Techniky pořizování obrazových dat
|
|
- Gabriela Vaňková
- před 6 lety
- Počet zobrazení:
Transkript
1 , Brno Připravil: Václav Sebera, Martin Brabec, Jan Baar Předmět: Zpracování obrazu pro úlohy dřevařského inženýrství Techniky pořizování obrazových dat
2 strana 2 Obsah a) b) Lidský zrak
3 strana 3 typy energií = v f = 3e8 2.45e9 = 0.122m
4 strana 4 gamma záření Nejmenší vlnová délka/nejvyšší f a energie fotonu (ev) Důležitý nástroj pro výzkum vesmíru, medicínu (PET) a bezpečnost PET CT PET Potenciální nádor
5 strana 5 gamma záření V dřevařství byla Gamma denzitometrie nahrazena X-ray denzitometrií Válec jaderného reaktoru Cygnus přímá emitace Vysoká radiace Gamma záření a bezpečnost
6 strana 6 x-ray záření Velmi důležitý zdroj snímků zejména v medicíně, bezpečnosti, defektoskopii aj. Objeveno Wilhelmem Roentgenem (1895) Nobelova cena za medicínu v 1901)
7 strana 7 a) Radiografie x-ray záření Digitalizace X-ray filmu Záření X-ray se nechá dopadnout na např. fosforovou stěnu --> přeměna X-ray na světlo b) Angiografie snímání cév a žil Cygnusova smyčka Cygnusova smyčka Angiogram Gonzales, 2009
8 strana 8 x-ray záření c) Průmyslové aplikace vyžaduje záření o vyšší energii Kontrola plošných obvodů, svárů trubek, ropovodů, vysokotlakových nádob apod. Gonzales, 2009 Trhlina v trubce Polní X-ray defektoskopie
9 strana 9 x-ray záření - dřevařství Klasická denzitometrie (hustotní profil desek) Defektoskopie svárů dřeva Ganne 2006 Ganne 2010 Vaziri 2010
10 strana 10 magnetická nukleární rezonance (MRI) Velmi důležitý snímací nástroj, zejména v medicíně Nulová radiační zátěž (oproti X-ray CT) S nebo bez kontrastní látky Výkon = hustota magnetického toku (T), v ČR 20 µt MRI tlukoucího srdce MRI zařízení o výkonu 3T
11 strana 11 magnetická nukleární rezonance (MRI) - dřevařství Zjišťování vnitřních heterogenit ve dřevě a stromech (kavity, napadení DKH) Zjišťování vlhkosti (inspekce na zpracovatelských závodech?)
12 strana 12 teplotní snímání - termografie Snímání a vizualizace povrchové teploty (pasivní vývin tepla, aktivní řízená stimulace tepelné vlny v tělese (laser, halogenová lampa aj.) Využívá infračerveného spektra EMZ (0,4-25 µm) Nasswettrová 2011
13 strana 13 mikroskopické snímání (SEM) Scanning Electron Microscope (rastrovací EM), první konstrukce v 1937 Nepoužívá světlo, nýbrž usměrněný svazek elektronů --> interakce se vzorkem --> topografie materiálu Rozlišení i < 1 nm, nutné potažení ( pokovení ) el. vodivým prvkem (Au, Pt, Os) ESEM (environmental SEM) pro mokré a nepokovené vz. (biologické materiály) Dřevěné uhlí a hyfa DKH Pokovený pavouček ESEM - Vlákna vlny
14 strana 14 Transmission Electron Microscope, první konstrukce v 1935 Svazek elektronů --> pruchod vzorkem ( X-ray ) --> zvětšení --> CCD čip Nutné mít velmi tenký vzorek (<100 nm) Rozlišení až 50 pm mikroskopické snímání (TEM) Diamantový nůž C. elegans embryo U.S. Geological Survey Denver Microbeam Laboratory
15 strana 15 mikroskopické snímání (AFM) Atomic Force Microscopy (mikroskopie atomárních sil), vznik ~ 1986 <-- STM (1986 NC) Postaven de facto na Hookeově zákoně, Na rozdíl od SEM, TEM, AFM nabízí 3D snímek (povrch) a není třeba pokovení, ale je pomalý Kontaktní vs. nekontaktní (van der Wallsovy síly) Dřevěné uhlí a hyfa DKH Hrot AFM
16 strana 16 metody postavené na jiném než EM záření a) Akustické metody (ultrazvuk, infrazvuk, zvuk) b) Elektronové mikroskopické metody (SEM, TEM, AFM aj.) c) Počítačově generované snímky (fraktály, FEM, MPM apod.)
17 strana 17 akustické snímání Postavené na snímání šíření elastických vln (podélné, příčné) materiálem po jejich odrazech Geologie infrazvuk (<20 Hz), průzkum ložisek Atmosferické vědy/oceánografie zvuk vln, bouří, tornáda, teplota Seismologie sopky, zemětřesení, ledovce Mikrobarom hlas moře ( voice of the sea ) ~ 0,2 Hz Thumper truck Geologický vibrátor Uhlovodíková kapsa
18 strana 18 akustické snímání - dřevařství V oboru se používá zejména ultrazvuk (> 20 khz)
19 strana 19 Fraktálová geometrie, numerické výpočty (FEM, MPM, FVM, genetické alg.) Svazek elektron snímky generované počítačem
20 strana 20 Čočka % vody 6 % tuku Lehce žlutá S věkem roste obsah pigmentu Absorbuje asi 8% viditelného spektra UV a IR téměř zcela pohlcuje poškození Lidský zrak 6-7 mil. čípků, střed sítnice (fovea) --> barvy, detaily <-- každý má vlastní nerv mil. tyčinek, po celé sítnici --> s CNS spojeno 1 nervem, celková situace, nedávají barvy Skotopické vs. fotopické ve tmě ve světle zejm. tyčinky čípky taky
21 strana 21 Lidský zrak R. A. Peters, 2011
22 strana 22 Fovea Lidský zrak příklad Olympus C-5050 Zoom 1/1.8" CCD, 7.2x5.3 mm, 5.2 MegaPixel čípků/mm senzorů/mm 2
23 strana 23 Lidský zrak R. A. Peters, 2011
24 strana 24 Lidský zrak Machovy pásy 100/15 = 17/h Souběžný konstrast Gonzales, 2009
25 strana 25 Lidský zrak Wikimedia commons
26 strana 26 Lidský zrak Müller-Lyerovu iluze Gonzales, 2009
27 strana 27 Použitá a doporučená literatura Fundamental algorithms for computer graphics. Springer study ed. Rae A. Earnshaw. Berlin [u.a.]: Springer, 1991, 1042 s.. ACHARYA, Tinku a RAY. Image processing: principles and applications. Hoboken,: John Wiley, 2005, xx, 420 s. BRUCHANOV, Martin. Základy zpracování obrazů. Dostupné z: BURGER, Wilhelm a Mark James BURGE. Digital image processing: an algorithmic introduction using Java. 1st ed. New York: Springer, c2008, xx, 564 s. DOBEŠ, Michal. Zpracování obrazu a algoritmy v C#. 1. vyd. Praha: BEN - technická literatura, 2008, 143 s. EKSTROM, Michael P. Digital image processing techniques. New York: Academic Press, 1984, xiii, 372 p., [1] leaf of plates. GALETKA, Marek. Obrazová analýza rovinného řezu pěnou. Zlín, Diplomová práce. Univerzita Tomáše Bati ve Zlíně. GONZALEZ, Rafael C. a Richard E. WOODS. Digital image processing. Reading, Mass.: Addison-Wesley, c1992, xvi, 716 p. HLAVÁČ, Václav a Miloš SEDLÁČEK. Zpracování signálů a obrazů. Vyd. 2. Praha: ČVUT, 2005, 255 s. HLAVÁČ, Václav a Milan ŠONKA. Počítačové vidění. Praha: Grada, 1992, 272 s. JÄHNE, Bernd. Practical handbook on image processing for scientific and technical applications. 2nd ed. Boca Raton: CRC Press, 2004, xiii, 610 s. JÄHNE, Bernd. Digital image processing: concepts, algorithms,and scientific applications. 6th rev. and extended. New York, NY: Springer, 2005, 607 s. JAIN, Anil K. Fundamentals of digital image processing. Englewood Cliffs, NJ: Prentice Hall, c1989, xxi, 569 p. JAYARAMAN, S., ESAKKIRAJAN a T. VEERAKUMAR. Digital image processing. New Delhi: Tata McGraw Hill Education, 2009, 723 s. KOPEČNÝ, Jan. Základy fyziky: Modul 4 - Optika a tomové jádro. Ostrava: VŠB. KORBÁŘOVÁ, A. Obrazová analýza. Praha: VŠCHT, KOŠŤÁL, R. Optické soustavy. SPN, LOW, Adrian. Introductory computer vision and image processing. New York: McGraw-Hill, c1991, xii, 244 p., [4] p. of plates. LUKÁŠ, Jan. Využití obrazové analýzy v rostlinolékařské praxi. Praha: Výzkumný ústav rostlinné výroby, MARCHAND-MAILLET, Stéphane a Yazid M. SHARAIHA. Binary digital image processing: a discrete approach. San Diego: Academic Press, 2000, 251 s. MILITKÝ, Jiří. Obrazová analýza a MATLAB. Liberec: TU, MIURA, Kota. Basics of Image Processing and Analysis. Heidelberg: Centre for Molecular & Cellular Imaging, MONTABONE, Sebastian. Beginning digital image processing using free tools for photographers. New York, NY: Apress, 2010, 312 s. PRATT, William K. Digital image processing: PIKS Scientific inside. 4th ed. Hoboken, N.J: Wiley-Interscience, 2007, 808 s. ROGERS, David F. a Rae A. EARNSHAW. Computer graphics techniques: theory and practice. New York: Springer-Verlag, c1990, 542 p. RUSS, John C. The image processing handbook. 6th ed. Boca Raton: CRC Press, 2011, xviii, 867 p. SERRA, J. Image analysis and mathematical morphology. English version. London: Academic, 1984, 610 s. SCHMID, Petr. Kamerové systémy: Snímání obrazu. Blatná: SOU Blatná, 2011, 5 s. SOJKA, Eduard. Digitální zpracování a analýza obrazů. 1. vyd. Ostrava: VŠB - Technická univerzita, 2000, 133 s. STRACHOTA, Pavel. Teorie signálu pro počítačovou grafiku. Praha: ČVUT, SVOBODA, Tomáš, Jan KYBIC a Václav HLAVÁČ. Image processing, analysis, and machine vision: a MATLAB companion. Toronto: Thomson, 2008, xi, 255 s. WOJNAR, Leszek. Image analysis: applications in materials engineering. Boca Raton, FL: CRC Press, c1999, 245 p. YADAV, Abhishak a Poonam YADAV. Digital Image Processing. India: Laxmi Publications, 2009, 224 s. ZMEŠKAL, O., M. JULÍNEK a T. BŽATEK. Obrazová analýza povrchu potiskovaných materiálů a potištěných ploch. Brno: VUT. ZMEŠKAL, O., O. SEDLÁK a M. NEŽÁDAL. Metody obrazové analýzy dat. Brno: VUT, Dostupné z:
Základy matematické morfologie binárních obrazů
18. 1. 2013, Brno Připravil: Václav Sebera, Jan Tippner, Martin Brabec Předmět: Zpracování obrazu pro úlohy dřevařského inženýrství Základy matematické morfologie binárních obrazů strana 2 Obsah Princip
Úvod do zpracování obrazu
2.12.2012, Brno Připravil: Václav Sebera, Martin Brabec Předmět: Zpracování obrazu pro úlohy dřevařského inženýrství Úvod do zpracování obrazu strana 2 Obsah a) Náplň předmětu a požadavky pro jeho absolvování
Využití lokálních filtrací ve zpracování obrazu
26.10.2012, Brno Připravil: Václav Sebera, Martin Brabec, Jan Baar Předmět: Zpracování obrazu pro úlohy dřevařského inženýrství strana 2 Obsah a) Vyhlazování obrazu Odstranění šumu Abstrakce (zjednodušení)
Parametry digitálního obrazu
26. 10. 2012, Brno Připravil: Václav Sebera, Martin Brabec, Jan Baar Předmět: Zpracování obrazu pro úlohy dřevařského inženýrství Parametry digitálního obrazu strana 2 Obsah Parametry digitálního obrazu
Proces pořízení obrazu
10.1.2013, Brno Připravil: Václav Sebera, Martin Brabec Předmět: Zpracování obrazu pro úlohy dřevařského inženýrství Proces pořízení obrazu strana 2 Obsah a) Vznik snímku b) Transformace reálné scény na
Techniky mikroskopie povrchů
Techniky mikroskopie povrchů Elektronové mikroskopie Urychlené elektrony - šíření ve vakuu, ovlivnění dráhy elektrostatickým nebo elektromagnetickým polem Nepřímé pozorování elektronového paprsku TEM transmisní
ZPRACOVÁNÍ OBRAZU Úvodní přednáška
ZPRACOVÁNÍ OBRAZU Úvodní přednáška Vít Lédl vit.ledl@tul.cz TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
Mikroskopie se vzorkovací sondou. Pavel Matějka
Mikroskopie se vzorkovací sondou Pavel Matějka Mikroskopie se vzorkovací sondou 1. STM 1. Princip metody 2. Instrumentace a příklady využití 2. AFM 1. Princip metody 2. Instrumentace a příklady využití
Elektronová mikroskopie SEM, TEM, AFM
Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první
Úvod do předmětu Technická Mineralogie
Úvod do předmětu Technická Mineralogie Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 1 Osnova přednášky Organizační plán přednášek a cvičení z TM Historie a současnost TM a
Umělá inteligence a rozpoznávání
Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 11. 2. Úvod, historie a vývoj UI, základní problémové oblasti a typy úloh, aplikace UI, příklady inteligentních
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských
Zobrazovací metody v nanotechnologiích
Zobrazovací metody v nanotechnologiích Optická mikroskopie Z vlnové povahy světla plyne, že není možné detekovat menší podrobnosti než polovina vlnové délky světla. Viditelné světlo má asi 500 nm, nejmenší
Úvod, optické záření. Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014
Úvod, optické záření Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014 Materiál je pouze grafickým podkladem k přednášce a nenahrazuje výklad na vlastní
Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9.
Podivuhodný grafen Radek Kalousek a Jiří Spousta Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně Čichnova 19. 9. 2014 Osnova přednášky Úvod Co je grafen? Trocha historie Některé podivuhodné
Funkční a biomechanické vlastnosti pojivových tkání (sval, vazy, chrupavka, kost, kloub)
Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze ( https://www.lf2.cuni.cz) Biofyzika Napsal uživatel Marie Havlová dne 9. Leden 2013-0:00. Sylabus předmětu BIOFYZIKA pro letní semestr 1. ročníku,
Testování nanovlákenných materiálů
Testování nanovlákenných materiálů Eva Košťáková KNT, FT, TUL Obsah přednášky Testování nanovlákenných materiálů -Vizualizace (zobrazování nanovlákenných materiálů) -Chemické složení nanovlákenných materiálů
Analýza vrstev pomocí elektronové spektroskopie a podobných metod
1/23 Analýza vrstev pomocí elektronové a podobných metod 1. 4. 2010 2/23 Obsah 3/23 Scanning Electron Microscopy metoda analýzy textury povrchu, chemického složení a krystalové struktury[1] využívá svazek
3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).
PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost
Souhrn zkušebních metod, speciální metody, zajímavosti
Souhrn zkušebních metod, speciální metody, zajímavosti 1 Katedra stavebních hmot a hornického stavitelství VŠB - Technická univerzita Ostrava 21. 3. 2013 Metody tvrdoměrné Pomocí jednoduchých metod, které
8.1. ELEKTROMAGNETICKÉ ZÁŘENÍ A JEHO SPEKTRUM. Viditelné světlo Rozklad bílého světla:
8. Optika 8.1. ELEKTROMAGNETICKÉ ZÁŘENÍ A JEHO SPEKTRUM Jak vzniká elektromagnetické záření? 1.. 2.. Spektrum elektromagnetického záření: Infračervené záření: Viditelné světlo Rozklad bílého světla:..
Studentská tvůrčí a odborná činnost STOČ 2012
Studentská tvůrčí a odborná činnost STOČ 2012 MIKROVLNNÁ SKENOVACÍ MIKROSKOPIE Josef KUDĚLKA, Tomáš MARTÍNEK Univerzita Tomáše Bati ve Zlíně Fakulta aplikované informatiky Nad Stráněmi 4511 760 05 Zlín
Proč elektronový mikroskop?
Elektronová mikroskopie Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop,, 1 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první komerční
Ultrazvukové diagnostické přístroje. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz
Ultrazvukové diagnostické přístroje X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvuková diagnostika v medicíně Ultrazvuková diagnostika diagnostická zobrazovací
Václav Matoušek KIV. Umělá inteligence a rozpoznávání. Václav Matoušek / KIV
Umělá inteligence a rozpoznávání Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 16. 2. (3h) 2. 3. (4h) 17. 3. (5h) 14. 4. (3h) Úvod, historie a vývoj UI, základní
Studium vybraných buněčných linií pomocí mikroskopie atomárních sil s možným využitím v praxi
Studium vybraných buněčných linií pomocí mikroskopie atomárních sil s možným využitím v praxi Petr Kolář, Kateřina Tománková, Jakub Malohlava, Hana Kolářová, ÚLB Olomouc 2013 atomic force microscopy mikroskopie
Úvodní poznámky a literatura. Robotika. Úvodní poznámky a literatura. Vladimír Smutný. Centrum strojového vnímání
a literatura Robotika Úvodní poznámky a literatura Vladimír Smutný Centrum strojového vnímání Český institut informatiky, robotiky a kybernetiky (CIIRC) České vysoké učení technické v Praze Tyto podklady
Optoelektronika. Katedra fyzikální elektroniky FJFI ČVUT
Optoelektronika Katedra fyzikální elektroniky FJFI ČVUT Letní semestr 2017-2018, 26. února - 18. května 2018, 2 (z+zk), pro bakalářské obory FE, LASE a magisterský obor 2IT Pondělí 11.0 1.15 přednášky:
Moderní metody rozpoznávání a zpracování obrazových informací 15
Moderní metody rozpoznávání a zpracování obrazových informací 15 Hodnocení transparentních materiálů pomocí vizualizační techniky Vlastimil Hotař, Ondřej Matúšek Katedra sklářských strojů a robotiky Fakulta
MODEL PRŮBĚŽNÉ OHŘÍVACÍ PECE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA KYBERNETIKY MODELOVÁNÍ A SIMULACE MODEL PRŮBĚŽNÉ OHŘÍVACÍ PECE SEMESTRÁLNÍ PRÁCE Vypracoval: 2011 1 I. ZADÁNÍ Sestavte model průběžné
10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita
Chování a vlastnosti nanočástic ovlivňuje velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita K. Záruba Optická mikroskopie Elektronová mikroskopie (SEM, TEM) Fotoelektronová
Nedestruktivní defektoskopie
Nedestruktivní defektoskopie Technologie údržeb a oprav strojů Obsah Vizuální prohlídky Kapilární metody Magnetické práškové metody Ultrazvukové metody Radiodefektoskopické metody Infračervené metody Optická
ZÁKLADNÍ FOTOMETRICKÉ VELIČINY
ZÁKLADNÍ FOTOMETRICKÉ VELIČINY Ing. Petr Žák VÝVOJ ČLOVĚKA vývoj člověka přizpůsobení okolnímu prostředí (adaptace) příjem informací o okolním prostředí smyslové orgány rozhraní pro příjem informací SMYSLOVÉ
Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření
OPTIKA = část fyziky, která se zabývá světlem Studuje zejména: vznik světla vlastnosti světla šíření světla opt. přístroje (opt. soustavami) Otto Wichterle (gelové kontaktní čočky) Světlo 1) Světlo patří
Testování nanovlákenných materiálů. Eva Košťáková KNT, FT, TUL
Testování nanovlákenných materiálů Eva Košťáková KNT, FT, TUL Obsah přednášky Testování nanovlákenných materiálů -Vizualizace (zobrazování nanovlákenných materiálů) -Chemické složení nanovlákenných materiálů
ZPRACOVÁNÍ OBRAZU PRO VYHODNOCENÍ SEGREGACE DRÁTŮ
ZPRACOVÁNÍ OBRAZU PRO VYHODNOCENÍ SEGREGACE DRÁTŮ K. Horák Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně Abstrakt Zpracování obrazu se jako disciplína technické kybernetiky
Optická mikroskopie a spektroskopie nanoobjektů. Nanoindentace. Pavel Matějka
Optická mikroskopie a spektroskopie nanoobjektů Nanoindentace Pavel Matějka Optická mikroskopie a spektroskopie nanoobjektů 1. Optická mikroskopie blízkého pole 1. Princip metody 2. Instrumentace 2. Optická
OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Světlo jako částice Kvantová optika se zabývá kvantovými vlastnostmi optického
NOVÁ METODIKA PŘÍPRAVY 1 MM FÓLIÍ PRO TEM ANALÝZU AUSTENITICKÝCH OCELÍ OZÁŘENÝCH NEUTRONY. Kontaktní e-mail: bui@cvrez.cz
NOVÁ METODIKA PŘÍPRAVY 1 MM FÓLIÍ PRO TEM ANALÝZU AUSTENITICKÝCH OCELÍ OZÁŘENÝCH NEUTRONY Petra Bublíková 1, Vít Rosnecký 1, Jan Michalička 1, Eliška Keilová 2, Jan Kočík 2, Miroslava Ernestová 2 1 Centrum
Úvod do zpracování obrazů. Petr Petyovský Miloslav Richter
Úvod do zpracování obrazů Petr Petyovský Miloslav Richter 1 OBSAH Motivace, prvky a základní problémy počítačového vidění, pojem scéna Terminologie, obraz, zpracování a analýza obrazu, počítačové vidění,
Zobrazování. Zdeněk Tošner
Zobrazování Zdeněk Tošner Ultrazvuk Zobrazování pomocí magnetické rezonance Rentgen a počítačová tomografie (CT) Ultrazvuk Akustické vlnění 20 khz 1 GHz materiálová defektoskopie sonar sonografie (v lékařství
DIAGNOSTICKÝ SYTÉM M PRO KONTROLU ITÍM M METODY AKUSICKÉ EMISE
DIAGNOSTICKÝ SYTÉM M PRO KONTROLU LOŽISEK S VYUŽIT ITÍM M METODY AKUSICKÉ EMISE autor: Ing. školitel: doc. Ing. Pavel Mazal, CSc. Čím více víme, tím více zjišťujeme, kolik toho ještě nevíme. 2 /15 OBSAH
MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA
MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ
Viková, M. : MIKROSKOPIE V Mikroskopie V M. Viková
Mikroskopie V M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz Hloubka ostrosti problém m velkých zvětšen ení tloušťka T vrstvy vzorku kolmé k optické ose, kterou vidíme ostře zobrazenou Objektiv
( nositelné. Milan Švanda, Milan Polívka. X17NKA Návrh a konstrukce antén
Návrh a konstrukce antén Antény ny pro RFID a wearable ( nositelné é ) ) antény ny Milan Švanda, Milan Polívka Katedra elektromagnetického pole www.svandm1.elmag.org svandm1@fel.cvut.cz 624 / B2 Obsah
STUDIUM HLADINOVÉHO ELEKTROSTATICKÉHO
STUDIUM HLADINOVÉHO ELEKTROSTATICKÉHO ZVLÁKŇOVÁNÍ J. Kula, M. Tunák, D. Lukáš, A. Linka Technická Univerzita v Liberci Abstrakt V posledních letech se uplatňuje výroba netkaných, nanovlákenných vrstev,
Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010
Ing. Jan Buriánek (ČVUT FIT) Barvy a barevné prostory I BI-MGA, 2010, Přednáška 3 1/32 Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v
Bezkontaktní termografie
Bezkontaktní termografie Biofyzikální ústav LF MU Elektromagnetické spektrum http://cs.wikipedia.org/wiki/soubor:elmgspektrum.png Bezkontaktní termografie 2 Zdroje infračerveného záření Infračervené záření
Barevné vidění Josef Pelikán CGG MFF UK Praha
Barevné vidění 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ ColorPerception 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 15 Co je světlo? Špatnota
Publikováno z 2. lékařská fakulta Univerzity Karlovy ( LF2 > Biofyzika
Publikováno z 2. lékařská fakulta Univerzity Karlovy (https://www.lf2.cuni.cz) LF2 > Biofyzika Biofyzika Napsal uživatel Marie Havlová dne 23. Září 2011-0:00. Sylabus předmětu Biofyzika pro zimní semestr
Mikroskopie rastrující sondy
Mikroskopie rastrující sondy Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Metody mikroskopie rastrující sondy SPM (scanning( probe Microscopy) Metody mikroskopie rastrující sondy soubor
Elektronová mikroskopie a mikroanalýza-2
Elektronová mikroskopie a mikroanalýza-2 elektronové dělo elektronové dělo je zařízení, které produkuje elektrony uspořádané do svazku (paprsku) elektrony opustí svůj zdroj katodu- po dodání určité množství
Metody charakterizace
Metody y strukturní analýzy Metody charakterizace nanomateriálů I Význam strukturní analýzy pro studium vlastností materiálů Experimentáln lní metody využívan vané v materiálov lovém m inženýrstv enýrství:
ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII
ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII Lidské oko jako optická soustava dvojvypuklá spojka obraz skutečný, převrácený, mozek ho otočí do správné polohy, zmenšený rozlišovací schopnost oka cca 0.25
Expozice člověka neionizujícímu záření Současný stav a změny
České vysoké učení technické v Praze Katedra elektromagnetického pole Státní zdravotní ústav Národní referenční laboratoř pro neionizující elektromagnetická pole a záření Expozice člověka neionizujícímu
EM, aneb TEM nebo SEM?
EM, aneb TEM nebo SEM? Jiří Šperka Přírodovědecká fakulta, Masarykova univerzita, Brno 2. únor 2011 / Prezentace pro studentský seminář Jiří Šperka (Masarykova univerzita) SEM a TEM 2. únor 2011 1 / 21
Technická Diagnostika Komponent. NDT - LT a nová technika 2.6.2007 Piešťany
Technická Diagnostika Komponent NDT - LT a nová technika 2.6.2007 Piešťany Kontroly nepřístupných míst Kontroly nepřístupných míst Při kontrolách je inspekční pracovník (defektoskopický technik, revizní
Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113
Sluneční energie, fotovoltaický jev Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 1 Osnova přednášky Slunce jako zdroj energie Vlastnosti slunečního
DFT 1D i 2D obrázkové připomenutí a trošku konvoluce 1
DFT D i 2D obrázkové připomenutí a trošku konvoluce Tomáš Svoboda Czech Technical University, Faculty of Electrical Engineering Center for Machine Perception, Prague, Czech Republic svoboda@cmp.felk.cvut.cz
Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země
Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný
ZPRÁVA Z TERMOGRAFICKÉHO MĚŘENÍ
ZPRÁVA Z TERMOGRAFICKÉHO MĚŘENÍ TM09139 Měřená zařízení: Vybrané části rodinného domu v Blansku Objednatel: Yvetta Hlaváčová Popis práce: Mimořádné termovizní měření Datum měření: 15.12. 09 Nebylo měřeno:
Spektroskopické é techniky a mikroskopie. Spektroskopie. Typy spektroskopických metod. Cirkulární dichroismus. Fluorescence UV-VIS
Spektroskopické é techniky a mikroskopie Spektroskopie metody zahrnující interakce mezi světlem (fotony) a hmotou (elektrony a protony v atomech a molekulách Typy spektroskopických metod IR NMR Elektron-spinová
Spektrální charakteristiky
Spektrální charakteristiky Cíl cvičení: Měření spektrálních charakteristik filtrů a zdrojů osvětlení 1 Teoretický úvod Interakcí elektromagnetického vlnění s libovolnou látkou vzniká optický jev, který
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.
08 - Optika a Akustika
08 - Optika a Akustika Zvuk je mechanické vlnění v látkovém prostředí, které je schopno vyvolat sluchový vjem. Člověk je schopen vnímat vlnění o frekvenci 16 Hz až 20000 Hz (20kHz). Frekvenci nižší než
VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ
VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro
Fyzikální podstata DPZ
Elektromagnetické záření Vlnová teorie vlna elektrického (E) a magnetického (M) pole šíří se rychlostí světla (c) Charakteristiky záření: vlnová délka (λ) frekvence (ν) Fyzikální podstata DPZ Petr Dobrovolný
INTERAKCE IONTŮ S POVRCHY II.
Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených
P. Petyovsk", MAPV Aplikace po"íta"ového vid#ní v dopravních úlohách2, Virtualizovaná realita
P!edná!ka kurzu MAPV Aplikace po"íta"ového vid#ní v dopravních úlohách2 Virtualizovaná realita P. Petyovsk" (email: petyovsk@feec.vutbr.cz), kancelá! E530, Integrovan" objekt - 1/12 - Pojmy a opakování!...
Elektromagnetická záření
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Elektromagnetická záření Světlo je elektromagnetické vlnění a jeho zdrojem jsou přeměny energie v atomech a
PŘEDNÁŠKA KURZU MPOV
1 PŘEDNÁŠKA KURZU MPOV Zpracování obrazu v dopravních aplikacích P. Petyovský (email: petyovsky@feec.vutbr.cz) kancelář SD3.152, Technická 12 2 rev. 2015.4 Pojmy a opakování Definice dopravní telematiky,
EXPERIMENTÁLNÍ A SIMULAČNÍ SADA ÚLOH Z FOTONIKY
EXPERIMENTÁLNÍ A SIMULAČNÍ SADA ÚLOH Z FOTONIKY Martin Řeřábek, Petr Páta ČVUT, Fakulta elektrotechnická, katedra Radioelektroniky Abstrakt V rámci přípravy nového předmětu Obrazová otonika byla vytvořena
Ultrazvuková defektoskopie. Vypracoval Jan Janský
Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací
Elektrodynamika, elektrický proud v polovodičích, elektromagnetické záření, energie a její přeměny, astronomie, světelné jevy
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Elektrodynamika, elektrický proud v polovodičích, elektromagnetické záření, energie a její přeměny, astronomie, světelné jevy Kvarta 2 hodiny týdně
Úvod do předmětu Technická Mineralogie
Úvod do předmětu Technická Mineralogie Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 1 Osnova přednášky Organizační plán přednášek a cvičení z TM Historie a současnost TM a
Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok
Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok 2014-15 Stavba hmoty Elementární částice; Kvantové jevy, vlnové vlastnosti částic; Ionizace, excitace; Struktura el. obalu atomu; Spektrum
Historie vláknové optiky
Historie vláknové optiky datuje se zpět 200 let, kde postupně: 1790 - franc. inženýr Claude Chappe vynalezl optický telegraf 1840 - Daniel Collodon a Jacque Babinet prokázali, že světlo může být vedeno
Okruhy k maturitní zkoušce z fyziky
Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální
FYZIKA Elektromagnetické vlnění
Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Elektromagnetické
Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček
Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček Druhy mikroskopie Podle druhu použitého paprsku nebo sondy rozeznáváme tyto základní druhy mikroskopie: Světelná mikrokopie
Studentská 1402/2 461 17 Liberec 1 tel.: +420 485 353 006 cxi.tul.cz
Pokročilé simulace pro komplexní výzkum a optimalizace Ing. Michal Petrů, Ph.D. Studentská 1402/2 461 17 Liberec 1 tel.: +420 485 353 006 cxi.tul.cz Stránka: 2 Modelové simulace pro komplexní výzkum Mechanických
Inovace a zkvalitnění výuky prostřednictvím ICT Technické vybavení Digitální fotoaparáty Ing. Jakab Barnabáš
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Technické vybavení Digitální fotoaparáty
Distribuované sledování paprsku
Distribuované sledování paprsku 1996-2015 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ pepca@cgg.mff.cuni.cz DistribRT 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 24 Distribuované
Nařízení vlády č. 291/2015 Sb.
Nařízení vlády č. 291/2015 Sb. Pavel Buchar, Lukáš Jelínek Národní referenční laboratoř pro neionizující elektromagnetická pole a záření Osnova Neionizujicí záření úvod Historie vědeckého poznání neionizujícího
Measurement of fiber diameter by laser diffraction Měření průměru vláken pomocí laserové difrakce
Progres in textile science and technology TUL Liberec 24 Pokroky v textilních vědách a technologiích TUL v Liberci 24 Sec. 9 Sek. 9 Measurement of fiber diameter by laser diffraction Měření průměru vláken
Optické měření deformace metodou korelace digitálního obrazu
15. 11. 2012, Brno Připravil: Václav Sebera, Jan Tippner Předmět: Zpracování obrazu pro úlohy dřevařského inženýrství Optické měření deformace metodou korelace digitálního obrazu strana 2 Obsah Optické
6. Elektromagnetické záření
6. Elektromagnetické záření - zápis výkladu - 34. až 35. hodina - A) Elektromagnetické vlny a záření (učebnice strana 86-95) Kde všude se s nimi setkáváme? Zapneme-li rozhlasový nebo televizní přijímač
Počítačová geometrie I
0 I RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Osnova předmětu Pojem výpočetní geometrie, oblasti
CHARAKTERIZACE MIKROSTRUKTURY OCELÍ POMOCÍ POMALÝCH A VELMI POMALÝCH ELEKTRONŮ
CHARAKTERIZACE MIKROSTRUKTURY OCELÍ POMOCÍ POMALÝCH A VELMI POMALÝCH ELEKTRONŮ Aleš LIGAS 1, Jakub PIŇOS 1, Dagmar JANDOVÁ 2, Josef KASL 2, Šárka MIKMEKOVÁ 1 1 Ústav přístrojové techniky AV ČR, v.v.i.,
Ultrazvukové diagnostické přístroje. X31LET Lékařskátechnika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz
Ultrazvukové diagnostické přístroje X31LET Lékařskátechnika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvukové diagnostické přístroje 1. Ultrazvuková diagnostika v medicíně 2. Fyzikální
Diagnostické ultrazvukové přístroje. Lékařské přístroje a zařízení, UZS TUL Jakub David kubadavid@gmail.com
Diagnostické ultrazvukové přístroje Lékařské přístroje a zařízení, UZS TUL Jakub David kubadavid@gmail.com Ultrazvukové diagnostické přístroje 1. Ultrazvuková diagnostika v medicíně 2. Fyzikální princip
Skenovací tunelová mikroskopie a mikroskopie atomárních sil
Skenovací tunelová mikroskopie a mikroskopie atomárních sil M. Vůjtek Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky v rámci projektu Vzdělávání výzkumných
Světlo. Podstata světla. Elektromagnetické záření Korpuskulární charakter. Rychlost světla. Vlnová délka. Vlnění, foton. c = 1 079 252 848,8 km/h
Světlo Světlo Podstata světla Elektromagnetické záření Korpuskulární charakter Vlnění, foton Rychlost světla c = 1 079 252 848,8 km/h Vlnová délka Elektromagnetické spektrum Rádiové vlny Mikrovlny Infračervené
Princip rastrovacího konfokálního mikroskopu
Konfokální mikroskop Obsah: Konfokální mikroskop... 1 Princip rastrovacího konfokálního mikroskopu... 1 Rozlišovací schopnost... 2 Pozorování povrchů ve skutečných barvách... 2 Konfokální mikroskop Olympus
EXPERIMENTÁLNÍ MECHANIKA 2
EXPERIMENTÁLNÍ MECHANIKA 2 2. přednáška Jan Krystek 28. února 2018 EXPERIMENTÁLNÍ MECHANIKA Experiment slouží k tomu, abychom pomocí experimentální metody vyšetřili systém veličin nutných k řešení problému.
Studijní opora pro předmět Technologie elektrotechnické výroby
Studijní opora pro předmět Technologie elektrotechnické výroby Doc. Ing. Václav Kolář Ph.D. Předmět určen pro: Fakulta metalurgie a materiálového inženýrství, VŠB-TU Ostrava. Navazující magisterský studijní
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části
METODY ANALÝZY POVRCHŮ
METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější
Základy zpracování obrazů
Základy zpracování obrazů Martin Bruchanov BruXy bruxy@regnet.cz http://bruxy.regnet.cz 23. března 29 1 Jasové korekce........................................................... 1 1.1 Histogram........................................................
Digitalizace a zpracování obrazu
Digitalizace a zpracování obrazu Jaroslav Fiřt a), Radek Holota b) a) Nové technologie výzkumné centrum Sedláčkova 15 306 14 Plzeň tel. (+420) 377236881, kl. 237 e-mail: firt@kae.zcu.cz b) Nové technologie