agrochemických účinků kalů z výroby bioplynu (tekuté složky digestátu) pro aplikaci na půdu

9 Ověření agrochemických účinků kalů z výroby bioplynu (tekuté složky digestátu) pro aplikaci na půdu 9 Ověření agrochemických účinků kalů z výroby bioplynu (tekuté složky digestátu) pro aplikaci na půdu V letech 2005 a 2006 byly získány pro VÚRV Praha od spoluřešitelské organizace VÚZT Praha vzorky kalů

Více

Meteorologické faktory transpirace

Meteorologické faktory transpirace Člověk ve svém pozemském a kosmickém prostředí Zlíč 17. - 19. květen 2016 Meteorologické faktory transpirace Ing. Jana Klimešová Ing. Tomáš Středa, Ph.D. Mendelova univerzita v Brně Vodní provoz polních

Více

Prof. RNDr. Zdeněk Opatrný, CSc., nar. 1941

Prof. RNDr. Zdeněk Opatrný, CSc., nar. 1941 Seznam profesorů a docentů Katedry fyziologie rostlin PřF UK v Praze Prof. RNDr. Zdeněk Opatrný, CSc., nar. 1941 RNDr. 1972, PřF UK; CSc. 1972, ÚEB ČSAV Praha Doc.1999, PřF UK v Praze Prof. 2002, PřF UK

Více

Číslo a název projektu Číslo a název šablony

Číslo a název projektu Číslo a název šablony Číslo a název projektu Číslo a název šablony DUM číslo a název CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT SSOS_ZE_1.05

Více

Koncem roku 2012 měly územní samosprávy na svých bankovních účtech 112,3 mld. Kč, což je o 15 mld. více než v roce 2011.

Koncem roku 2012 měly územní samosprávy na svých bankovních účtech 112,3 mld. Kč, což je o 15 mld. více než v roce 2011. K hospodaření územních samospráv v roce 2012 Rozpočtové hospodaření územních samospráv, tedy krajů, obcí, dobrovolných svazků obcí a regionálních rad regionů soudržnosti, skončilo v roce 2012 přebytkem

Více

Spotřeba zdravotnických služeb v letech 2007 2010. Consumption of Health Services in the years 2007 2010

Spotřeba zdravotnických služeb v letech 2007 2010. Consumption of Health Services in the years 2007 2010 Aktuální informace Ústavu zdravotnických informací a statistiky České republiky Praha 7. 9. 2011 51 Spotřeba zdravotnických služeb v letech 2007 2010 Consumption of Health Services in the years 2007 2010

Více

Fotosyntéza. Ondřej Prášil

Fotosyntéza. Ondřej Prášil Fotosyntéza 2 Ondřej Prášil prasil@alga.cz 384-340430 Obsah přednášky membrány a organely světlo termodynamika historie Fotosyntetické membrány Electron tomography Cells contain ~100 chlorosomes appressed

Více

THE PROBLEMS OF PROPAGATION OF PEACH ROOTSTOCKS (PRUNUS PERSICA L.) IN IN VITRO CONDITIONS

THE PROBLEMS OF PROPAGATION OF PEACH ROOTSTOCKS (PRUNUS PERSICA L.) IN IN VITRO CONDITIONS THE PROBLEMS OF PROPAGATION OF PEACH ROOTSTOCKS (PRUNUS PERSICA L.) IN IN VITRO CONDITIONS PROBLEMATIKA MNOŽENÍ BROSKVOŇOVÝCH PODNOŽÍ (PRUNUS PERSICA L.) V PODMÍNKÁCH IN VITRO Alsalihy A. W., Křižan B.,

Více

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308 Buňka Autor: Mgr. Jitka Mašková Datum: 27. 10. 2012 Gymnázium, Třeboň, Na Sadech 308 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0702 VY_32_INOVACE_BIO.prima.02_buňka Škola Gymnázium, Třeboň, Na Sadech

Více

1 Obyvatelstvo podle věku a rodinného stavu

1 Obyvatelstvo podle věku a rodinného stavu 1 Obyvatelstvo podle věku a rodinného stavu V průběhu roku 216 se počet obyvatel České republiky zvýšil o 25, tisíce osob. Přibylo zejména seniorů, ale také dětí mladších 15 let. Nejvíce obyvatel se řadilo

Více

1 Obyvatelstvo podle věku a rodinného stavu

1 Obyvatelstvo podle věku a rodinného stavu 1 Obyvatelstvo podle věku a rodinného stavu Počet obyvatel České republiky se v průběhu roku 214, po úbytku v předchozím roce, opět zvýšil. Ve věkovém složení přibylo dětí a zejména seniorů. Populace dále

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fotosyntéza Fotosyntéza pohlcení energie slunečního záření a její přeměna na chemickou energii rovnováha fotosyntetisujících a heterotrofních

Více

Česká republika. Obrázek 1: Přehled o vývoji počtů nově přijímaných žáků v ČR

Česká republika. Obrázek 1: Přehled o vývoji počtů nově přijímaných žáků v ČR Česká republika Přehled o nově přijímaných žácích Celkový počet žáků nově přijatých do denního studia na středních a vyšších odborných školách ve školním roce 2015/2016 činil 112 756, z toho do studia

Více

Salaš, P. (ed): "Rostliny v podmínkách měnícího se klimatu". Lednice 20.- 21. 10. 2011, Úroda, vědecká příloha, 2011, s. 203 211, ISSN 0139-6013

Salaš, P. (ed): Rostliny v podmínkách měnícího se klimatu. Lednice 20.- 21. 10. 2011, Úroda, vědecká příloha, 2011, s. 203 211, ISSN 0139-6013 VLIV EXOGENNÍ APLIKACE FYTOHORMONÁLNÍCH LÁTEK NA FYZIOLOGICKÉ PARAMETRY DŘEVIN V KONTEJNERECH Influence of exogenously aplication phytohormonal substances on physiological parameters woody plants in pots

Více

4. Eukarya. - plastidy, mitochondrie, cytoskelet, vakuola

4. Eukarya. - plastidy, mitochondrie, cytoskelet, vakuola 4. Eukarya - plastidy, mitochondrie, cytoskelet, vakuola Plastidy odděleny dvojitou membránou (u vyšších rostlin) - bezbarvé leukoplasty (heterotrofní pletiva) funkce: zásobní; proteinoplasty, - barevné

Více

Kyslík a vodík. Bezbarvý plyn, bez chuti a zápachu, asi 14krát lehčí než vzduch. Běžně tvoří molekuly H2. hydridy (např.

Kyslík a vodík. Bezbarvý plyn, bez chuti a zápachu, asi 14krát lehčí než vzduch. Běžně tvoří molekuly H2. hydridy (např. 1 Kyslík a vodík Kyslík Vlastnosti Bezbarvý reaktivní plyn, bez zápachu, nejčastěji tvoří molekuly O2. Kapalný kyslík je modrý. S jinými prvky tvoří sloučeniny oxidy (např. CO, CO2, SO2...) Výskyt Nejrozšířenější

Více

Tématické okruhy pro státní závěrečné zkoušky

Tématické okruhy pro státní závěrečné zkoušky Tématické okruhy pro státní závěrečné zkoušky Obor Povinný okruh Volitelný okruh (jeden ze dvou) Forenzní biologická Biochemie, pathobiochemie a Toxikologie a bioterorismus analýza genové inženýrství Kriminalistické

Více

Průduchy regulace příjmu CO 2

Průduchy regulace příjmu CO 2 Průduchy regulace příjmu CO 2 Průduchy: regulace transpiračního proudu / výměny plynů transpiration photosynthesis eartamerica.com Průduchy svěrací buňky - zavírání při ztrátě vody (poklesu turgoru) -

Více

Kořenový systém plodin jako adaptační opatření na sucho

Kořenový systém plodin jako adaptační opatření na sucho Sucho a degradace půd v České republice - 2014 Brno 7. 10. 2014 Kořenový systém plodin jako adaptační opatření na sucho Vodní provoz polních plodin Ing. Jana Klimešová Ing. Tomáš Středa, Ph.D. Mendelova

Více

Vodní režim rostlin. Obsah vody, RWC, vodní potenciál a jeho komponenty: Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy,

Vodní režim rostlin. Obsah vody, RWC, vodní potenciál a jeho komponenty: Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, Vodní režim rostlin Úvod Klima, mikroklima Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, lišejníky, kapradiny, vyšší rostliny) a homoiohydrické. Obsah vody, RWC, vodní potenciál a jeho

Více

Molekulární biotechnologie č.12. Využití poznatků molekulární biotechnologie. Transgenní rostliny.

Molekulární biotechnologie č.12. Využití poznatků molekulární biotechnologie. Transgenní rostliny. Molekulární biotechnologie č.12 Využití poznatků molekulární biotechnologie. Transgenní rostliny. Transgenní organismy Transgenní organismus: Organismus, jehož genom byl geneticky modifikován cizorodou

Více

Transformace ptdna tabáku genem E7/GUS a eliminace selekčního genu za využití homologní rekombinace

Transformace ptdna tabáku genem E7/GUS a eliminace selekčního genu za využití homologní rekombinace Transformace ptdna tabáku fúzním genem E7/GUS a eliminace selekčního genu za využití homologní rekombinace Jiřich ich BřízaB 1,, Josef Vlasák 1, Štěpán n Ryba, Viera Ludvíkov ková 3, Hana Niedermeierová

Více

Biosyntéza sacharidů 1

Biosyntéza sacharidů 1 Biosyntéza sacharidů 1 S a c h a r id y p o tr a v y (š k r o b, g ly k o g e n, sa c h a r o sa, a j.) R e z e r v n í p o ly sa c h a r id y J in é m o n o sa c h a r id y Trávení (amylásy - sliny, pankreas)

Více

Fyziologie rostlin - maturitní otázka z biologie (3)

Fyziologie rostlin - maturitní otázka z biologie (3) Otázka: Fyziologie rostlin Předmět: Biologie Přidal(a): Isabelllka FOTOSYNTÉZA A DÝCHANÍ, VODNÍ REŽIM ROSTLINY, POHYBY ROSTLIN, VÝŽIVA ROSTLIN (BIOGENNÍ PRVKY, AUTOTROFIE, HETEROTROFIE) A)VODNÍ REŽIM VODA

Více