Metody a materiály pro vytváření mikrosystémů
|
|
- Radka Kadlecová
- před 10 lety
- Počet zobrazení:
Transkript
1 Metody a materiály pro vytváření mikrosystémů
2 materiály monokrystaly C, Si, Ge, GaAs, InF skla vícefázové systémy polykrystalické a amorfní látky porézní látky kompozity materiály prvky Si, Ge, C, Cu, Al, Ni, Cr, Au, Pt oxidy SiO 2, Al 2 O 3, K 2 O, Na 2 0, Li 2 O, CaO, MgO karbidy, nitridy, arsenidy, fosfidy polymery materiály polymery polyolefiny, polyetylén, polypropylén polystyrén - PS polyamidy polymetylmetakrylát - PMMA polykarbonát polyvinylidenfluorid polytetrafluoretylén - TEFLON polyetereterketon - PEEK epoxidy kaučuky silikonové elastomery polydimetylsiloxan - PDMS
3 Materiály pro mikrotechnologie Materiály pro konstrukci mikrozařízení Monokrystaly Křemík» má zásadní význam v mikrotechnologiích, zejména v mikroelektronice» vynikající fyzikální vlastnosti tvrdost, Youngův modul, pevnost v tahu» není transparentní» elektricky vodivý» nízká chemická odolnost Další (již méně významné)» GaAs» SiO 2 vykazuje piezoelektrický efekt Kovy Sklo» obtížné vytváření 3D struktur» vytváří aktivní vrstvy, mikrokomponenty, elektrody» různé typy» oxid křemičitý s příměsí dalších oxidů» Foturan fotocitlivé sklo s přídavkem oxidů ceru, antimonu a stříbra Keramika Nejčastěji alumina Al 2 O 3» není transparentní» problematická výroba jemných struktur» chemicky odolná» mechanická stabilita» nízká tepelná vodivost» nízká teplotní roztažnost BeO» vysoká tepelná vodivost» prach je toxický (místo BeO často AlN)
4 Křemík: Sklo:
5 Materiály pro mikrotechnologie Materiály pro konstrukci mikrozařízení sklo Amorfní materiál na bázi oxidu křemičitého, používaný zejména pro chemické, biochemické a biologické aplikace mikrotechnologií Některé vlastnosti skla transparentní pevné chemicky i biologicky inertní elektricky nevodivé Nevýhody křehké obtížné spojení s jinými materiály nesnadno opracovatelné
6 Materiály pro mikrotechnologie Materiály pro konstrukci mikrozařízení polymery» nízká tvrdost a teplotní stabilita» v některých případech nízká chemická odolnost» použití plastů různé kvality» jsou levné Standardní plasty PVC, PE, PP, PS, PMMA Speciální plasty PSU polysulfonáty PEEK polyetereterketon PI polyimidy LCP kapalné krystalické polymery Technické/inženýrské plasty zlepšené mechnické, tepelné a elektrické vlastnosti PET - polyetylentereftalát PBT - polybutylentereftalát PA - polyamidy PC - polykarbonáty POM - ployoxymetylén...
7 Polymer - polymetylmetakrylát + Polymer - polykarbonát bis-fenol fosgen polykarbonát
8 procesy ubírání materiálu přidávání materiálu přetváření materiálu lepení, spojování, sestavování nástroje fotony elektrony atomy molekul makročástice hroty břity
9 přidávání materiálu mechanické nanášení tisk, kontaktní, bezkontaktní nástřik, sítotisk kladení drátů, kapek, vláken fyzikální nanášení PVD physical vapor deposition za tepla napařování ve vakuu naprašování chemické nanášení v kapalné nebo plynné fázi za tepla oxidace, nitridizace ve vakuu CVD chemical vapor deposition elektrochemické nanášení katodické pokovování, elektrodepozice, Ni, Cu, Au anodická oxidace
10 Technologie vytváření mikrostruktur Nanášení tenkých vrstev Fyzikální mechanismus = Physical Vapour Deposition (PVD)» naprašování (sputtering) na substrátu kondenzují částice, které byly uvolněny pomocí iontů s vysokou energií» napařování (evaporating) kondenzací nanášeného materiálu v plynné fázi na studený substrát Oxidace Si na SiO 2» přímo na povrchu Si dochází k reakci s O 2 nebo H 2 O 2 schéma oxidační pece
11 Physical Vapor Deposition (PVD) 1. Evaporation (napařování) Deposition is achieved by evaporation or sublimation of heated metal onto substrate. This can be done either by resistance heating or by electron-beam (e-beam) bombardment. Thermal Evaporator
12 (3) Metal evaporator Thermal Evaporation: Heater (coil) E-beam Evaporation High Vac Mech Vac Cruicible: heated up Electromagnetic lens -scan electron beam -focus or defocus Cooling water (<100 C)
13 Physical Vapor Deposition (PVD) 2. Sputtering (naprašování) Sputtering is achieved by accelerated ion of inert gas (Ar+) by DC or RF drive in plasma through potential gradient to bombard metallic target. Then the targeting material is sputtered away and deposited onto substrate placed on anode.
14 (4) Sputtering (Al, Ti, W, etc ) (a) Mechanism: physical bombardment of energetic ions (Ar + ) Metal (cathode) Ar + Sputtering yield: metal atoms generated by 1 Ar ion Sputter etching: wafer cathode, cleaning oxide before etching (b) Characteristics: Lower vacuum (100 Pa) : mean free path ~ 50 um Very good step coverage (preferred in IC process) Better contact / stiction Gas (Ar) trapped in the film Introduction to Microelectronic Fabrication (Jaeger)
15 Additive Processes Physical Vapor Deposition (PVD)
16 Chemical Vapor Deposition (CVD) Materials deposited Polysilicon silicon nitride (Si3N4) silicon oxide (SiOx) silicon carbide (SiC) etc. How does CVD Work? Gaseous reactants are introduced into chamber at elevated temperatures. Reactant reacts and deposits onto substrate. Types of CVD LPCVD (Low Pressure CVD) PECVD (Plasma Enhanced CVD) Features CVD results depend on pressure, gas, and temperature CVD can be diffusion or reaction limited Varies from film composition, crystallization, deposition rate and electrical and mechanical properties
17 Chemical Vapor Deposition (CVD)
18 Technologie vytváření mikrostruktur Galvanické pokovování (Electroplating) nanášení kovových materiálů na obráběný kus (Ni, Cu, permalloy,..)» substrát do elektrolytické lázně, kde působí jako katoda (aby se zaručila vodivost, často se nanáší vrstvička z vodivého materiálu, např. Au) senzor s galvanicky nanesenými cívkami zařízení na galvanické pokovování
19 ubírání materiálu vakuové operace: sublimace, odprášení, iontové mletí, leptání plazmou chemické odleptání za mokra anodická oxidace odjiskřování laserové odpařování tepelný účinek laseru laserová ablace silový účinek laseru ubírání třísek, vrtání, frézování, soustružení, řezání broušení a leštění pískování kartáčování
20 Technologie vytváření mikrostruktur Suché leptání (dry etching)» tok chemicky reaktivního ionizonovaného plynu (plazmatu) přes masku na substrát různé druhy:» leptání použitím plazmatu (plasma etching)» iontové leptání (reactive ion etching)» hluboké iontové leptání (deep ion etching) Leptání křemíku» masky z SiO 2, Si 3 N 4 nebo fotorezistů» většinou fluorové nebo chlorové plazma» rychlost leptání 10 mm/min zařízení pro leptání plazmatem
21 Subtractive Processes Dry Etching Plasma Etching Reaction Mechanism Produce reactive species in gas-phase Reactive species diffuse to the solid Adsorption, and diffuse over the surface Reaction Desorption Diffusion
22 Technologie vytváření mikrostruktur Anizotropní mokré leptání (Anisotropic Wet Etching)» substrát do roztoku, ve kterém dochází k leptání» u krystalických substrátů (např. Si) je rychlost leptání závislá na krystalografických rovinách dutiny se vytváří podél určitých rovin» leptací činidla se liší dle leptaného materiálu, např. KOH, EDP etylendiaminpyrotechol, TMAH tetrametylamonium hydroxid zařízení na anizotropní leptání za mokra výrobek zhotovený anizotropním leptáním
23 Technologie vytváření mikrostruktur Izotropní mokré leptání (Isotropic Wet Etching)» substrát do roztoku, ve kterém dochází k leptání» rychlost leptání ve všech směrech stejná (amorfní materiály, např. sklo)» často se používá k odleptávání maskovacích vrstev» jako leptací činidlo: dle substrátu, u skla většinou HF mikrokanál vyrobený izotropním leptáním zařízení na izotropní leptání
24 Metal Patterning fotoresist kov substrát
25 Technologie vytváření mikrostruktur Elektrojiskrové obrábění (Electro-Discharge machining EDM)» odebírání svrchní vrstvy materiálu erozivním působením elektrického výboje» výboj mezi dvěma elektrodami pracovní elektroda, druhou tvoří opracovávaný materiál» pomalé produkt vyrobený touto metodou detail zařízení pro elektrojiskrové obrábění
26 Technologie vytváření mikrostruktur Obrábění laserem (Laser MicroMachining)» odstraňování materiálu (odpaření) pomocí laseru» buď přímé nebo přes masku» pomalé titrační destička zhotovená pomocí LM zařízení pro laserové obrábění
27 Laser Photoablation High aspect ratio channels achievable Laser pulses in the UV region used Sealing by thermal lamination with a PET/PE film at C Depth controllable
28 Mechanické obrábění nástroje celoplošné různě působící na různě modifikované části materiálu lokální, CNC polohovatelné polohování nástroje polohování substrátu výměna nástroje on-line off-line výběr nástroje ze zásobníku rekonstrukce nástroje
29 Technologie vytváření mikrostruktur Mechanické mikroobrábění pomocí speciálních nástrojů (mikrovrtačka, mikrofréza )» struktury velikosti 10 2 mm, vhodné pro podpůrné části mikrozařízení» možnost zpracovávat řadu materiálů včetně kovů, nejčastěji polymery» návrh mikrostruktury v CAD programu (Matlab, AutoCAD) Podstavec vyrobený mikrofrézováním z Teflonu (vlevo, velikost cca mm) pro skleněný mikročip (uprostřed, velikost asi mm) se sítí mikrokanálků (vpravo, ø kanálků asi 30 mm)
30 přetváření materiálu geometrické lisování, vytlačování (extruze), vtlačování, vstřikování, ohýbání fyzikální tavení, tuhnutí, krystalizace, fázové přechody chemické štěpení a síťování polymerů, inicializace teplem, světlem, elektrony
31 Technologie vytváření mikrostruktur Vtlačování za tepla (Hot Embossing) technika pro masovou replikaci mikrostruktur» forma je obtisknuta do filmu termoplastu» jak nástroj, tak vrstva termoplastu jsou předem zahřáty těsně nad skelný přechod termoplastu zařízení pro hot embossing refrakční mřížka vyrobená vtlačováním
32 Technologie vytváření mikrostruktur Vtlačování za tepla (Hot Embossing) Příklad struktury vyrobené vtlačováním (širší kanálky jsou frézovány) do polystyrenového substrátu:» zařízení skládající se ze dvou paralelních kanálů spojených mikrokanálkem o průměru 7 mm» experimentální realizace elektrolytické diody» mezi dvě PS destičky je vložen chromelový drát» sestava je sevřena mezi dvě skleněné desky a zahřívána na teplotu 90 C; destičky se teplem spojí a drát se vtiskne do nich» v závěru je drát opatrně vytažen, vznikne mikrokanál 7 mm
33 Imprinting/Embossing Stamp made in Si or metal Stamp pressed on Plastic to form microfluidic channels Many common plastics successfully imprinted
34 Technologie vytváření mikrostruktur Vstřikování (Injection Molding) replikační technika výroby mikrosystémů (princip stejný jako při výrobě plastů v makrosvětě)» do uzavřené formy (vakuum) je vstříknut polymer (PMMA, PVC)» speciální řízení teplotního režimu» požadavek na vysokou čistotu provozu» nízké náklady na replikaci mikrostruktur forma produkt zařízení pro injection molding
35 Technologie vytváření mikrostruktur Výroba mikrostruktur další techniky Mikro-stereolitografie 3D struktury» použití pryskyřic (směs monomeru a polymeru)» přesně zaměřeným laserem se postupně vytvrzují určité části v pryskyřičné lázni» celý vytvrzený systém se postupně ponořuje a tak se vytváří další vrstvy Tvarování roztaveného vlákna (Fused deposition modeling (FDM))» taví se vlákno a modeluje se požadovaný tvar AFM litografie» oxidační» škrábací
36 Technologie vytváření mikrostruktur Výroba mikrostruktur další techniky 3D printing (3DP TM )» celá třída technik» objekt se nanáší po jednotlivých vrstvách» tloušťka vrstev typicky 100 mm, ale může být i 10 mm» 3D tiskárna typicky využívá návrh 3D struktury v programu CAD Depozice vrstev, řádků Fúze granulátu Mikročástice tvořící vrstvu jsou spečeny na zvolených místech, pracovní plocha se v dalším kroku posune směrem dolů, vytvoří se další vrstva mikročástic, které se znovu spečou. Celý proces se mnohokrát opakuje.
37 Technologie vytváření mikrostruktur Odlévání casting replikace mikrostruktur do polymerních substrátů» nutnost výroby primární matrice (negativ), např. z kovu» matrice se zalije tekutým polymerem nebo roztokem monomeru» po ztuhnutí se finální struktura oddělí od matrice» jednoduchá metoda, nevyžaduje zvláštní vybavení Příklad struktury vyrobené odléváním z PDMS:» zařízení skládající se ze dvou paralelních kanálů spojených mikrokanálkem o průměru 90 mm» do kanálků jsou přivedeny platinové elektrody 90 mm
38 lepení a spojování lepidly zaplňuje detaily tepelné slinování polystyren - 90ºC, sklo ºC difuzní spojování čistota povrchu, leptání plazmou polymerace
39 Kombinací různých technik lze vytvořit kompozitní mikročip
40 Příklad 1 vytvoření mikroelektrody na povrchu substrátu
41 Příklad 2 - Soft Lithography Elastomeric polymer cast in a Si stamp and cured Polymer is peeled off Channel architecture thus transferred to the polymer PDMS technology is becoming popular
42 Whitesides, Soft lithography
Přehled metod depozice a povrchových
Kapitola 5 Přehled metod depozice a povrchových úprav Tabulka 5.1: První část přehledu technologií pro depozici tenkých vrstev. Klasifikované podle použitého procesu (napařování, MBE, máčení, CVD (chemical
Technologie CMOS. Je to velmi malý svět. Technologie CMOS Lokální oxidace. Vytváření izolačních příkopů. Vytváření izolačních příkopů
Je to velmi malý svět Technologie CMOS Více než 2 000 000 tranzistorů v 45nm technologii může být integrováno na plochu tečky za větou. From The Oregonian, April 07, 2008 Jiří Jakovenko Struktury integrovaných
Využití plazmových metod ve strojírenství. Metody depozice povlaků a tenkých vrstev
Využití plazmových metod ve strojírenství Metody depozice povlaků a tenkých vrstev Metody depozice povlaků Využití plazmatu pro depozice (nanášení) povlaků a tenkých vrstev je moderní a stále častěji aplikovaná
Vakuové metody přípravy tenkých vrstev
Vakuové metody přípravy tenkých vrstev Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical Vapour Deposition (PE CVD Plasma Enhanced CVD nebo PA CVD Plasma Assisted CVD) PVD
TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ III.
TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ III. NANÁŠENÍ VRSTEV V mikroelektronice se nanáší tzv. tlusté a tenké vrstvy. a) Tlusté vrstvy: Používají se v hybridních integrovaných obvodech. Nanáší
Vybrané technologie povrchových úprav. Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008
Vybrané technologie povrchových úprav Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008 Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical vapour deposition PE CVD
PEVNOLÁTKOVÉ TECHNOLOGIE RAPID PROTOTYPING
Střední průmyslová škola na Proseku Novoborská 2, 190 00 Praha 9 PEVNOLÁTKOVÉ TECHNOLOGIE RAPID PROTOTYPING - Fused Deposition Modeling - Laminated Object Manufacturing - Inject Printing Ing. Lukáš Procházka
Přednáška 11. Litografie, maskování, vytváření nanostruktur.
Přednáška 11 Litografie, maskování, vytváření nanostruktur. Litografie kombinace více procesů vedoucích k vytvoření požadované struktury nebo také přesné chemicko- fyzikální opracování existuje řada různých
Lasery v mikroelektrotechnice. Soviš Jan Aplikovaná fyzika
Lasery v mikroelektrotechnice Soviš Jan Aplikovaná fyzika Obsah Úvod Laserové: žíhání rýhování (orýsování) dolaďování depozice tenkých vrstev dopování příměsí Úvod Vysoká hustota výkonu laseru změna struktury
Nauka o materiálu. Přednáška č.14 Kompozity
Nauka o materiálu Úvod Technické materiály, které jsou určeny k dalšímu technologickému zpracování zahrnují širokou škálu možného chemického složení, různou vnitřní stavbu a různé vlastnosti. Je nutno
Mikro a nanotribologie materiály, výroba a pohon MEMS
Tribologie Mikro a nanotribologie materiály, výroba a pohon MEMS vypracoval: Tomáš Píza Obsah - Co je to MEMS - Materiály pro MEMS - Výroba MEMS - Pohon MEMS Co to je MEMS - zkratka z anglických slov Micro-Electro-Mechanical-Systems
Speciální metody obrábění
Předmět: Ročník: Vytvořil: Datum: Základy výroby druhý M. Geistová 6. září 2012 Název zpracovaného celku: Speciální metody obrábění Speciální metody obrábění Použití: je to většinou výkonné beztřískové
ANALÝZA POVLAKOVANÝCH POVRCHŮ ŘEZNÝCH NÁSTROJŮ
Středoškolská technika 2019 Setkání a prezentace prací středoškolských studentů na ČVUT ANALÝZA POVLAKOVANÝCH POVRCHŮ ŘEZNÝCH NÁSTROJŮ Jakub Chlaň, Matouš Hyk, Lukáš Procházka Střední škola elektrotechniky
Plazmové metody Materiály a technologie přípravy M. Čada
Plazmové metody Existuje mnoho druhů výbojů v plynech. Ionizovaný plyn = elektrony + ionty + neutrály Depozice tenkých vrstev za pomocí plazmatu je jednou z nejpoužívanějších metod. Pomocí plazmatu lze
Iradiace tenké vrstvy ionty
Iradiace tenké vrstvy ionty Ve většině technologických aplikací dochází k depozici tenké vrstvy za nízké teploty > jsme v zóně I nebo T > vrstvá má sloupcovou strukturu, je porézní a hrubá. Ukazuje se,
Základní typy článků:
Základní typy článků: Články z krystalického Si c on ta c t a ntire fle c tio n c o a tin g Tenkovrstvé články N -ty p e P -ty p e Materiály a technologie pro fotovoltaické články Nové materiály Gratzel,
galvanicky chemicky plazmatem ve vakuu Vrstvy ve vakuu MBE Vakuová fyzika 2 1 / 39
Vytváření vrstev galvanicky chemicky plazmatem ve vakuu Vrstvy ve vakuu povlakování MBE měření tloušt ky vrstvy během depozice Vakuová fyzika 2 1 / 39 Velmi stručná historie (více na www.svc.org) 1857
Druhy vláken. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008
Druhy vláken Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Druhy různých vláken Přírodní vlákna Skleněná vlákna Uhlíková a grafitová vlákna Aramidová a silonová
Nanolitografie a nanometrologie
Nanolitografie a nanometrologie 1 Nanolitografie 2 Litografie svazkem 3 Softlitografie 4 Skenovací nanolitografie Nanolitografie Poznámky k tvorbě nanostruktur tvorba užitečných nanostruktur vyžaduje spojení
Chemické metody plynná fáze
Chemické metody plynná fáze Chemické reakce prekurzorů lze aktivovat i UV zářením PHCVD. Foton aktivuje molekuly nebo atomy, které pak vytvářejí volné radikály nesoucí hodně energie > ty pak rozbijí velké
REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz
REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV OVÁNÍ Jan VALTER SCHEMA REAKTIVNÍHO NAPRAŠOV OVÁNÍ zdroj výboje katoda odprašovaný terč plasma inertní napouštění plynů reaktivní zdroj předpětí p o v l a k o v a n é s
Metody depozice povlaků - CVD
Procesy CVD, PA CVD, PE CVD Chemická metoda depozice vrstev CVD využívá pro depozici směs chemicky reaktivních plynů (např. CH 4, C 2 H 2, apod.) zahřátou na poměrně vysokou teplotu 900 1100 C. Reakční
Přednáška 8. Chemické metody a fyzikálně-chemické metody : princip CVD, metody dekompozice, PE CVD
Přednáška 8 Chemické metody a fyzikálně-chemické metody : princip CVD, metody dekompozice, PE CVD CVD Chemical Vapor Deposition Je chemický proces používaný k vytváření tenkých vrstev. Substrát je vystaven
Lepení plastů a elastomerů
Lepení plastů a elastomerů 3 Proč používat lepidla Loctite nebo Teroson namísto jiných spojovacích metod Tato příručka nabízí základní vodítko pro výběr vhodného lepidla Loctite nebo Teroson výrobků Henkel
1 Moderní nástrojové materiály
1 Řezné materiály jsou podle ISO 513 členěné do šesti základních skupin, podle typu namáhání břitu. - Skupina P zahrnuje nástrojové materiály určené k obrábění většiny ocelí, které dávají dlouhou třísku
Plazmová depozice tenkých vrstev oxidu zinečnatého
Plazmová depozice tenkých vrstev oxidu zinečnatého Bariérový pochodňový výboj za atmosférického tlaku Štěpán Kment Doc. Dr. Ing. Petr Klusoň Mgr. Zdeněk Hubička Ph.D. Obsah prezentace Úvod do problematiky
ELEKTRONICKÉ PRVKY TECHNOLOGIE VÝROBY POLOVODIČOVÝCH PRVKŮ
ELEKTRONICKÉ PRVKY TECHNOLOGIE VÝROBY POLOVODIČOVÝCH PRVKŮ Polovodič - prvek IV. skupiny, v elektronice nejčastěji křemík Si, vykazuje vysokou čistotu (10-10 ) a bezchybnou strukturu atomové mřížky v monokrystalu.
Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur)
Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur) -přenesení dané struktury na povrch strukturovaného substrátu Princip - interakce
TOPNÁ MEMBRÁNA TYPU MEMS S NÍZKÝM PŘÍKONEM
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV MIKROELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Katedra chemie FP TUL Chemické metody přípravy vrstev
Chemické metody přípravy vrstev Metoda sol-gel Historie nejstarší příprava silikagelu 1939 patent na výrobu antireflexních vrstev na fotografické čočky 60. léta studium vrstev SiO 2 a TiO 2 70. léta výroba
Základy mikroelektronických technologií
Mikrosenzory a mikroelektromechanické systémy Základy mikroelektronických technologií Technologie tlustých vrstev Technologie tenkých vrstev Základy polovodičových technologií Mikroelektronické technologie
Nauka o materiálu. Přednáška č.12 Keramické materiály a anorganická nekovová skla
Nauka o materiálu Přednáška č.12 Keramické materiály a anorganická nekovová skla Úvod Keramika a nekovová skla jsou ve srovnání s kovy velmi křehké. Jejich pevnost v tahu je nízká a finálnímu lomu nepředchází
Mechanická modifikace topografie strojních součástí
Mechanická modifikace topografie strojních součástí, M.Omasta Ústav konstruování Odbor metodiky konstruování Fakulta strojního inženýrství Vysoké učení technické v Brně, vytvořeno v rámci projektu FRVŠ
18MTY 9. přenáška polymery 2
18MTY 9. přenáška polymery 2 Zkouškové okruhy Důležité vazby v polymerech Nejvýznamnější a nejvíce vyráběné polymery Co rozumíme pod pojmem konfigurace? Je konfigurace z chemického hlediska trvalá? Vysvětlete
Mikrosenzory a mikroelektromechanické systémy. Odporové senzory
Mikrosenzory a mikroelektromechanické systémy Odporové senzory Obecné vlastnosti odporových senzorů Odporové senzory kontaktové Měřící potenciometry Odporové tenzometry Odporové senzory teploty Odporové
Základní požadavky: mechanické a fyzikální vlastnosti materiálu
Materiály Základní požadavky: mechanické a fyzikální vlastnosti materiálu nesmí se měnit při provozních podmínkách mechanické vlastnosti jsou funkcí teploty vliv zpracování u kovových materiálů (např.
Kompozity s termoplastovou matricí
Kompozity s termoplastovou matricí Ing. Josef Křena Letov letecká výroba, s.r.o. Praha 9 Letňany josef.krena@letov.cz Obsah 1. Typy matric 2. Vlastnosti vyztužených termoplastů 3. Zvláštnosti vyztužených
Nanokrystalické tenké filmy oxidu železitého pro solární štěpení vody
Nanokrystalické tenké filmy oxidu železitého pro solární štěpení vody J. Frydrych, L. Machala, M. Mašláň, J. Pechoušek, M. Heřmánek, I. Medřík, R. Procházka, D. Jančík, R. Zbořil, J. Tuček, J. Filip a
Lepení materiálů. RNDr. Libor Mrňa, Ph.D.
Lepení materiálů RNDr. Libor Mrňa, Ph.D. Princip Adheze Smáčivost Koheze Dělení lepidel Technologie lepení Volba lepidla Lepení kovů Zásady navrhování lepených konstrukcí Typy spojů Princip lepení Lepení
Depozice tenkých vrstev I.
Depozice tenkých vrstev I. Naprašování Mgr. Tereza Schmidtová 15. dubna 2010 Aplikace Klasifikace Obecný přehled aplikací použití pro optické vlastnosti - laserová optika, zrcadla, reflexní a anti-reflexní
Chemické metody přípravy tenkých vrstev
Chemické metody přípravy tenkých vrstev verze 2013 Povrchové filmy monomolekulární Langmuirovy filmy PAL (povrchově aktivní látky) na polární kapalině (vodě), 0,205 nm 2 na 1 molekulu, tloušťka dána délkou
Úpravy brýlových čoček. LF MU Brno Brýlová technologie
Úpravy brýlových čoček LF MU Brno Brýlová technologie Struktura prezentace Rozdělení úprav brýlových čoček Tenké vrstvy Antireflexní vrstva Reflexní vrstva Hydrofobní vrstva Absorpční vrstva Tvrzení Fototropní
Tenká vrstva - aplikace
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace těchto materiálů. Děkuji Ing. D.
Pracovní diagram vláken
Druhy vláken Rozdělení přednášky Základní vlastnosti vláken a nanovláken Přírodní vlákna Skleněná vlákna Uhlíková a grafitová vlákna Aramidová a silonová vlákna Keramická vlákna Kovová vlákna Whiskery
Plazmové depozice povlaků. Plazmový nástřik Plasma Spraying
Plazmové depozice povlaků Plazmový nástřik Plasma Spraying Plazmový nástřik patří do kategorie žárových nástřiků. Žárový nástřik je částicový proces vytváření povlaků o tloušťce obvykle větší než 50 µm,
Prášková metalurgie. 1 Postup výroby slinutých materiálů. 1.1 Výroba kovových prášků. 1.2 Lisování pórovitého výlisku
Pomocí práškové metalurgie se vyrábí slitiny z kovů, které jsou v tekutém stavu vzájemně nerozpustné a proto netvoří slitiny nebo slitiny z vysoce tavitelných kovů (např. wolframu). 1 Postup výroby slinutých
Glass temperature history
Glass Glass temperature history Crystallization and nucleation Nucleation on temperature Crystallization on temperature New Applications of Glass Anorganické nanomateriály se skelnou matricí Martin Míka
TENKÉ VRSTVY. 1. Modifikací povrchu materiálu (teplem, okysličením, laserem,.. 2. Depozicí (nanášením)
TENKÉ VRSTVY Lze připravit : 1. Modifikací povrchu materiálu (teplem, okysličením, laserem,.. 2. Depozicí (nanášením) Metody fyzikální (Physical Vapor Deposition PVD) Metody chemické (Chemical Vapor Deposition-
ZESILOVÁNÍ A STATICKÉ ZAJIŠTĚNÍ KONSTRUKCÍ KOMPOZITNÍ MATERIÁLY
ZESILOVÁNÍ A STATICKÉ ZAJIŠTĚNÍ KONSTRUKCÍ KOMPOZITNÍ MATERIÁLY Důvody a cíle pro statické zesilování a zajištění konstrukcí - zvýšení užitného zatížení - oslabení konstrukce - konstrukční chyba - prodloužení
Podstata plastů [1] Polymery
PLASTY Podstata plastů [1] Materiály, jejichž podstatnou část tvoří organické makromolekulami látky (polymery). Kromě látek polymerní povahy obsahují plasty ještě přísady (aditiva) jejichž účelem je specifická
Technologie a vlastnosti tenkých vrstev, tenkovrstvé senzory
Vysoká škola chemicko-technologická v Praze Technologie a vlastnosti tenkých vrstev, tenkovrstvé senzory Technologie CVD, PVD, PECVD, MOVPE, MBE, coating technologie (spin-, spray-, dip-) Ondřej Ekrt Vymezení
Fyzikální metody depozice KFY / P223
Fyzikální metody depozice KFY / P223 Obsah Vymezení pojmu tenkých vrstev, význam TV ve vědě a technice, přehled metod vytváření TV Růst tenkých vrstev: módy a fáze růstu TV, vliv parametrů procesu. Napařování
METODY OBRÁBĚNÍ. Dokončovací metody, nekonvenční metody, dělení mat.
METODY OBRÁBĚNÍ Dokončovací metody, nekonvenční metody, dělení mat. Dokončovací metody obrábění Dokončovací metody takové způsoby obrábění, kterými dosahujeme u výrobku přesného geometrického tvaru a jakosti
FYZIKA VE FIRMĚ HVM PLASMA
FYZIKA VE FIRMĚ HVM PLASMA Jiří Vyskočil HVM Plasma spol.s r.o. Na Hutmance 2, 158 00 Praha 5 OBSAH HVM PLASMA spol. s r.o. zaměření a historie firmy hlavní činnost a produkty POVRCHOVÉ TECHNOLOGIE metody
KATALOG LEPIDEL ZAJIŠŤOVÁNÍ ZÁVITŮ A 1042 THREAD LOCK ZAJIŠŤOVÁNÍ ZÁVITŮ HH 131 THREAD LOCK TĚSNĚNÍ ZÁVITŮ A 1044 PIPE SEALANT
KATALOG LEPIDEL ZAJIŠŤOVÁNÍ ZÁVITŮ A 1042 THREAD LOCK Rychlé vytvrzuje - manipulační pevnost 5 10 min. Zabraňuje mezikrystalické korozi v závitu Demontovatelný běžným nářadím Barva: modrá Možno použít
optické vlastnosti polymerů
optické vlastnosti polymerů V.Švorčík, vaclav.svorcik@vscht.cz Definice světelného paprsku světlo se šíří ze zdroje podél přímek (paprsky) Maxwell: světlo se šířív módech (videch) = = jediná možná cesta
Plasty. Základy materiálového inženýrství. Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010
Plasty Základy materiálového inženýrství Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Základní vlastnosti plastů Výroba z levných surovin. Jsou to sloučeniny
Polymery a plasty v praxi POLYAMIDY
Polymery a plasty v praxi POLYAMIDY RNDr. Ladislav Pospíšil, CSc. pospisil@polymer.cz pospisil@gascontrolplast.cz 29716@mail.muni.cz 31. 3. 2014 POLYMERY A PLASTY V PRAXI 1 LEKCE datum téma 1 17.II. Úvod
Nano a mikrotechnologie v chemickém inženýrství. Hi-tech VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ
Nano a mikrotechnologie v chemickém inženýrství Hi-tech VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ Hi-tech Nano a mikro technologie v chemickém inženýrství umožňují: Samočisticí
Tenké vrstvy. historie předdepoziční přípravy stripping
Tenké vrstvy historie předdepoziční přípravy stripping 1 HISTORIE TENKÝCH VRSTEV Historie depozice vrstev obloukovým odpařováním z katody sahá až do devatenáctého století. Pozorování pulzního a později
Polymery a plasty v praxi POLYSTYREN & KOPOLYMERY STYRÉMU
Polymery a plasty v praxi POLYSTYREN & KOPOLYMERY STYRÉMU RNDr. Ladislav Pospíšil, CSc. pospisil@gascontrolplast.cz 29716@mail.muni.cz 21. 3.2016 POLYMERY A PLASTY V PRAXI 1 POLYSTYREN & KOPOLYMERY STYRÉNU
Typy interakcí. Obsah přednášky
Co je to inteligentní a progresivní materiál - Jaderné analytické metody-využití iontových svazků v materiálové analýze Anna Macková Ústav jaderné fyziky AV ČR, Řež 250 68 Obsah přednášky fyzikální princip
Okruhy otázek ke SZZ navazujícího magisterského studijního programu Strojní inženýrství, obor Konstrukce a výroba součástí z plastů a kompozitů
Materiály 1. Molekulární struktura polymerů, polarita vazeb, ohebnost řetězců. 2. Krystalizace a nadmolekulární struktura polymerů, vliv na vlastnosti. 3. Molární hmotnost, její distribuce a vliv na vlastnosti.
TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ II.
TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ II. 1. OXIDACE KŘEMÍKU Oxid křemíku SiO2 se během technologického procesu užívá k vytváření: a) Maskovacích vrstev b) Izolačních vrstev (izolují prvky
STUDIUM PLASMATICKY NANÁŠENÝCH VRSTEV
STUDIUM PLASMATICKY NANÁŠENÝCH VRSTEV *J. Mihulka **M. Másilko ***L. Unzeitig ****supervisor: O. Kovářík *Gymnázium, Roudnice nad Labem, Havlíčkova 175 ** Gymnázium, Roudnice nad Labem, Havlíčkova 175
SPECIÁLNÍ METODY OBRÁBĚNÍ SPECIÁLNÍ METODY OBRÁBĚNÍ
Předmět: Ročník: Vytvořil: Datum: STROJÍRENSKÁ TECHNOLOGIE TŘETÍ JANA ŠPUNDOVÁ 06.04.2014 Název zpracovaného celku: SPECIÁLNÍ METODY OBRÁBĚNÍ SPECIÁLNÍ METODY OBRÁBĚNÍ Používají se pro obrábění těžkoobrobitelných
Laserové technologie v praxi I. Přednáška č.8. Laserové zpracování materiálu. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č.8 Laserové zpracování materiálu Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Lasery pro průmyslové zpracování materiálu E (ev) 0,12 1,17 1,17 1,2 1,5 4,17
PREPARING OF AL AND SI SURFACE LAYERS ON BEARING STEEL
METAL 28 PŘÍPRAVA ALITOSILITOVANÝH POVRHOVÝH VRSTEV NA LOŽISKOVÉ OELI PREPARING OF AL AND SI SURFAE LAYERS ON BEARING STEEL Pavel Doležal, Ladislav Čelko, Aneta Němcová, Lenka Klakurková, mona Pospíšilová
Plazmatické metody pro úpravu povrchů
Plazmatické metody pro úpravu povrchů Aleš Kolouch Technická Univerzita v Liberci Studentská 2 461 17 Liberec 1 Obsah 1. Plazma 2. Plazmové stříkání 3. Plazmové leptání 4. PVD 5. PECVD 6. Druhy reaktorů
VY_32_INOVACE_F 18 16
Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 IČO: 47813121 Projekt: OP VK 1.5 Název operačního programu: Typ šablony klíčové aktivity:
Metody depozice tenkých vrstev pomocí nízkoteplotního plazmatu
Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra aplikované fyziky a techniky diplomová práce Metody depozice tenkých vrstev pomocí nízkoteplotního plazmatu Vypracoval: Martin Günzel
DOUTNAVÝ VÝBOJ. Magnetronové naprašování
DOUTNAVÝ VÝBOJ Magnetronové naprašování Efektivním způsobem jak získat částice vhodné k růstu povlaku je nahrazení teploty používané u odpařování ekvivalentem energie dodané dopadem těžkéčástice přenosem
Druhy vláken. Nanokompozity
Druhy vláken Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Druhy různých vláken Přírodní
Anotace přednášek LŠVT 2015 Česká vakuová společnost. Téma: Plazmové technologie a procesy. Hotel Racek, Úštěk, 1 4. června 2015
Anotace přednášek LŠVT 2015 Česká vakuová společnost Téma: Plazmové technologie a procesy Hotel Racek, Úštěk, 1 4. června 2015 1) Úvod do plasmochemie Lenka Zajíčková, Ústav fyzikální elektroniky, PřF
DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj
DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým
Rozhodující vlastnosti nástrojových ocelí pro: POUŽITÍ. Charakteristika OPTIMÁLNÍ VÝKON NÁSTROJŮ VÝROBU NÁSTROJŮ VANCRON 40
1 VANCRON 40 2 Rozhodující vlastnosti nástrojových ocelí pro: OPTIMÁLNÍ VÝKON NÁSTROJŮ V mnoha aplikacích nástrojových ocelí pro práci za studena vyžadujeme povlakování povrchu, jako prevenci proti nalepování
Fakulta strojní Technické univerzity v Liberci Téma disertačních prací pro rok 2017/2018 OBOR 2303V002 STROJÍRENSKÁ TECHNOLOGIE KOM KOM KOM KOM
OBOR 2303V002 STROJÍRENSKÁ TECHNOLOGIE Téma disertační práce Školitel Katedra 1. Bezkontaktní skenování povrchu strojních součástí Anotace: Ve strojírenské výrobě se začínají stále více prosazovat systémy
Tenké vrstvy. metody přípravy. hodnocení vlastností
Tenké vrstvy metody přípravy hodnocení vlastností 1 / 39 Depozice tenkých vrstev Depozice vrstev se provádí jako finální operace na hotovém již tepelně zpracovaném substrátu. Pro dobré adhezní vlastnosti
ruvzdorné povlaky endoprotéz Otěruvzdorn Obsah TRIBOLOGIE Otěruvzdorné povlaky endoprotéz Fakulta strojního inženýrství
Otěruvzdorn ruvzdorné povlaky endoprotéz Obsah Základní části endoprotéz Požadavky na materiály Materiály endoprotéz Keramické povlaky DLC povlaky MPC povlaky Metody vytváření povlaků Testy povlaků Závěr
VLASTNOSTI KOMPOZITNÍCH POVLAKŮ S KATODICKY VYLUČOVANOU MATRICÍ
VLASTNOSTI KOMPOZITNÍCH POVLAKŮ S KATODICKY VYLUČOVANOU MATRICÍ Pavel Adamiš Miroslav Mohyla Vysoká škola báňská -Technická univerzita Ostrava, 17. listopadu 15, 708 33, Ostrava - Poruba, ČR Abstract In
ROZDĚLENÍ, VLASTNOSTI A POUŽITÍ MATERIÁLŮ
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; platnost do r. 2016 v návaznosti na použité normy. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D. Kavková
Vlastnosti V 0,2. Modul pružnosti Součinitel tepelné roztažnosti C od 20 C. Tepelná vodivost W/m. C Měrné teplo J/kg C
1 CALMAX 2 Charakteristika CALMAX je Cr-Mo-V legovaná ocel, pro kterou jsou charakteristické tyto vlastnosti: Vysoká houževnatost Dobrá odolnost proti opotřebení Dobrá prokalitelnost Dobrá rozměrová stálost
OTĚRUVZDORNÉ POVRCHOVÉ ÚPRAVY. Jan Suchánek ČVUT FS, ÚST
OTĚRUVZDORNÉ POVRCHOVÉ ÚPRAVY Jan Suchánek ČVUT FS, ÚST Úvod Povrchové úpravy zlepšující tribologické charakteristiky kovových materiálů: A) Povrchové vrstvy a povlaky s vysokou tvrdostí pro podmínky adhezívního
Titanic Costa Concordia
18MTY-polymery Titanic 15. 4. 1912 Costa Concordia 13. 1. 2012 Pro dlouhou historii nesprávného užití jsou plasty vysmívány Pelíšky (1999) Definice polymerů/plastů Organické látky založené na opakující
PRÁŠKOVÉ TECHNOLOGIE RAPID PROTOTYPING
Střední průmyslová škola na Proseku Novoborská 2, 190 00 Praha 9 PRÁŠKOVÉ TECHNOLOGIE RAPID PROTOTYPING - Three Dimensional Printing - Selective Laser Sintering - Direct Metal Laser Sintering Ing. Lukáš
ELECTROCHEMICAL HYDRIDING OF MAGNESIUM-BASED ALLOYS
ELEKTROCHEMICKÉ SYCENÍ HOŘČÍKOVÝCH SLITIN VODÍKEM ELECTROCHEMICAL HYDRIDING OF MAGNESIUM-BASED ALLOYS Dalibor Vojtěch a, Alena Michalcová a, Magda Morťaniková a, Borivoj Šustaršič b a Ústav kovových materiálů
Solární kolektory - konstrukce
1/70 Solární kolektory - konstrukce základní typy části kolektoru materiály statistiky Solární kolektory - rozdělení 2/70 1 Solární tepelný kolektor 3/70 Transparentní kryt - zasklení Absorbér Sběrná trubka
6 Hybridní integrované obvody, tenkovrstvé a tlustovrstvé technologie a jejich využití
6 Hybridní integrované obvody, tenkovrstvé a tlustovrstvé technologie a jejich využití 6.1 Úvod Monolitické integrované obvody není výhodné pro některé aplikace, zejména pro přístroje s některými náročnějšími
CZ.1.07/1.1.30/01.0038
Akce: Přednáška, KA 5 Téma: MODERNÍ METODY VSTŘIKOVÁNÍ PLASTŮ (1. přednáška) Lektor: Ing. Aleš Ausperger, Ph.D. Třída/y: 3MS Datum konání: 13. 3. 2014 Místo konání: malá aula Čas: 2. a 3. hodina; od 8:50
Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů.
Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů. Násobky jednotek název značka hodnota kilo k 1000 mega M 1000000 giga G 1000000000 tera T 1000000000000 Tělesa a látky Tělesa
U BR < 4E G /q -saturační proud ovlivňuje nárazovou ionizaci. Šířka přechodu: w Ge 0,7 w Si (pro N D,A,Ge N D,A,Si ); vliv U D.
Napěťový průraz polovodičových přechodů Zvyšování napětí na přechodu -přechod se rozšiřuje, ale pouze s U (!!) - intenzita elektrického pole roste -překročení kritické hodnoty U (BR) -vzrůstu závěrného
TECHNOLOGIE POVRCHOVÝCH ÚPRAV. 1. Definice koroze. Soli, oxidy. 2.Rozdělení koroze. Obsah: Činitelé ovlivňující korozi H 2 O, O 2
TECHNOLOGIE POVRCHOVÝCH ÚPRAV Obsah: 1. Definice koroze 2. Rozdělení koroze 3. Ochrana proti korozi 4. Kontrolní otázky 1. Definice koroze Koroze je rozrušování materiálu vlivem okolního prostředí Činitelé
LŠVT 2007. Mechanické vlastnosti: jak a co lze měřm. ěřit na tenkých vrstvách. Jiří Vyskočil, Andrea Mašková HVM Plasma, Praha
Mechanické vlastnosti: jak a co lze měřm ěřit na tenkých vrstvách Jiří Vyskočil, Andrea Mašková HVM Plasma, Praha Prague, May 2005 OBSAH 1 mechanické vlastnosti objemových materiálů 1 tenké vrstvy a jejich
VYSOKOTEPLOTNÍ OXIDACE SLITIN TI-SI. T. Kubatík, D. Vojtěch, J. Šerák, B. Bártová, J. Verner
VYSOKOTEPLOTNÍ OXIDACE SLITIN TI-SI T. Kubatík, D. Vojtěch, J. Šerák, B. Bártová, J. Verner Vysoká škola chemicko technologická v Praze, Technická 5, 166 28, Praha 6, ČR ABSTRAKT Tato práce se zabývá chováním
Vlastnosti a zkoušení materiálů. Přednáška č.1 Konstrukční materiály
Vlastnosti a zkoušení materiálů Přednáška č.1 Konstrukční materiály Základní skupiny konstrukčních materiálů Materiál: Je každá pevná látka, která je určená pro další technologické zpracování ve výrobě.
3.1 Druhy karbidů a povlaků od firmy Innotool
KARBIDY A POVLAKY 3.1 Druhy karbidů a povlaků od firmy Innotool 3.1.1 Nepovlakované karbidy IN04S IN05S IN10K IN15K IN30M K10-K20 M10-M20 K10-K25 K20-K50 Jemnozrnný karbid pro obrábění Al slitin s vyšším
Charakteristika. Použití TVÁŘECÍ NÁSTROJE STŘÍHÁNÍ RIGOR
1 RIGOR 2 Charakteristika RIGOR je na vzduchu nebo v oleji kalitelná Cr-Mo-V legovaná ocel, pro kterou jsou charakteristické tyto vlastnosti: Dobrá obrobitelnost Vysoká rozměrová stálost po kalení Vysoká
vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie
Chování polymerů v elektrickém a magnetickém poli vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie dielektrikum, izolant, nevodič v
Inovace a zkvalitnění výuky prostřednictvím ICT. Obrábění. Název: Téma: Fyzikální metody obrábění 1. Ing. Kubíček Miroslav. Autor:
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Inovace a zkvalitnění výuky prostřednictvím ICT Obrábění Téma: Fyzikální metody obrábění 1 Autor: Ing. Kubíček
Polotovary vyráběné práškovou metalurgií
Polotovary vyráběné práškovou metalurgií Obsah 1. Co je to prášková metalurgie? 2. Schéma procesu 3. Výhody a nevýhody práškové metalurgie 4. Postup práškové metalurgie 5. Výrobky práškové metalurgie 6.