Fyziologie rostlin. 9. Fotosyntéza část 1. Primární fáze fotosyntézy. Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014
|
|
- Štěpánka Jana Blažková
- před 9 lety
- Počet zobrazení:
Transkript
1 Fyziologie rostlin 9. Fotosyntéza část 1. Primární fáze fotosyntézy Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014
2 Fotosyntéza 1. část - úvod - chloroplasty - sluneční záření - fotosyntetické pigmenty a světlosběrné antény - části podílející se na světelné části f.: reakční centra fotosystémy cytochrom b6f ATP syntetáza - primární část fotosyntézy
3 Fotosyntéza 1. část - úvod - chloroplasty - sluneční záření - fotosyntetické pigmenty a světlosběrné antény - části podílející se na světelné části f.: reakční centra fotosystémy cytochrom b6f ATP syntetáza - primární část fotosyntézy
4 Fotosyntéza - proces, kterým je získávána chemická energie (cukrů) ze světelné energie (sluneční záření) - kromě bakterií (bakteriochlorofyl + sinice) umí fotosyntetizovat řasy a rostliny - u rostlin fotosyntéza v chloroplastech zkráceně bývá vyjadřována: 6 CO H 2 O C 6 H 12 O O H 2 O proces ale mnohem složitější máme na to 3 přednášky John Priestly 1771
5 Fotosyntéza - v zásadě 4 fáze: - absorbce fotonu a přenos ve světlosběrných anténách - rozdělení nábojů a přenos elektronů v reakčních centrech membrána thylakoidu - stabilizace energie v sekundárních procesech membrána thylakoidu - syntéza a export stabilních produktů stroma membrána thylakoidu
6 Fotosyntéza sekundární (temnostní) část stroma primární (světelná) část membr.
7 Fotosyntéza 1. část - úvod - chloroplasty - sluneční záření - fotosyntetické pigmenty a světlosběrné antény - části podílející se na světelné části f.: reakční centra fotosystémy cytochrom b6f ATP syntetáza - primární část fotosyntézy
8 Chloroplasty místo činu - centrum fotosyntézy - různý počet (zel. řasy často jen 1, v listu na buňku, čili až 500 tis.mm -2 ) - zpravidla umístěny hned u stěny b. přísun CO 2, ale mohou se přemisťovat v závislosti na ozáření - 2 membrány vnější hladká, nepropojená s vnitřní dobře propustná s poriny nespecifické proteinové póry (do 10 kda) vnitřní méně propustná (transportéry), chudá na fosfolipidy, bohatá na galaktolipidy - uvnitř stroma bílkovinná hmota a v něm: thylakoidy systém měchýřků (vznik z vnitřní membr.), část ve sloupečcích - grana
9
10 Fotosyntéza 1. část
11 Chloroplasty - na thylakoidu jsou umístěny světlosběrné antény a fotosystémy s fotosynteticky aktivními barvivy - dále zde ATPáza a systém hydrolýzy vody - světelná část fotosyntézy probíhá na membránách a interthylakoidním prostoru (lumen) - temnostní část fotosyntézy probíhá ve stromatu, kde je také Rubisco - ve stromatu dále uložena plastidová DNA a ribozómy
12 Thylakoid
13 Fotosyntéza 1. část - úvod - chloroplasty - sluneční záření - fotosyntetické pigmenty a světlosběrné antény - části podílející se na světelné části f.: reakční centra fotosystémy cytochrom b6f ATP syntetáza - primární část fotosyntézy
14 Sluneční záření - 99 % slunečního záření nm - viditelné spektrum 380 až 750 nm - fotosynteticky aktivní záření (PhAR) nm
15 Sluneční záření - solární konstanta: W/m 2 - ca 45 % z toho co dopadne na povrch je ve viditelné části spektra - ne všechno záření dopadne na povrch část se odrazí část pohltí atmosféra
16 Sluneční záření - skuteční hodnoty ozářenosti na stanovišti závisí na: - zeměpisné šířce (změny během roku) - nadmořské výšce (hl. UV) - roční a denní době - klimatu a počasí + znečištění - množství záření pro rostlinu závisí kromě výše uvedeného na zastínění dubohabřina
17 Sluneční záření energie fotonu E = h.c / λ (J) h - Planckova konstanta (6, J.s) λ vlnová délka c rychlost světla ( m/s) příklad pro 550 nm (maximální tok): E λ550 = 6, x / J (pro 1 foton) = 3, J (pro 1 foton) pro jeden mol fotonů (6, ): E λ550 = 3, x 6, = 217 kj/mol ~ca 100 g klasického jogurtu pochopitelně rostliny nedokáží využít všechnu dopadající energii účinnost fotosyntézy velmi zhruba 1 % o tom ale více v 11. přednášce
18 Fotosyntéza 1. část - úvod - chloroplasty - sluneční záření - fotosyntetické pigmenty a světlosběrné antény - části podílející se na světelné části f.: reakční centra fotosystémy cytochrom b6f ATP syntetáza - primární část fotosyntézy
19 Fotosyntetické pigmenty chlorofyly bakterie, sinice, rostliny - chemicky porfyriny s koordinačně vázaným Mg - syntéza (z velké části) společná s hemy a biliny - různé modifikace: - bakteriochlorofyl (nebudeme dále řešit) - chlorofyl a, b (c, d, e) struktura chlorofylů
20 Fotosyntetické pigmenty biliny ruduchy a sinice - váží se kovalentně na Cys biliproteinu - allofykocyanobilin - fykocyanobilin modrý - fykourobilin oranžový - fykoerytrobilin červený karotenoidy karoteny a xantofyly tetraterpenoidní sloučeniny - konjugované dvojné vazby -> barevnost - strukturní a ochranná fce - karoteny např. α-karoten, ß-karoten, lycopen - xantofyly odvozené od karetonů (O) astaxantin, lutein, violaxantin, zeaxantin ß-karoten lutein
21 Fotosyntetické pigmenty absorbční maxima
22 Fotosyntetické pigmenty foton nemusí být pohlcen (odraz, průchod) Co se děje, pohltí-li FAB foton? fluorescence - vyzáří jej zpět (červená 700 nm) -> ztrátové -více viz 11. přednáška ohřev - energie využita na ohřev molekuly -> ztrátové až nebezpečné! indukční rezonance (Förstrův přenos) - excitace je přenesena na sousední molekulu ve světlosběrné anténě nebo v reakčním centru - žádoucí fotochemická reakce - energie předána elektronu - cíl
23 LHC LHC = Light Harvesting Complex světlosběrné antény komplex fotosynteticky aktivních barviv a bílkovin cílem je zachytit foton a přenést jej do reakčního centra odlehčit deexcitaci reakčních center - ochrana před nadměrnou ozářeností Proč existují antény? Představte si, že každý z vás zde sedících stavíte dům, každý si najmete si partu dělníků, jeřáb Máte ale jen jedno auto na dovoz cihel a ještě takové, které uveze jen dvě cihly. Za takové situace bude každý z vás čekat třeba týden na další dvě cihly a přitom budete živit a platit partu stavařů a stroje kolem. V takové nějaké situaci by bylo reakční centrum PS pokud by neexistovaly antény. (T. Hájek)
24 Světlosběrné antény
25 Anténa -> reakční centrum reakční centrum
26 Anténa -> reakční c.
27 Fotosyntéza 1. část - úvod - chloroplasty - sluneční záření - fotosyntetické pigmenty a světlosběrné antény - části podílející se na světelné části f.: reakční centra fotosystémy cytochrom b6f ATP syntetáza - primární část fotosyntézy
28 Reakční centra - absorpce světla - příjem excitace ze světlosběrných antén - excitace chlorofylového dimeru - separace nábojů reakční centrum P700 - Fe-S typ (3 Fe 4 S 4 ) - nejvíce absorbuje 700 nm; - ve fotosystému I (25-120krát) - obsahuje dimer chlorofylu a - přijímá rezonančně fotony z antény nebo rovnou sám -> excitace a uvolnění e -, ten dál přenášen na Fe-S kofaktor - celé to pohromadě drží proteiny
29 Reakční centra reakční centrum P680 - chinonový typ - nejvíce absorbuje při 680 nm - součást fotosystému II - spřažen se Mn systémem, který rozkládá vodu (donor e - ) - přijímá rezonančně fotony z antény nebo rovnou sám -> excitace a uvolnění e -, ten dál přenášen na plastochinon - celé to pohromadě drží proteiny
30 Fotosystém I (PI) - objeven první (proto 1) - integrální membránový proteinový komplex (velmi složitá struktura kofaktorů) - P700 součást PI - navazuje na plastocyanin (enzym obsahující Cu) - přenáší elektron z cytochromu do P700 (doplňuje chybějící e - po excitaci) - elektron je dále přenášen na ferredoxin
31 fotosystém I
32 Fotosystém II (PII) - objeven druhý (proto 2) - integrální membránový proteinový komplex (velmi složitá struktura) - P680 součást PI - komplex rozkládající vodu a vyvíjející O 2 (OES) přidružen
33 Fotosyntéza 1. část
34 Komplex vyvíjející kyslík - přidružen k fotosystému II - rozkládá vodu 2 H 2 O -> O 2 (odpad) + 4 H + (syntéza ATP) + 4 e - (doplňuje e - do reakčních center po excitaci) - klíčová úloha: hořčíkové centrum - oxidačním činidlem P680 - ale je potřeba alespoň +820 mv toho se nedosáhne jednou excitací, ale je potřeba 4 náboj se kumuluje a kyslík se uvolní vždy, když náboj dostatečný
35 Fotosyntéza 1. část - úvod - chloroplasty - sluneční záření - fotosyntetické pigmenty a světlosběrné antény - části podílející se na světelné části f.: reakční centra fotosystémy cytochrom b6f ATP syntetáza - primární část fotosyntézy
36 Cytochrom b6f komplex - membránový protein - obsahuje kovalentně vázané hem skupiny - přechodem Fe 2+ <-> Fe 3+ může přenášet elektrony - plastochinol-plastocyanin reduktáza čili funguje jako spojka mezi PII a PI (společně s PC a PQ) při přenosu e - - podílí se na necyklickém i cyklickém přenosu elektronů - zároveň přenáší H + ze stroma do lumen thylakoidů (pohon ATP-syntetázy) hem
37 ATP syntetáza - enzym katalyzující fosforylaci ADP na ATP (oxidativní fosforylace) - poháněno pohybem H + po elektrochemickém gradientu (lumen -> stroma)
38 Mobilní přenašeči plastochinon (PQ) - chinolová molekula - zajišťuje transport H + do lumen thylakoidů a přenos e - z P680 na cytochrom b6f -> podílí se na pohonu ATP-syntetázy plastocyanin (PC) - enzym obsahující Cu - přenáší elektron z cytochromu do P700 (doplňuje chybějící e - po excitaci) PC ferredoxin - protein redukující NADP na NADPH + H + společně s ferredoxin-nad + reduktázou (doplňuje e - ) - přijímá elektron z P700 - může přenášet elektron na cyt. b6f při cyklickém přenosu oxidovaný PQ +2H +, +2e - redukovaný PQ -2H +, -2e -
39 Fotosyntéza 1. část - úvod - chloroplasty - sluneční záření - fotosyntetické pigmenty a světlosběrné antény - části podílející se na světelné části f.: reakční centra fotosystémy cytochrom b6f ATP syntetáza - primární část fotosyntézy
40 Primární (světelná) část fotosyntézy - probíhá na membráně thylakoidu - v zásadě jde o: - zachycení fotonu a využití jeho energie k excitaci - uvolněný elektron je následně přenášen membránou přenašeči ve směru rostoucího elektrochem. potenciálu - energie využita na redukci NADP na NADPH+H + - zachycení fotonů a využití na rozklad vody - vzniklý O 2 je odpadním produktem - H + je využit na redukci NADP na NADPH+H + a na syntézu ATP
41 Aktéři primární části fotosyntézy - fotosystém II včetně: -komplexu vyvíjejícího kyslík (OEC) - reakčního centra P680 - světlosběrných antén okolo - fotosystém I včetně - světlosběrných antén okolo - P700 -ferredoxin - mobilní přenašeč, protein - redukuje NADP + společně s ferredoxin-nad + reduktázou na NADPH+H + - ATP syntáza syntetizuje ATP (pumpování H + do lumen) - plastochinon mobilní přenašeč e - - komplex b6f přenašeč e -, pumpuje H + do lumen při Q cyklu a cyklickém přenosu e - - plastocyanin mobilní přenašeč e -
42 Co se děje 1. fotolýza vody 2H 2 O H + O-O H + H + H+
43 Co se děje přenos e - a H + H+ H + H + H + H + H + H + H + H + H + H + H+
44 Co se děje syntéza NADPH+H + H + NADPH+H + NADP H + H + H + H + H + H + H+
45 NADP/NADPH+H + - nikonamid adenin dinukletid fosfát - redukovaná forma s dvěma vodíky silné redukční činidlo - v sekundární fázi fotosyntézy použita na výrobu cukrů (viz příště)
46 Z schéma
47 Co se děje syntéza ATP ADP Pi ATP H + H + H + H + H + H+
48 Celé schéma
49 Cyklický přenos elektronu H + H + H+ H +
50 Cyklický přenos elektronu celkově
51 Jak to vypadá na membráně
52 A co dále? - příště budeme pokračovat sekundární (temnostní) fází - proto nezapomeňte, že v primární fázi jsme získali: - NADPH+H + - ATP tyto látky se použijí v sekundární fázi na výrobu cukrů
53 Děkuji Vám za pozornost Alena Dostálová
Fotosyntéza Světelné reakce. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni
Fotosyntéza Světelné reakce Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni Literatura Plant Physiology (L.Taiz, E.Zeiger), kapitola 7 pdf verze na požádání www.planthys.net Fotosyntéza
1- Úvod do fotosyntézy
1- Úvod do fotosyntézy Prof. RNDr. Petr Ilík, Ph.D. KBF a CRH, PřF UP FS energetická bilance na povrch Země dopadá 2/10 10 energie ze Slunce z toho 30% odraz do kosmu 47% teplo 23% odpar vody 0.02% pro
FOTOSYNTÉZA. soubor chemických reakcí,, probíhaj v rostlinách a sinicích. z CO2 a vody jediný zdroj kyslíku ku pro život na Zemi
Fotosyntéza FOTOSYNTÉZA soubor chemických reakcí,, probíhaj hajících ch v rostlinách a sinicích ch zachycení a využit ití sluneční energie k tvorbě složitých chemických sloučenin z CO2 a vody jediný zdroj
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Fotosyntéza světelná fáze. VY_32_INOVACE_Ch0214.
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
Fotosyntéza (2/34) = fotosyntetická asimilace
Fotosyntéza (2/34) = fotosyntetická asimilace FOTO - protože k fotosyntéze je třeba fotonů Jedná se tedy o zachycování sluneční energie a přeměnu jednoduchých anorganických látek (CO 2 a H 2 O) na složitější
12-Fotosyntéza FRVŠ 1647/2012
C3181 Biochemie I 12-Fotosyntéza FRVŠ 1647/2012 Petr Zbořil 10/6/2014 1 Obsah Fotosyntéza, světelná fáze. Chlorofyly, struktura fotosyntetického centra. Komponenty přenosu elektronů (cytochromy, chinony,
FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková
FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74 Katedra experimentální biologie rostlin, Z. Lhotáková proteinové komplexy thylakoidní membrány - jsou kódovány jak plastidovými tak jadernými geny 1905
FOTOSYNTÉZA. Princip, jednotlivé fáze
FOTOSYNTÉZA Princip, jednotlivé fáze FOTOSYNTETICKÉ PIGMENTY - chlorofyl a modrozelený - chlorofyl b žlutozelený + karoteny, xantofyly žluté a oranžové zbarvení CHLOROFYL a, b CHLOROFYL a - nejdůležitější
FOTOSYNTÉZA. CO 2 a vody. - soubor chemických reakcí. - probíhá v rostlinách a sinicích. - zachycení a využití světelné energie
Fotosyntéza FOTOSYNTÉZA - soubor chemických reakcí - probíhá v rostlinách a sinicích - zachycení a využití světelné energie - tvorba složitějších chemických sloučenin z CO 2 a vody - jediný zdroj kyslíku
FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN
FYZIOLOGIE ROSTLIN Fyziologie rostlin, Biologie, 2.ročník 25 Podobor botaniky, který studuje životní funkce a individuální vývoj rostlin. Využívá poznatků z dalších odvětví biologie jako je morfologie,
FOTOSYNTÉZA. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1
FOTOSYNTÉZA Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1 Fotosyntéza (z řec. phos, photós = světlo) je anabolický děj probíhající u autotrofních organismů (řasy,
Vyjádření fotosyntézy základními rovnicemi
FOTOSYNTÉZA Fotochemický proces, při němž fotosynteticky aktivní pigmenty v zelených částech rostlin přijímají energii světelného záření a přeměňují ji na energii chemickou. Ta je dále využita při biologických
Autor: Katka Téma: fyziologie (fotosyntéza) Ročník: 1.
Fyziologie Fotosyntéza Celým názvem: fotosyntetická asimilace - vznikla při ohrožení, že již nebudou anorg. l. rostliny začaly dělat fotosyntézu v atmosféře vzrostl počet O 2 = 1. energetická krize - nejdůležitější
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fotosyntéza Fotosyntéza pohlcení energie slunečního záření a její přeměna na chemickou energii rovnováha fotosyntetisujících a heterotrofních
Biosyntéza sacharidů 1
Biosyntéza sacharidů 1 S a c h a r id y p o tr a v y (š k r o b, g ly k o g e n, sa c h a r o sa, a j.) R e z e r v n í p o ly sa c h a r id y J in é m o n o sa c h a r id y Trávení (amylásy - sliny, pankreas)
Předmět: KBB/BB1P; KBB/BUBIO
Předmět: KBB/BB1P; KBB/BUBIO Energie z mitochondrií a chloroplastů Cíl přednášky: seznámit posluchače se základními principy získávání energie v mitochondriích a chloroplastech Klíčová slova: mitochondrie,
Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron).
Otázka: Fotosyntéza a biologické oxidace Předmět: Biologie Přidal(a): Ivana Černíková FOTOSYNTÉZA = fotosyntetická asimilace: Jediný proces, při němž vzniká v přírodě kyslík K přeměně jednoduchých látek
METABOLISMUS SACHARIDŮ
METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces
ení k tvorbě energeticky bohatých organických sloučenin
Fotosyntéza mimořádně významný proces, využívající energii slunečního zářenz ení k tvorbě energeticky bohatých organických sloučenin (sacharidů) z jednoduchých anorganických látek oxidu uhličitého a vody
Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa
8. Dýchací řetězec a fotosyntéza Obtížnost A Pomocí následující tabulky charakterizujte jednotlivé složky mitochondriálního dýchacího řetězce. SLOŽKA Pořadí v dýchacím řetězci 1) Molekulový typ 2) Charakteristika
Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké
Fotosyntéza Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké rostliny. Zelené rostliny patří mezi autotrofy
35.Fotosyntéza. AZ Smart Marie Poštová
35.Fotosyntéza AZ Smart Marie Poštová m.postova@gmail.com Fotosyntéza - úvod Syntéza glukosy redukcí CO 2 : chlorofyl + slun.zareni 6 CO 2 + 12H 2 O C 6 H 12 O 6 + 6O 2 + 6H 2 O (Kyslík vzniká fotolýzou
14. Fyziologie rostlin - fotosyntéza, respirace
14. Fyziologie rostlin - fotosyntéza, respirace Metabolismus -přeměna látek a energií (informací) -procesy: anabolický katabolický autotrofie Anabolismus heterotrofie Autotrofní organismy 1. Chemoautotrofy
FOTOBIOLOGICKÉ POCHODY
FOTOBIOLOGICKÉ POCHODY Základním zdrojem energie nutné pro život na Zemi je sluneční záření. Většina pochodů souvisí s přímým využitím zářivé energie pro metabolické pochody nebo pro orientaci organizmu
Fotosyntéza a Calvinův cyklus. Eva Benešová
Fotosyntéza a Calvinův cyklus Eva Benešová Fotosyntéza světlo CO 2 + H 2 O O 2 + (CH 2 O) světlo 6CO 2 + 6H 2 O 6O 2 + C 6 H 12 O 6 Opět propojení toku elektronů se syntézou ATP. Zachycení světelné energie
aneb Fluorescence chlorofylu jako indikátor stresu
Měření fotosyntézy rostlin pomocí chlorofylové fluorescence aneb Fluorescence chlorofylu jako indikátor stresu Fotosyntéza: Fotosyntéza je proces, ve kterém je světelná energie zachycena světlosběrnými
Dýchací řetězec. Viz též přednášky prof. Kodíčka (snímky a blány v levém sloupci)
Dýchací řetězec Viz též přednášky prof. Kodíčka (snímky a blány v levém sloupci) Odbourávání glukosy (včetně substrátových fosforylací) C 6 H 12 O 6 + 6O 2 -->6 CO 2 + 6H 2 O + 38 ATP Dýchací
Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113
Sluneční energie, fotovoltaický jev Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 1 Osnova přednášky Slunce jako zdroj energie Vlastnosti slunečního
Fotosyntéza. Dýchání a fotosyntéza, struktura a funkce antén a reakčních center, energetika transportu elektronů a protonů.
Fotosyntéza. Dýchání a fotosyntéza, struktura a funkce antén a reakčních center, energetika transportu elektronů a protonů. Šárka Gregorová, 2013 Poznámka: protože se tyhle dvě státnicové otázky z velké
Dýchací řetězec (Respirace)
Dýchací řetězec (Respirace) Buněčná respirace (analogie se spalovacím motorem) Odbourávání glukosy (včetně substrátových fosforylací) C 6 H 12 O 6 + 6O 2 ---------> 6 CO 2 + 6H 2 O + 38 ATP Oxidativní
Světelné reakce fotosyntézy. - fixace energie záření
Světelné reakce fotosyntézy - fixace energie záření Slunečnízáření Ultrafialové (UV, < 400 nm) Fotosynteticky aktivní radiace PAR, 400 až 700 nm (380-750nm) Infračervené (>750 nm) Sluneční záření http://www.giss.nasa.gov
FOTOSYNTÉZA Správná odpověď:
FOTOSYNTÉZA Správná odpověď: 1. Mezi asimilační barviva patří 1. chlorofyly, a) 1, 2, 4 2. antokyany b) 1, 3, 4 3. karoteny c) pouze 1 4. xantofyly d) 1, 2, 3, 4 2. V temnostní fázi fotosyntézy dochází
Co vás dnes čeká: Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková
Co vás dnes čeká: Přednáška 2: Specifika rostlinné buňky trocha opakování vakuola buněčná stěna plastidy Fotosyntetické struktury plastidy struktura, typy fotosyntetické pigmenty a jejich lokalizace Sluneční
B4, 2007/2008, I. Literák
B4, 2007/2008, I. Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují pořádek ve světě, který spěje k čím dál většímu chaosu Druhá věta termodynamiky: Ve vesmíru nebo jakékoliv izolované
Hořčík. Příjem, metabolismus, funkce, projevy nedostatku
Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán
Fotosyntéza. Ondřej Prášil
Fotosyntéza 2 Ondřej Prášil prasil@alga.cz 384-340430 Obsah přednášky membrány a organely světlo termodynamika historie Fotosyntetické membrány Electron tomography Cells contain ~100 chlorosomes appressed
FOTOSYNTÉZA ZÁKLAD ŽIVOTA NA ZEMI
FOTOSYNTÉZA ZÁKLAD ŽIVOTA NA ZEMI Pavel Peč Katedra biochemie Přírodovědecké fakulty Univerzita Palackého v Olomouci Fotosyntéza fixuje na Zemi ročně asi 1011 tun uhlíku, což reprezentuje 1018 kj energie.
ANABOLISMUS SACHARIDŮ
zdroj sacharidů: autotrofní org. produkty fotosyntézy heterotrofní org. příjem v potravě důležitou roli hraje GLUKÓZA METABOLISMUS SACHARIDŮ ANABOLISMUS SACHARIDŮ 1. FOTOSYNTÉZA autotrofní org. 2. GLUKONEOGENEZE
Fotosyntéza Ekofyziologie. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni
Fotosyntéza Ekofyziologie Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni Fyziologické a ekologické aspekty fotosyntézy vliv stresů a proměnného prostředí na fotosyntézu; mechanismy
Měření množství dopadající energie světla. Fotoinhibice, fotopoškození a fotoprotekční mechanismy
Fotoinhibice, fotopoškození a fotoprotekční mechanismy Měření množství dopadající energie světla Ozářenost: W.m -2 (= J.s -1.m -2 ) (osvětlenost: ln.m -2 = lux)? Fotonová (kvantová) ozářenost: mol.s -1.m
Energetický metabolismus rostlin
Energetický metabolismus rostlin Sylabus - témata (Fischer, Duchoslav) 1. Energie v živých systémech Formy energie a základní principy přeměny energií; změny volné energie, rovnovážná konstanta, spřažení
Eva Benešová. Dýchací řetězec
Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ
4 Přenos energie ve FS
4 Přenos energie ve FS Petr Ilík KF a CH, PřF UP Přenos energie (excitace) do C - 1-1 molekula chl je i při vysoké ozářenosti excitována max. 10x za sekundu neefektivní pro C - nténní systém s mnoha pigmenty
Energetický metabolismus rostlin. respirace
Energetický metabolismus rostlin Zdroje E: fotosyntéza respirace Variabilní využívání: - orgánové a pletivové rozdíly (kořen, prýt, pokožka, ) - změny při vývoji a diferenciaci - vliv dostupnosti vody,
sekundy Femtosekundová spektroskopie, aneb
Femtosekundová spektroskopie, aneb co všechno se může stát za biliontinu sekundy Tomáš Polívka Laboratoř optické spektroskopie Časový vývoj Časové rozlišení ( ) = interval mezi dvěma následujícími obrázky
Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN
Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0940
Fluorescence chlorofylu
Pro připomenutí Fluorescence chlorofylu Princip Fotochemické a nefotochemické zhášení fluorescence Excitace chlorofylu: plantphys.info Analýza zhášení (quenching analysis) Temnostní adaptace Kautského
Název: Fotosyntéza. Autor: Mgr. Jiří Vozka, Ph.D. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy
Název: Fotosyntéza Autor: Mgr. Jiří Vozka, Ph.D. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: chemie, biologie, matematika, fyzika Ročník: 5. Tématický celek:
BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, Biologie 8, 2017/2018, Ivan Literák
BUŇKA A ENERGIE kajman brýlový Caiman crocodilus Kostarika, 2004 Biologie 8, 2017/2018, Ivan Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují POŘÁDEK VE SVĚTĚ, KTERÝ SPĚJE K ČÍM
EKOTECH Fluorescence chlorofylu in vivo 1
INDUKCE FLUORESCENCE CHLOROFYLU in vivo V PRŮBĚHU PRIMÁRNÍ FOTOSYNTÉZY U VYŠŠÍCH ROSTLIN RNDr. Karel Roháček, CSc. Biologické centrum AV ČR, v.v.i. Ústav molekulární biologie rostlin, Branišovská 31, 370
Metabolické dráhy. František Škanta. Glykolýza. Repetitorium chemie X. 2011/2012. Glykolýza. Jaký je osud pyruátu bez přítomnosti kyslíku?
Repetitorium chemie X. 2011/2012 Metabolické dráhy František Škanta Metabolické dráhy xidativní fosforylace xidace mastných kyselin 1. fosforylace 2. štěpení hexosy na dvě vzájemně převoditelné triosy
BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, 2004. Biologie 6, 2015/2016, Ivan Literák
BUŇKA A ENERGIE kajman brýlový Caiman crocodilus Kostarika, 2004 Biologie 6, 2015/2016, Ivan Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují POŘÁDEK VE SVĚTĚ, KTERÝ SPĚJE K ČÍM
Fotosyntéza. Ondřej Prášil
Fotosyntéza 10 Ondřej Prášil prasil@alga.cz 384-340430 Čtyři fáze procesu přeměny energie ve fotosyntéze 1. absorbce světla a přenos energie v anténních systémech 2. primární rozdělení nábojů a přenos
B METABOLICKÉ PROCESY
B METABOLICKÉ PROCESY Poznávání neuvěřitelně velkého množství chemických sloučenin a reakcí při přeměnách látek v živých buňkách je hlavní náplní vědního oboru biochemie. Pro rostlinného fyziologa jsou
FOTOSYNTÉZA V DYNAMICKÝCH
FOTOSYNTÉZA V DYNAMICKÝCH ANIMACÍCH Výukový program vytvořený v programu Macromedia Flash Milada Roštejnská Helena Klímová Praha 2008 Univerzita Karlova v Praze, Přírodovědecká fakulta FOTOSYNTÉZA V DYNAMICKÝCH
Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.
Fyziologie buňky RNDr. Zdeňka Chocholoušková, Ph.D. Přeměna látek v buňce = metabolismus Výměna látek mezi buňkou a prostředím Buňka = otevřený systém probíhá výměna látek i energií s prostředím Některé
6 Přenos elektronů a protonů
6 Přenos elektronů a protonů Petr Ilík KBF a CRH, PřF UP Evoluce FS 1 Halobaktérie H + pumpa http://www.rsc.org/publishing/chemtech/volume/2008/11/b acteriorhodopsin_insight.asp - Protonová pumpa halobakterií
1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu
Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná
Praktické cvičení č. 11 a 12 - doplněno
Praktické cvičení č. 11 a 12 - doplněno Téma: Metabolismus eukaryotické buňky Pomůcky: pracovní list, učebnice botaniky Otázky k opakování: Co je anabolismus a co je katabolisimus? Co jsou enzymy a jak
Fyziologie rostlin LS Fotosyntéza. Lukáš Fischer
Fyziologie rostlin LS 2013 Fotosyntéza Lukáš Fischer Jaderné reakce Záření O 2 CO 2 Biomasa FOTOSYNTÉZA Fotosynteticky aktivní záření (FAR): 400 až 700 nm Vliv záření na rostliny: 1. Přímý: (a) Umožňuje
7 Fluorescence chlorofylu in vivo
7 Fluorescence chlorofylu in vivo Petr Ilík KBF a CRH, PřF UP Fluorescence chlorofylu in vivo fluorescence in vivo z chlorofylu a (ostatní přídavné pigmenty přenos energie na chl a) indikátor neschopnosti
2. ČÁST - METABOLICKÉ PROCESY
Učební text k přednášce Bi4060 na přírodovědecké fakultě MU v Brně. Určeno pouze ke studijním účelům. Autor textu Jan Gloser. 2. ČÁST - METABOLICKÉ PROCESY Poznávání neuvěřitelně velkého množství chemických
- metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy a jejich životním prostředím
Otázka: Obecné rysy metabolismu Předmět: Chemie Přidal(a): Bára V. ZÁKLADY LÁTKOVÉHO A ENERGETICKÉHO METABOLISMU - metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy
2. ČÁST - METABOLICKÉ PROCESY
Učební text k přednášce Bi4060 na přírodovědecké fakultě MU v Brně. Určeno pouze ke studijním účelům. Autor textu Jan Gloser. 2. ČÁST - METABOLICKÉ PROCESY Poznávání neuvěřitelně velkého množství chemických
Katabolismus - jak budeme postupovat
Katabolismus - jak budeme postupovat I. fáze aminokyseliny proteiny polysacharidy glukosa lipidy Glycerol + mastné kyseliny II. fáze III. fáze ETS itrátový cyklus yklus trikarboxylových kyselin, Krebsův
EXTRAKCE, CHROMATOGRAFICKÉ DĚLENÍ (C18, TLC) A STANOVENÍ LISTOVÝCH BARVIV
Úloha č. 7 Extrakce a chromatografické dělení (C18 a TLC) a stanovení listových barviv -1 - EXTRAKCE, CHROMATOGRAFICKÉ DĚLENÍ (C18, TLC) A STANOVENÍ LISTOVÝCH BARVIV LISTOVÁ BARVIVA A JEJICH FYZIOLOGICKÝ
Hořčík. Příjem, metabolismus, funkce, projevy nedostatku
Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán
9. Dýchací řetězec a oxidativní fosforylace. mitochondriální syntéza ATP a fotosyntéza
9. Dýchací řetězec a oxidativní fosforylace mitochondriální syntéza ATP a fotosyntéza CHEMIOSMOTICKÁ TEORIE SYNTÉZY ATP Heterotrofní organismy získávají hlavní podíl energie (cca 90%) uložené ve struktuře
Sacharidy a polysacharidy (struktura a metabolismus)
Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana
Otázka: Základní děje na buněčné úrovni. Předmět: Biologie. Přidal(a): Growler. - příjem látek buňkou
Otázka: Základní děje na buněčné úrovni Předmět: Biologie Přidal(a): Growler - příjem látek buňkou difúze prostá usnadněná transport endocytóza pinocytóza fagocytóza - výdej látek buňkou difúze exocytóza
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická oblast Odborná biologie, část biologie organismus
VLIV SPEKTRÁLNÍHO SLOŽENÍ FOTOSYNTETICKY AKTIVNÍ RADIACE NA INDUKCI FOTOSYNTÉZY TERMOOPTICKÝ JEV
VLIV SPEKTRÁLNÍHO SLOŽENÍ FOTOSYNTETICKY AKTIVNÍ RADIACE NA INDUKCI FOTOSYNTÉZY TERMOOPTICKÝ JEV 1 Vladimír Špunda, 2 Otmar Urban, 1 Martin Navrátil 1 Přírodovědecká fakulta, Ostravská univerzita v Ostravě,
Energetický metabolismus rostlin
Energetický metabolismus rostlin Sylabus - témata (Fischer, Šantrůček) 1. Základy energetiky v živých systémech Formy energie a základní principy přeměny energií; změny volné energie, rovnovážná konstanta,
Vylepšování fotosyntézy
Vylepšování fotosyntézy Využití fotosyntézy potraviny energie (paliva) Obojího bude podle predikcí potřebovat lidstvo čím dál tím víc. Energetické využití fotosyntézy potřeba nahrazení fosilních paliv
METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI
METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI Obsah Formy organismů Energetika reakcí Metabolické reakce Makroergické sloučeniny Formy organismů Autotrofní x heterotrofní organismy Práce a energie Energie
Měření množství dopadající energie světla. Fotoinhibice, fotopoškození a fotoprotekční mechanismy. (osvětlenost ln.m -2 = lux) Ozářenost W.
Fotoinhibice, fotopoškození a fotoprotekční mechanismy Měření množství dopadající energie světla Ozářenost W.m -2 (osvětlenost ln.m -2 = lux) Fotonová (kvantová) ozářenost mol.s -1.m -2 Vzájemné převody
Energetický metabolizmus buňky
Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie
LÁTKOVÝ A ENERGETICKÝ METABOLISMUS
LÁTKOVÝ A ENERGETICKÝ METABOLISMUS Metabolismus = neustálý příjem, přeměna a výdej látek = probíhá po celou dobu života rostliny Dva typy procesů : ANABOLICKÉ KATABOLICKÉ ANABOLISMUS - energie se spotřebovává
Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy
Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy JAN ILLNER Dýchací řetězec & oxidativní fosforylace Tvorba energie v živých systémech ATP zdroj E pro biochemické procesy Tvorba
Fotofyzikální děje během fotosyntetické přeměny zářivé energie na biochemicky využitelnou formu
Fotofyzikální děje během fotosyntetické přeměny zářivé energie na biochemicky využitelnou formu RNDr. Karel Roháček, CSc. Biologické centrum AV ČR, Ústav molekulární biologie rostlin České Budějovice,
3) Membránový transport
MBR1 2016 3) Membránový transport a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy 1 Prokaryotická buňka Eukaryotická buňka 2 Pohyb vody první reakce klidných
DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal
DYNAMICKÁ BIOCHEMIE Daniel Nechvátal :: www.gymzn.cz/nechvatal Energetický metabolismus děje potřebné pro zabezpečení života organismu ANABOLISMUS skladné reakce, spotřeba E KATABOLISMUS rozkladné reakce,
BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:
BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,
MB130P68 Globální změny a trvalá udržitelnost. ZS 2012/2013. Lubomír Nátr. Lubomír Nátr
MB130P68 Globální změny a trvalá udržitelnost. ZS 2012/2013 Globální změny klimatu a trvale udržitelný rozvoj 2. Biologické principy fotosyntetické produkce rostlin Lubomír Nátr Lubomír Nátr 2. Biologické
Závěrečná práce studentského projektu Fotosyntéza - Rostlinná barviva
Gymnázium Jana Nerudy Závěrečná práce studentského projektu Fotosyntéza - Rostlinná barviva Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti Pod vedením vedoucích práce Mgr. Jiřího Vozky,
3 a) Fyzikální principy. 5 Chemický potenciál (µ s ) (volná energie na jeden mol: J/mol) * = chemický potenciál roztoku s za standartních podmínek
MBRO1 1 2 2017 3) Membránový transport Prokaryotická buňka Eukaryotická buňka a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy Pohyb vody první reakce klidných
Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi. Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi
Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi Co je to vlastně ta fluorescence? Některé látky (fluorofory)
Struktura bílkovin očima elektronové mikroskopie
Struktura bílkovin očima elektronové mikroskopie Roman Kouřil Katedra Biofyziky (http://biofyzika.upol.cz) Centrum regionu Haná pro biotechnologický a zemědělský výzkum Přírodovědecká fakulta, Univerzita
Metabolismus příručka pro učitele
Metabolismus příručka pro učitele Obecné informace Téma Metabolismus je určeno na čtyři až pět vyučovacích hodin. Toto téma je zpracováno jako jeden celek a záleží na vyučujícím, jak jej rozdělí. Celek
RYCHLÁ KINETIKA FLUORESCENČNÍ INDUKCE
Teoretický úvod: FLUORESCENCE RYCHLÁ KINETIKA FLUORESCENČNÍ INDUKCE Praktikum fyziologie rostlin FLUORESCENCE 1. Co je to fluorescence? Emisi záření, ke kterému dochází při přechodu excitované molekuly
Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308
Buňka Autor: Mgr. Jitka Mašková Datum: 27. 10. 2012 Gymnázium, Třeboň, Na Sadech 308 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0702 VY_32_INOVACE_BIO.prima.02_buňka Škola Gymnázium, Třeboň, Na Sadech
Mendělejevova tabulka prvků
Mendělejevova tabulka prvků V sušině rostlin je obsaženo přibližně 45% uhlíku, 42% kyslíku, 6,5% vodíku, 1,5% dusíku a 5% minerálních prvků. Tzv. organogenní prvky (C, O, H, N) představují tedy 95% veškerých
Co vás dnes čeká: Přednáška 2: Specifika rostlinné buňky trocha opakování vakuola buněčná stěna plastidy Fotosyntetické struktury
Co vás dnes čeká: Přednáška 2: Specifika rostlinné buňky trocha opakování vakuola buněčná stěna plastidy Fotosyntetické struktury Sluneční záření - energie Eukaryontní buňky: Rozdíly mezi rostlinnou a
Stavba dřeva. Základy cytologie. přednáška
Základy cytologie přednáška Buňka definice, charakteristika strana 2 2 Buňky základní strukturální a funkční jednotky živých organismů Základní charakteristiky buněk rozmanitost (diverzita) - např. rostlinná
SLEDOVÁNÍ VZTAHU MEZI OBSAHEM ENZYMU RUBISCO A KONCENTRACÍ CO 2 V CHLOROPLASTU
SLEDOVÁNÍ VZTAHU MEZI OBSAHEM ENZYMU RUBISCO A KONCENTRACÍ CO 2 V CHLOROPLASTU Nikola Burianová Experimentální biologie 2.ročník navazujícího studia Katedra Fyziky Ostravská univerzita v Ostravě OBSAH
Fotosyntéza. Ondřej Prášil
Fotosyntéza 5 Ondřej Prášil prasil@alga.cz 384-340430 Karotenoidy - polyisopreny Pomocné pigmenty, strukturní funkce a disipace energie Tetraterpeny (40 C) vytvořené z 8 isoprenových jednotek, délka 30
Zobrazování účinků herbicidu na fotosyntézu mapováním chlorofylové fluorescence listů vyšších rostlin.
Zobrazování účinků herbicidu na fotosyntézu mapováním chlorofylové fluorescence listů vyšších rostlin. Všechny děje spjaté s primárními reakcemi fotosyntézy se odehrávají na matrici tylakoidálních váčků,
DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy
Dýchání 2/38 DÝCHÁNÍ Asimiláty vzniklé v rostlinných buňkách fotosyntézou mají různé funkce: stavební, zásobní, enzymatické aj. Zásobní látky jsou v případě potřeby využívány (energie, uložená v nich fotosyntézou,
umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík,
DÝCHÁNÍ ROSTLIN systém postupných oxidoredukčních reakcí v živých buňkách, při kterých se z organických látek uvolňuje energie, která je zachycena jako krátkodobá energetická zásoba v ATP, umožňují enzymatické