Požárníbezpečnost. staveb Přednáška 9 -Zásady navrhování vzduchotechnických zařízení, druhy větracích systémů
|
|
- Dominik Bařtipán
- před 8 lety
- Počet zobrazení:
Transkript
1 Požárníbezpečnost bezpečnoststaveb staveb Přednáška 9 -Zásady navrhování vzduchotechnických zařízení, druhy větracích systémů Ing. Daniel Adamovský, Ph.D. Katedra technických zařízení budov daniel.adamovsky@fsv.cvut.cz
2 Úvodní přednáška vzduchotechniky Proč větráme? Vzduch a popis jeho stavu Stanovení množství vzduchu Základní rozdělení vzduchotechnických systémů Využití základních typů Systémy nuceného větrání Části systému nuceného větrání Přehled důležitých norem a předpisů Shrnutí a závěr 2
3 Proč větráme? Dýchání Dospělý člověk dýchá 16 krát za minutu při nízké fyzické aktivitě 8 l/min. Spotřeba kyslíku je mezi ml/min Průběh při dýchání Do plic vdechujeme okolní vzduch-21 % O 2, 78 % N 2, 0,03 % CO 2 Z plic vydechujeme -16 % O 2, 79 % N 2, 4 % CO 2 (plus vodní pára) 3
4 Proč větráme? Produkce škodlivin Lidská aktivita CO 2, vodní pára (produkty dýchání a odparu z povrchu těla) Vybavení Nábytek, podlahy VOC - Volatile Organic Compounds(těkavé organické sloučeniny) Technologie Zvířata Venkovní zdroje znečištění Doprava CO, NH x, země plyn radon uvolněný z podloží, nebezpečný v případě dlouhodobé expozice. 4
5 Proč větráme? Vnitřní prostředí musí splnit podmínky pro pobyt lidí a jejich aktivitu. Kvalita prostředí a komfort V průmyslových budovách jde i o bezprostřední ochranu zdraví. Zajištění podmínek pro technologické procesy (výroba, čisté prostory) V zemědělských budovách vztahujeme požadavky na prostředí vhodné pro zvířata. Větrání je jeden z nezbytných systémů zajišťujících obyvatelné prostředí. 5
6 Vzduch a jeho stav Co to je vzduch? Termínem vzduch nazýváme ve vzduchotechnice vlhký vzduch Směs suchého vzduchu a vodní páry okupující společný objem homogenní směs nastává pokud je voda ve směsi v plynném stavu heterogenní směs ve vzduchu jsou obsaženy různé fáze vody (kapky, sníh, ledové krystalky) 6
7 Vzduch a jeho stav Jak vyjadřujeme stav vzduchu? Daltonův zákon Celkový tlak směsi plynů pje dán součtem dílčích (parciálních) tlaků jednotlivých složek p i. Vyjadřuje poměr zastoupení jednotlivých složek ve směsi p = Σ p i = p sv + p vp [Pa] p sv parciální tlak suchého vzduchu [Pa] p vp parciální tlak vodní páry [Pa] 7
8 Vzduch a jeho stav Jak vyjadřujeme stav vzduchu? Nasycený vzduch Množství vodní páry obsažené ve směsi vlhkého vzduchu se může měnit. Stav při kterém vzduch pojme maximální množství vodní páry se nazývá nasycení. Je závislé pouze na teplotě, čím vyšší je teplota vzduchu tím více vodních par vzduch pojme. Parciální tlak nasycené vodní páry p vp 8
9 Vzduch a jeho stav Jak vyjadřujeme stav vzduchu? Teplota rosného bodu Teplota vzduchu při které je maximálně nasycen vodními parami. Když teplota vzduchu klesne pod tuto teplotu, vodní pára začne měnit skupenství kondenzovat. 9
10 Vzduch a jeho stav Jak vyjadřujeme stav vzduchu? Veličiny popisující stav vlhkého vzduchu Pro přesné určení stavu potřebujeme 3 veličiny Vyjádření teploty: Teplota suchého teploměru t [ C] obvykle zkráceně teplota vzduchu Teplota vlhkého teploměru t m, t wb [ C] -teplota, kterou vzduch dosáhne při nasycení vypařováním vody nejnižší teplota adiabatického procesu vlhkého vzduchu 10
11 Vzduch a jeho stav Jak vyjadřujeme stav vzduchu? Veličiny popisující stav vlhkého vzduchu Vyjádření vlhkosti vzduchu: Měrná vlhkost x [kg/kg s.v., g/kg s.v.] -definována jako poměr hmotnosti m vodní páry p m vp a suchého vzduchu m sv x v 0 v p p = m =, p p s v v 6 p 2 Relativní 2vlhkost ϕ, rh[-, %]-definována poměrem parciálního tlaku vodní páry a parciálního tlaku nasycené vodní páry při konstantní teplotě v podstatě p vyjadřuje míru nasycení vzduchu vodní parou r v h = p v p 11
12 Vzduch a jeho stav Jak vyjadřujeme stav vzduchu? Veličiny popisující stav vlhkého vzduchu Vyjádření tepelného potenciálu: Měrná entalpie h [J/kg s.v.] -definována jako součet entalpií jednotlivých částí směsi vlhkého vzduchu při její změně potom vyjadřuje množství sděleného tepla h = h sv + h vp = c sv.t + x.(c vp.t + l) c sv měrná tepelná kapacita suchého vzduchu = 1010 [J/kg.K] c vp měrná tepelná kapacita vodní páry = 1840 [J/kg.K] x měrná vlhkost vlhkého vzduchu [kg/kg s.v.] t teplota stavu vzduchu [ C] l skupenské teplo vypařování vody = 2500 [kj] 12
13 Přehled úprav stavů vzduchu Úprava teploty vzduchu: Ohřev zvyšování teploty vzduchu dodáním tepla přes ohřívač Chlazení snižování teploty vzduchu odvodem tepla přes chladič, při teplotě povrchu chladiče nižší než teplota rosného bodu kondenzace vodní páry ze vzduchu. Úprava vlhkosti: Vlhčení vzduchu vodou, nebo parou. Ve zvlhčovací komoře je rozstřikována voda nebo pára do proudu vzduchu. Směšování: Řízené mísení cirkulačního a čerstvého vzduchu. Filtrace: Snižování obsahu pevných částic v proudu vzduchu. Vzduch filtrujeme minimálně na vstupech do jednotky (ochrana jednotky) a výstupu přiváděného vzduchu. 13
14 Stanovení množství vzduchu Rozlišujeme názvosloví: Přiváděný vzduch (p) skládá se z čerstvého, případně směsi čerstvého a cirkulačního vzduchu. Čerstvý vzduch (e) venkovní vzduch Cirkulační vzduch (c) znovu použitá část odváděného (o) vzduchu z interiéru Odpadní vzduch (odp) nevyužitá část odváděného vzduchu, opouští systém (využití ZZT) V e t e V p = V e +V c t p V c V odp t i V o 14
15 Stanovení množství vzduchu Pro účely větrání Intenzita větrání podíl přivedeného čerstvého vzduchu k objemu místnosti Podle produkce škodlivin výpočet množství čerstvého vzduchu na základě návrhové produkce, nutné stanovit rozhodující škodlivinu. Pro účely teplovzdušného vytápění a klimatizace Podle tepelné ztráty a zátěže výpočet množství přiváděného vzduchu Vždy nutné dodržet minimální podíl čerstvého vzduchu 15 % z přiváděného. Ostatní účely, předběžný návrh Intenzita výměny vzduchu podíl přiváděného vzduchu k objemu místnosti 15
16 Základní rozdělení Obecná definice: Větrání představuje výměnu znehodnoceného vzduchu vprostoru za venkovní čerstvý vzduch, případně neznehodnocený vzduch přiváděný z okolních prostor. Jak větrání probíhá? Pro zajištění větrání musíme uvést vzduch do pohybu - vytvořit vzduchový proud určitého průtoku. Hybným činitelem je rozdíl tlaků vzduchu. 16
17 Základní rozdělení Přirozené větrání Principem je účinek rozdílu měrných hmotnostní vnitřního a venkovního vzduchu o různé teplotě a působení větru. Nucené větrání Nucené větrání je založeno výhradně na změně dynamického tlaku vynucené prací mechanického zařízení ventilátoru. Hybridní větrání Spočívá v řízené kombinaci mechanického a přirozeného větrání. 17
18 Základní rozdělení Přirozené větrání Rozdíl tlaků vzduchu je dán účinkem rozdílu měrných hmotnostní vnitřního a venkovního vzduchu o různé teplotě dynamickým působením větru. N.R. neutrální rovina atmosférický tlak p a v letním období: menší rozdíl t než v zimě nižší p vyšší požadovaná výška HL t i > t e ρ i < ρ e p = p e p i = h g ( ρ ρ ) [ Pa] e i 18
19 Základní rozdělení Nucené větrání Nucené větrání je založeno výhradně na změně dynamického tlaku vynucené prací mechanického zařízení ventilátoru. 19
20 Základní rozdělení Hybridní větrání Spočívá v řízené kombinaci mechanického a přirozeného větrání. 20
21 Využití základních typů Přirozené větrání Infiltrace větrání spárami vobvodových konstrukcích (nejen okna, ale i stěny) Provětrávání cílené větrání otevíranými okenními otvory 21
22 Využití základních typů Přirozené větrání Aerace větrání pomocí otvorů umístěných nad sebou s dostatečným výškovým rozdílem Šachtové větrání pomocí kombinace otvorů a šachet Aerační světlík 22
23 Využití základních typů Přirozené větrání Vliv okolních budov, terénu, vystavení převládajícímu větru a orientace 23
24 Využití základních typů Přirozené větrání Vliv tvaru budovy 24
25 Využití základních typů Příklad přirozeného větrání budovy School of Engineering, De Montfort University, Leicester, GB. Systém využívá různě rozmístěných větracích věží, světlíků, apod. Waste air Pozor na lokální průvan! Air flow through lecture rooms, corridors Fresh air through controlled inlets 25
26 Využití základních typů Nucené větrání Rozdělení z hlediska tlaku vzduchu ve větraném prostoru: systém rovnotlaký-do větraného prostoru přivádíme stejné množství vzduchu jako odvádíme. Vprostoru nevzniká tlakový rozdíl. systém podtlakový-do větraného prostoru přivádíme méně vzduchu než zněj odvádíme. Vprostoru dochází ke snížení tlaku, tento rozdíl je kompenzován přirozeným přívodem vzduchu spárami přes hranici prostoru. systém přetlakový-do větraného prostoru přivádíme více vzduchu než zněj odvádíme. V prostoru roste tlak, rozdíl je kompenzován únikem vzduchu spárami v hranici (obálce) prostoru. - dominantní způsob zajištění chráněných únikových cest. 26
27 Využití základních typů Nucené větrání Rozdělení podle účelu: větrání-výměna znehodnoceného vzduchu za čerstvý venkovní teplovzdušné vytápění-řízená výměna vzduchu zajišťující požadovanou teplotu vprostoru. Teplota přiváděného vzduchu je vyšší než vzduchu vprostoru a teplotní rozdíl společně sobjemovým průtokem vzduchu sdílí do prostoru tepelný výkon kryjící celou nebo část tepelné ztráty. Obvykle je systém využíván i k větrání. klimatizace-řízená úprava stavu vnitřního prostředí přívodním vzduchem. U přiváděného vzduchu jsou upravovány teplotní i vlhkostní parametry, čímž společně s filtrací komplexně upravuje stav vnitřního mikroklimatu 27
28 Využití základních typů Nucené větrání Rozdělení podle účelu: odsávání -představuje nucený odvod plynných či tuhých škodlivin přímo zmísta produkce obvykle dále doplněné o odlučování, sorpci nebo neutralizaci příměsí. průmyslová vzduchotechnika -průmyslová vzduchotechnika spadá do skupiny účelových zařízení pokrývající konkrétní požadované funkce. Průmyslovou vzduchotechniku často pojí přímé vazby stechnologií větraného prostoru. Dalšími účelovými zařízeními jsou havarijní a požární větrání, vzduchové sprchy a clony aj. 28
29 Využití základních typů Nucené větrání Rozdělení - a mnoho dalších způsobů hlediska prostoru vztah VZT zařízení a větrané budovy Centrální zařízení obsluhuje celou nebo významnou část budovy Místní zařízení je umístěné v blízkosti, nebo v místě, kde plní svou funkci průtoku vzduchu Konstantní průtok vzduchu není měněn v závislosti na změně podmínek ve větraném prostoru Proměnný průtok vzduchu je řízený podle aktivity ve větraném provozu (počet lidí, produkce škodlivin, aj.) Tlaku podle celkového tlaku vyvozeného ventilátorem Nízkotlaké max Pa Středotlaké 1000 až 3000 Pa Vysokotlaké přes 3000 Pa 29
30 Využití základních typů Nucené větrání - příklady Současný základ bytového větrání -Lokální odtah znečištěného vzduchu z koupelny, WC s přívodem čerstvého vzduchu přes obytné prostory Převzato z podkladů firmy Lunos ODVÁDĚNÝ VZDUCH PŘÍVOD ČERSTVÉHO VZDUCHU 30
31 Využití základních typů Nucené větrání - příklady Nadstandardní řešení -Centrální systém teplovzdušného vytápění a větrání (nezbytné pro domy s nízkou spotřebou energie) ODPADNÍ VZDUCH PŘÍVOD ČERSTVÉHO VZDUCHU PŘIVÁDĚNÝ VZDUCH ODVÁDĚNÝ VZDUCH 31
32 Využití základních typů Nucené větrání - příklady Centrální klimatizační systém ODPADNÍ VZDUCH ODVÁDĚNÝ VZDUCH KLIMATIZOVANÝ PROSTOR CIRKULAČNÍ VZDUCH PŘÍVOD ČERSTVÉHO VZDUCHU VZDUCHOTECHNICKÁ JEDNOTKA PŘIVÁDĚNÝ VZDUCH 32
33 Systémy nuceného větrání Z čeho se skládá centrální systém vzduchotechniky? Vzduchotechnická jednotka Potrubí přívod a odvod vzduchu Distribuce vzduchu výustě, anemostaty Ostatní koncová zařízení fancoily, VAV boxy Regulační zařízení - klapky 33
34 Systémy nuceného větrání Základní řešení systémů centrální VZT Výhradně podtlakový systém z prostoru je pouze vzduch odváděn prostor je udržován v podtlaku přiváděný vzduch proudí přes hranici zóny z exteriéru, případně okolních prostor pouze jeden rozvod potrubí používá se pro oddělení větraného prostoru od okolních, zabráníme úniku škodlivin do okolí používá se pro podružné prostory toalety, koupelny a šatny podzemní garáže může se kombinovat s jiným systémem, který zajistí přívod vzduchu a jeho úpravu používá se výhradně pro větrání 34
35 Systémy nuceného větrání Základní řešení systémů centrální VZT Standardní systém nejběžnější systém s jednotrubním přívodem a odvodem vzduchu, vyústky napojené přímo na potrubí, centrální VZT jednotka s centrální regulací s minimálním ohledem na požadavky v jednotlivých zónách unifikovaná vzduchotechnika, vhodný pro budovy s rovnoměrnou tepelnou ztrátou/zátěží tepla a produkcí škodlivin, není vhodný, pokud se v jednotlivých provozech v čase požadavky mění, jednoduchý na provoz a údržbu. typický pro: menší administrativní budovy, případně velkoprostorové kanceláře obchodní centra supermarkety s jedním rozlehlým provozem menší samostatné provozy např. restaurace, kavárny aj. 35
36 Systémy nuceného větrání Základní řešení systémů centrální VZT Systém s fancoily nejběžnější systém v novostavbách i rekonstrukcích v centrální vzduchotechnické jednotce je upraveno pouze minimální hygienické množství čerstvého vzduchu, které je dopraveno do jednotlivých zón. v každé zóně je lokální jednotka zajišťuje koncovou úpravu teploty vzduchu, zajišťuje směšování čerstvého vzduchu s cirkulačním vestavěny výměníky pro chlazení a ohřev vzduchu v případě chlazení je nutné zajistit odvod kondenzátu využívá se pro: nejrozšířenější v administrativních budovách komerční objekty, zejména s různě velikými jednotlivými obchody 36
37 Systémy nuceného větrání Základní řešení systémů centrální VZT Systém s fancoily - fancoil 1 ohřívač 2 chladič 3 ventilátor jednotka s ventilátorem a výměníky (chlazení a/nebo ohřev vzduchu) varianty provedení/provozu: centralizovaný přívod upraveného primárního vzduchu do jednotky decentralizovaný přímý přívod čerstvého venkovního vzduchu bez úpravy cirkulační jednotka pracuje pouze s cirkulačním vzduchem varianty umístění: nástěnné, podstropní, parapetní, kazetové v podhledu, potrubní zabudované do vzduchotechnického potrubí, aj. výměník zpravidla vodní, u chlazení může být i přímý výparník chladivového okruhu autonomní regulace je-li současně k dispozici zdroj tepla i chladu mohou jednotky v některých místnostech současně chladit a v jiných topit podle požadavků daného prostoru další možné součásti filtr prachu (tabákového kouře, pachů, pylu apod.), ionizátor vzduchu 37
38 Systémy nuceného větrání Decentrální systémy větrání umožňuje pro jednotlivé části prostoru definovat odlišné podmínky vhodné pro halové prostory, velké prostory s různými místními požadavky hospodárné teplovzdušné vytápění pomocí malých teplovzdušných jednotek lze navrhovat maximálně do výšky haly H = 8 10 m. významný vliv má cirkulace vzduchu ve vytápěném objektu rozhánění podstropních polštářů teplého vzduchu - destratifikátory jinak nastane vytváření teplého polštáře pod střešním pláštěm a nedotápění v oblasti pobytu člověka 38
39 Systémy nuceného větrání Decentrální systémy větrání Provoz a koncepce 39
40 Systémy nuceného větrání Decentrální systémy větrání Výhody: možnost zónování, nevyžaduje potrubí, nebo jen krátké, čerstvý vzduch není znehodnocován v obtížně udržovatelných vzduchovodech, možnost lokálního decentralizovaného automatického řízení a regulace jednotek, zužitkování tepelného polštáře pod střechou, Nevýhody: větší počet menších zařízení (údržba), náročnější rozvody teplonosných látek, 40
41 Části systémů nuceného větrání Vzduchotechnické jednotky Základní rozdělení sestavné jednotka je sestavena z jednotlivých dílů reprezentujících funkční části (tzv. komory ventilátorová komora, komora ohřívače, chladiče apod.) podle individuálních požadavků díly je možné snadno spojovat umožní velmi variabilní možnosti sestav tvarové i funkční 41
42 Části systémů nuceného větrání Vzduchotechnické jednotky Základní rozdělení kompaktní (blokové/skříňové) blokové jednotky jsou tvořeny základním rámem pro danou rozměrovou řadu vnitřní sestava vybavení jednotky zůstává variabilní při zachování rozměrů základního rámu umožňují velmi kompaktní technické řešení VZT jednotky s menšími vnějšími rozměry než sestavné nižší tvarová variabilita 42
43 Části systémů nuceného větrání Potrubí pro rozvod vzduchu Čtyřhranné potrubí pozinkované ocelové tl mm pro přetlak +1000, podtlak -630 Pa Rozměry AxB např. 500x315 mm Spoje příruby spojované šroubovými spoji potrubí se dělí do kategorií podle pracovního tlaku a požadované těsnosti (A nejobvyklejší, B, C) A B AxB: 125, 200, 250, 300, 315, 400, 500, 600, 630, 710, Pictures from technical parameters
44 Části systémů nuceného větrání Potrubí pro rozvod vzduchu Kruhová potrubí pozinkované ocelové mm pro přetlak/ podtlak +1500/-630 Pa Průměr D např. 500 mm potrubí se dělí do kategorií podle pracovního tlaku a požadované těsnosti (A nejobvyklejší, B, C) Hladké trouby žebrované spiro D D: 80, 100, 125, 140, 160, 180, 200, 225, 250, 315, 355, 400, 450, 500, 560, 630, 710, 800 Pictures from technical parameters 44
45 Části systémů nuceného větrání Distribuce vzduchu základní typy proudění Směšování Vytěsňování Zaplavování Přiváděný vzduch se bezprostředně mísí s vnitřním Čerstvý vzduch se rychle kontaminuje škodlivinami Vysoké rychlosti přiváděného vzduchu 2 8 m/s (hluk, průvan) Nejčastější systém 45 Nedochází ke směšování Minimální turbulence vzduchu (základní požadavek) Čerstvý vzduch jako píst vytlačí znečištěný Čisté prostory Nízké rychlosti přiváděného vzduchu do 0,5 m/s Rozdíl teploty mezi vnitřním a přiváděným 1 až 3 K Nízká turbulence Pouze pro chlazení studený vzduch proudí po podlaze a ohřívá se od lokálních tepelných zdrojů, stoupá vzhůru Velkoplošné přívodní výustě
46 Části systémů nuceného větrání Distribuce vzduchu Příklady distribučních prvků 46
47 Energetická náročnost VZT systémů Úprava teploty vzduchu: Ohřev a chlazení dodávka tepla a chladu do VZT systému Využití systémů pro zpětné získávání tepla (ZZT) a chladu (ZZCH) Úprava vlhkosti: Vlhčení vzduchu distribuce vody, případně páry Výroba páry parní zvlhčovače Chod systému: Základní provoz nucených a hybridních systémů je spojený s provozem ventilátorů (2 ks, přívod a odvod vzduchu). Příkon ventilátoru je významně vyšší než oběhového čerpadla otopné soustavy provoz systému jen v požadované době (např. temperování objektu vzduchotechnikou není efektivní) 47
48 Energetická náročnost VZT systémů Vzduchotechnický systém je velkým odběratelem energie podle požadovaných úprav vzduchu je nutné do systému přivést potřebné energie čím více úprav vzduchu tím více různých energií Větrací systém Systém teplovzdušného vytápění Klimatizační systém elektrická energie elektrická energie elektrická energie - pohon motorů 1x230 V, 3x400 V - pohon motorů 1x230 V, 3x400 V - pohon motorů 1x230 V, 3x400 V - MaR 24 V, 1x 230 V - MaR 24 V, 1x 230 V - MaR 24 V, 1x 230 V - elektrické ohřívače 3x400 V - elektrické ohřívače 3x400 V - elektrické ohřívače 3x400 V tepelná energie tepelná energie tepelná energie - ohřev vzduchu - ohřev vzduchu - ohřev vzduchu kanalizace kanalizace chlad - odvod kondenzátu z výměn. ZZT - odvod kondenzátu z výměn. ZZT - chlazení vzduchu - kondenz. odvlhčování vzduchu voda/pára - vlhčení kanalizace - odvod kondenzátu z výměn. ZZT - přepad a odvod zbytků z vlhčení - odvod kondenzátu od chladiče
49 Přehled důležitých norem a předpisů Obecné normy a předpisy. Právní předpisy: Nařízení vlády č. 68/2010 Sb, měnící NV č. 361/2007 Sb., kterým se stanoví podmínky ochrany zdraví při práci Vyhláška 268/2009 Sb., o technických požadavcích na stavby. České a evropské normy: ČSN Vzduchotechnická zařízení. Klimatizační jednotky. Řady základních parametrů, ČSN Vzduchotechnická zařízení. Navrhování větracích a klimatizačních zařízení. Všeobecná ustanovení,1988. ČSN EN Větrání budov Zkušební postupy a měřicí metody pro přejímky instalovaných větracích a klimatizačních zařízení, ČSN EN Větrání nebytových budov - Základní požadavky na větrací a klimatizační systémy, ČSN EN Větrání budov - Stanovení výkonových kritérií pro větrací systémy obytných budov, 2009, Národní příloha, ČSN Výpočet tepelné zátěže klimatizovaných prostorů,
50 Shrnutí a závěr Větrání je nezbytnou podmínkou kvalitního užití vnitřního prostředí. S větráním lze spojit i další funkce, ovšem je nutné zvážit velikost a složitost vzniklého vzduchotechnického systému. Množství vzduchu přiváděného pro účely větrání (příp. vytápění, klimatizace) musí být přesně stanovené. Je výhodné řídit množství a vlastnosti vzduchu podle aktuálních podmínek ve větraném prostředí. Provoz vzduchotechnického systému nesmí vytvářet uživatelům větraného prostoru nepříjemné situace průvan, hluk. 50
51 děkuji za pozornost! Ing. Daniel Adamovský, Ph.D. Katedra technických zařízení budov
52 Požárníbezpečnost bezpečnoststaveb staveb Cvičení 9 -Koncepční návrh vzduchotechnického systému Ing. Daniel Adamovský, Ph.D. Katedra technických zařízení budov daniel.adamovsky@fsv.cvut.cz
53 Koncepční návrh systému Výpočet množství vzduchu Intenzita větrání V Stanovení množství čerstvého vzduchu Vhodný postup pro budovy s typickým provozem (obytné stavby) = n p V o V p Množstvíčerstvého vzduchu [m 3.h -1 ] V O Objem místnosti [m 3 ] n Intenzita větrání [h -1 ] - cvičení 53
54 V p Koncepční návrh systému Výpočet množství vzduchu V p Na základě produkce plynných škodlivin (např. CO 2 ) mco = Ψ Ψ max e 19l / h 3 = 22, m h 3 ( )ppm 10 2 = 4 Aktivita Produkce CO 2 Člověk v klidu, v sedě 13 l. h -1 Lehká aktivita, stání, pomalá chůze 19 l. h -1 Střední aktivita 60 l. h -1 Těžká fyzická práce 77 l. h -1 1 na osobu Množství vzduchu nezbytné pro udržení koncentrace škodliviny na [m 3.h -1 ] požadované úrovni m CO2 Produkce plynné škodliviny (CO 2 ) [l.h -1 ] Ψ max Maximální koncentrace ve vnitřním prostředí (pro CO ppm, dle EN [g.g -1 ] třída B ) Ψ e Koncentrace plynné škodliviny ve venkovním vzduchu (pro CO ppm) [g.g -1 ] - cvičení 54
55 Koncepční návrh systému Výpočet množství vzduchu Na základě produkce vodní páry V p = ρ ( G x i x s ) = 1, 205kg / 40g / h 3 = 13, 28m h 3 m ( 6 3, 5 )g / kg 1 na osobu G celkový zisk vodní páry v prostředí [g.s -1 ] ρ měrná hmotnost vzduchu [ 1.2 kg.m -3 ] x i měrná vlhkost vzduchu v prostředí [g.kg -1 s.v.] x p měrná vlhkost přiváděného vzduchu [g.kg -1 s.v.] Lidská aktivita Produkce vodní páry [g.h-1] Jiný zdroj Produkce vodní páry [g.h-1] Sedící osoba 30 Koupelna s vanou cca 700 Lehká aktivita, chůze Koupelna se sprchou cca 2600 Střední aktivita 120 až 300 Kuchyně při vaření 600 až 1500 Těžká fyzická práce 200 až 300 Kuchyně s plynovým sporákem - cvičení 1500 g per 1 m 3 gas 55
56 V p Koncepční návrh systému Výpočet množství vzduchu Vytápění, nebo chlazení přiváděným vzduchem = Qztráta( zátěá ) = ρ c t 1, 2kg / m 1010 J / kg K 6K h a 900W = 0123, m s = 445, 5m 3 Q celková tepelná ztráta, nebo zátěž [kw] c a měrná tepelná kapacita vzduchu [kj.kg -1.K -1 ] ρ Měrná hmotnost vzduchu [1.2 kg.m -3 ] t rozdíl teplot [K] t i teplota vzduchu v interiéru [ C] t p teplota přiváděného vzduchu [ C] t s > t i - vytápění t s < t i - chlazení - cvičení 56
57 Koncepční návrh systému Stanovení množství vzduchu Prostředí pouze s produkcí CO 2 : V p mco = Ψ Ψ max e 19l / h 3 = 22, m h 3 ( )ppm 10 2 = 4 1 na osobu Přivedeme pouze čerstvý venkovní vzduch Prostředí pouze s produkcí vlhkosti: V p G = ρ ( x x i s V p = V e 40g / h 3 1 = = 13, 28m h na osobu 3 ) 1, 205kg / m ( 6 3, 5 )g / kg a) Pouze čerstvý venkovní vzduch V p = V e b) Při využití odvlhčování, lze vzduch cirkulovat V p = V c - cvičení 57
58 Koncepční návrh systému Stanovení množství vzduchu Prostředí s produkcí CO 2 a vodní párou V mco 2 = Ψ Ψ max e 19l / h 3 = 22, m h 3 ( )ppm 10 p1 = 4 1 na osobu V p G 40g / h 3 2 = = = 13, 28m h ρ 3 ( x x ) 1, 205kg / m ( 6 3, 5 )g / kg i s 1 na osobu Maximum z V p1, V p2 je množství čerstvého vzduchu V p1 = V e - cvičení 58
59 Koncepční návrh systému Stanovení množství vzduchu Prostředí, kde dochází k produkci CO 2, vodní páry a VZT systém pokrývá tepelnou ztrátu (nebo zátěž): = m 19l / h 10osob co2 3 1 V = = 224 m 1 3 ( )ppm 10 h p Ψ Ψ V V max Maximum z V p1, V p2 je množství čerstvého vzduchu e = G 40g / h 10osob = = 132, 8m 3 ( x x ) 1, 205kg / m ( 6 3, 5 )g / kg h p ρ i s Q V p1 = V e = 224 m 3 h W = ztráta( zátěá ) = = 0123, m s = 445, 5m 3 3 c t 1, 2kg / m 1010 J / kg K 6K h p ρ a V p3 = V p = 453 m 3 h -1 V c = V p - V e = = 229 m 3 h -1 Množství V p3 je větší než V p1, proto je rozhodující pro určení množství přiváděného vzduchu V p. Rozdíl mezi V s a V e tvoří cirkulační vzduch V c. 59 1
60 Zadání úlohy: Navrhněte koncepci vzduchotechnického systému. Navrhněte koncepci klimatizačního vzduchotechnického systému pro administrativní budovu. Systém pracuje po celý rok, v zimě teplovzdušně vytápí, v létě chladí. Vypracujte: Výpočet množství přiváděného, čerstvého a cirkulačního vzduchu pro jedno podlaží. Stanovte návrhové průtoky vzduchu pro celou budovu. Zvolte vhodnou výrobní řadu vzduchotechnické jednotky. Vypočtěte celkový tepelný výkon VZT jednotky pro ohřátí celého množství přiváděného vzduchu. Vypočtěte celkový chladicí výkon VZT jednotky pro ochlazení celého množství přiváděného vzduchu. Umístěte jednotku na střeše. Definujte schematicky hlavní trasy potrubí přívodu a odvodu vzduchu, určete jejich rozměry. - cvičení 60
Cvičení č.4 Centrální systémy vzduchotechniky
Cvičení č.4 Centrální systémy vzduchotechniky Základní tvarové řešení systémů centrálního větrání Výhradně přetlakový systém - do prostoru je pouze přívodní vzduch - odváděný vzduch odchází přes hranici
VíceDOKUMENTACE VĚTRACÍCH A KLIMATIZAČNÍCH SYSTÉMŮ
Kontrola klimatizačních systémů 6. až 8. 6. 2011 Praha DOKUMENTACE VĚTRACÍCH A KLIMATIZAČNÍCH SYSTÉMŮ Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Technická 4, 166 07 Praha 6
VíceD.1.4.c.1. TECHNICKÁ ZPRÁVA VZDUCHOTECHNIKA
STAVBA: Rekonstrukce budovy C sídlo ÚP Brno, ČR-ÚZSVM, Příkop 11 List č.1 D.1.4.c.1. TECHNICKÁ ZPRÁVA OBSAH: VZDUCHOTECHNIKA 1.0 VŠEOBECNĚ 1.1 Rozsah řešení 1.2 Podklady 1.3 Vstupní zadávací údaje 1.4
VíceENERGIS 92, s.r.o. DPS. ATELIER SAEM, s.r.o. Energis 92, s.r.o. SAEM, s.r.o. FIRMY ATELIER SAEM, s.r.o. INVESTOR. Vypracoval:
SAEM, s.r.o. FIRMY ATELIER SAEM, s.r.o. INVESTORA. DATUM PODPIS INVESTOR Kubrova 31 ARCHITEKT ATELIER SAEM, s.r.o. Na Mlejnku 6/1012, 147 00 Praha 4 t: +420 223 001 670 info@saem.cz www.saem.cz ENERGIS
VíceObsah: 1. Úvod. 2. Přehled vzduchotechnických zařízení. 3. Technické řešení. 4. Protihluková opatření. 5. Požární opatření. 6. Požadavky na profese
Obsah: 1. Úvod 2. Přehled vzduchotechnických zařízení 3. Technické řešení 4. Protihluková opatření 5. Požární opatření. 6. Požadavky na profese 7. Tepelné izolace a nátěry 8. Závěr 1. Úvod Tato dokumentace
VíceZákladní řešení systémů centrálního větrání
Základní řešení systémů centrálního větrání Výhradně podtlakový systém - z prostoru je pouze vzduch odváděn prostor je udržován v podtlaku - přiváděný vzduch proudí přes hranici zóny z exteriéru, případně
VíceTZB - VZDUCHOTECHNIKA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ HIRŠ, GÜNTER GEBAUER TZB - VZDUCHOTECHNIKA MODUL BT02-08 KLIMATIZACE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA TZB Vzduchotechnika,
VícePOROVNÁNÍ VODNÍCH KLIMATIZAČNÍCH SYSTÉMŮ Z HLEDISKA SPOTŘEBY ENERGIE
19. Konference Klimatizace a větrání 21 OS 1 Klimatizace a větrání STP 21 POROVNÁNÍ VODNÍCH KLIMATIZAČNÍCH SYSTÉMŮ Z HLEDISKA SPOTŘEBY ENERGIE Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky
VíceVětrání rodinných a by tov ých domů
VLADIMÍR ZMRHAL 167 Větrání rodinných a bytových domů ÚSPORA ENERGIE 167 SOLÁRNÍ SYSTÉMY TEPELNÁ ČERPADLA TEPLOVODNÍ KRBY A KAMNA VĚTRÁNÍ S REKUPERACÍ NÁRODNÍ I EVROPSKÉ DOTACE! Poradíme vám jak získat
VíceTepelně vlhkostní mikroklima. Vlhkost v budovách
Tepelně vlhkostní mikroklima Vlhkost v budovách Zdroje vodní páry stavební vlhkost - vodní pára vázaná v materiálech v důsledku mokrých technologických procesů (chemicky nebo fyzikálně vázaná) zemní vlhkost
VíceCvičení č. 2 TEPELNÉ ZTRÁTY ČSN EN 12 831
Cvičení č. 2 ZÁKLADY VYTÁPĚNÍ Ing. Jindřich Boháč Jindrich.Bohac@fs.cvut.cz http://jindrab.webnode.cz/skola/ +420-22435-2488 Místnost B1-807 1 Tepelné soustavy v budovách - Výpočet tepelného výkonu AKTUÁLNĚ
VíceMetodický pokyn pro návrh větrání škol
Metodický pokyn pro návrh větrání škol Metodicky pokyn obsahuje základní informace pro návrh větrání ve školách s důrazem na učebny. Je určen žadatelům o podporu z Operačního programu životní prostředí
VíceD.1.4.c.1.1 TECHNICKÁ ZPRÁVA
D.1.4.c.1.1 TECHNICKÁ ZPRÁVA Akce: Část: Vypracoval: Kontroloval: Archívní číslo: NOVÁ PASÁŽ A PŘÍSTAVBA SO 10 VZT - Kavárna a WC D.1.4.c Zařízení vzduchotechniky Radoslav Šultes Ing. Jiří Hájek P13P023
VíceTECHNICKÁ ZPRÁVA VZDUCHOTECHNIKA. KLIMAKOM, spol. s r.o., Brno ING. PETER PODOLIAK. Ing. Peter Podoliak. Zámecká 4 643 00 Brno Chrlice
TECHNICKÁ ZPRÁVA VZDUCHOTECHNIKA KLIMAKOM spol. s r.o. Ing. Peter Podoliak Zámecká 4 643 00 Brno Chrlice Strana: 1(5) Obsah 1 Úvod 3 2 Vstupní parametry 3 2.1 Místo stavby, popis objektu..............................
VíceSEZNAM PŘÍLOH TECHNICKÁ ZPRÁVA
SEZNAM PŘÍLOH poř. č. název formát A4 01.04.01 Seznam příloh a technická zpráva 14 01.04.02 Tabulky místností 13 01.04.03 Tabulky zařízení 4 01.04.04 Tabulky požárních klapek 5 01.04.05 Půdorys 1.PP 15
Vícec) Zařízení vzduchotechniky TECHNICKÁ ZPRÁVA Oddělení pro děti předškolního věku
AAA Studio.s.r.o. Staňkova 8a 612 00 Brno c) Zařízení vzduchotechniky TECHNICKÁ ZPRÁVA MŠ Poláčkova Brno-Líšeň Oddělení pro děti předškolního věku Brno květen 2012 Souprava č. Příloha č. F.1.4 c 1. OBSAH
VíceTABULKA VÝKONŮ VYTÁPĚNÍ A VZT ZAŘÍZENÍ
TABULKA VÝKONŮ VYTÁPĚNÍ A VZT ZAŘÍZENÍ ##### ZAŘÍZENÍ PŘÍVOD VZDUCHU ODVOD VZDUCHU Ventilátor Ohřívač Chladič Ventilátor Číslo Název Umístění Typ Q v p ext P 1 U I 1 t 1 t 2 Q t t w1 t w2 M wt p w DN t
VíceENS. Nízkoenergetické a pasivní stavby. Přednáška č. 11. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích ENS Nízkoenergetické a pasivní stavby Přednáška č. 11 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal
VíceČeské vysoké učení technické v Praze Fakulta stavební ESB 2. Ing. Daniel Adamovský, Ph.D. Katedra technických zařízen
České vysoké učení technické v Praze Fakulta stavební ESB 2 Větrání bazénů Ing. Daniel Adamovský, Ph.D. Katedra technických zařízen zení budov Obsah prezentace Vnitřní prostřed edí bazénů Pár r zásad z
VíceSouhrnná technická zpráva
INDEX ZMĚNA DATUM JMÉNO PODPIS Vedoucí projektant Vedoucí zakázky Pluhař Martin Ing., CSc. Projektant BPO spol. s r.o. Lidická 1239 363 01 OSTROV Tel.: +420353675111 Fax: +420353612416 projekty@bpo.cz
VíceVENTILÁTORY RADIÁLNÍ RVI/2 1600 až 2500 oboustranně sací
Katalogový list Strana: 1/9 VENTILÁTORY RADIÁLNÍ RVI/2 1600 až 2500 oboustranně sací Hlavní části: 1. Spirální skříň 6. Spojka 2. Oběžné kolo 7. Chladící kotouč 3. Sací komora 8. Elektromotor 4. Hřídel
VíceTechnická zpráva P15P038 Využití tepla z kompresorů pro ohřev vody a vytápění
1 ÚVOD... 3 1.1 HLAVNÍ ÚČEL BUDOVY A POŽADAVKY NA VZT ZAŘÍZENÍ... 3 1.2 VÝCHOZÍ PODKLADY... 3 1.3 POUŽITÉ PŘEDPISY A OBECNÉ TECHNICKÉ NORMY... 3 1.4 VÝPOČTOVÉ HODNOTY KLIMATICKÝCH POMĚRŮ... 3 1.5 MIKROKLIMATICKÉ
VíceVZDUCHOTECHNIKA. Venkovní +32-15
VZDUCHOTECHNIKA A. Úvod Tato část dokumentace řeší na úrovní PROJEKTU PRO STAVEBNÍ POVOLENÍ splnění nezbytných hygienických podmínek z hlediska vnitřního prostředí stavby a instalované technologie se zázemím
VíceČeská komora autorizovaných inženýrů a techniků činných ve výstavbě. ROZDÍLOVÁ ZKOUŠKA k autorizaci podle zákona č. 360/1992 Sb.
Česká komora autorizovaných inženýrů a techniků činných ve výstavbě ROZDÍLOVÁ ZKOUŠKA k autorizaci podle zákona č. 360/1992 Sb. 2015 Rozdílová zkouška k autorizaci podle zákona č. 360/1992 Sb. OBSAH Úvod...
Více499/2006 Sb. VYHLÁŠKA. o dokumentaci staveb
499/2006 Sb. VYHLÁŠKA ze dne 10. listopadu 2006 o dokumentaci staveb Ministerstvo pro místní rozvoj stanoví podle 193 zákona č. 183/2006 Sb., o územním plánování a stavebním řádu (stavební zákon): 1 Úvodní
VíceVŠE - Kotelna ve výukovém objektu na Jižním Městě Areál VŠE JM Ekonomická 957, Praha 4 - Kunratice. D.1.4.3.a VZDUCHOTECHNIKA
Akce: VŠE - Kotelna ve výukovém objektu na Jižním Městě Areál VŠE JM Ekonomická 957, Praha 4 - Kunratice Stupeň: Prováděcí projekt Zak.č.: 15 022 4 D.1.4.3.a VZDUCHOTECHNIKA Technická zpráva a výpis materiálu
VíceObsah. Předmluva. Přehled vybraných použitých značek. Přehled vybraných použitých indexů. Úvod do problematiky
Obsah Předmluva Přehled vybraných použitých značek Přehled vybraných použitých indexů Úvod do problematiky Primární' veličiny ve VZT Vzduch ve vzduchotechnických systémech a jeho provozní stavy Základní
VíceVENTILÁTORY RADIÁLNÍ RVI 1600 až 2500 jednostranně sací
Katalogový list KP 12 3339 Strana: 1/9 VENTILÁTORY RADIÁLNÍ RVI 1600 až 2500 jednostranně sací Hlavní části: 1. Oběžné kolo 6. Elektromotor 2. Spirální skříň 7. Rám elektromotoru 3. Hřídel 8. Chladící
VíceProudění vzduchu, nucené větrání
AT 02 TZB II a technická infrastruktura LS 2009 Harmonogram t. část Přednáška Cvičení 1 UT Mikroklima budov, výpočet tepelných ztrát Tepelná ztráta obálkovou metodou Proudění vzduchu 2 3 Otopné soustavy
VíceMontážní a provozní návod
OBSAH 1. Všeobecné informace 2 1.1 Přehled jednotek 3 2. Typy výměníků 5 3. Regulace 5 4. Doprava a skladování 6 5. Důležitá upozornění 6 6. Montáž 7 6.1 Demontáž pláště 7 6.1.1 Osazení zedního nástavce
VíceAbstrakt. Abstract. Klíčová slova klimatizace, větrání, kuchyň. Key words air-conditioning, ventilation, kitchen
1 2 Abstrakt Cílem diplomové práce bylo navrhnout a dimenzovat zařízení pro klimatizaci hotelové kuchyně dle zadaných parametrů Řešení se zabývá výpočtem množství větracího vzduchu, tepelných ztrát a zisků
VíceVýroba páry - kotelna, teplárna, elektrárna Rozvod páry do místa spotřeby páry Využívání páry v místě spotřeby Vracení kondenzátu do místa výroby páry
Úvod Znalosti - klíč k úspěchu Materiál přeložil a připravil Ing. Martin NEUŽIL, Ph.D. SPIRAX SARCO spol. s r.o. V Korytech (areál nádraží ČD) 100 00 Praha 10 - Strašnice tel.: 274 00 13 51, fax: 274 00
VíceVNITŘNÍ VODOVOD ROZVODY, MATERIÁLY, VÝPOČET
VNITŘNÍ VODOVOD ROZVODY, MATERIÁLY, VÝPOČET Ing. Stanislav Frolík, Ph.D. - katedra technických zařízení budov - TECHNICKÁ ZAŘÍZENÍ BUDOV 1 1 Vnitřní vodovod systém, zajišťující dopravu pitné vody k jednotlivým
VíceSolární kondenzační centrála s vrstveným zásobníkem 180 litrů PHAROS ZELIOS 25 FF
Solární centrála s vrstveným zásobníkem 180 litrů PHAROS ZELIOS 25 FF teplo pro všechny OVLÁDACÍ PRVKY KOTLE 1 multifunkční LCD displej 2 tlačítko ON/OFF 3 otočný volič TEPLOTY TOPENÍ + MENU 4 MODE volba
VíceVznik a množství srážek
ZÁSOBOVÁNÍ VODOU ZPĚTNÉ VYUŽITÍ ODPADNÍCH VOD Ing. Stanislav Frolík, Ph.D. - katedra technických zařízení budov - 1 Vznik a množství srážek Pro vznik srážek je důležitá teplota a tlak (nadmořská výška)
Víceení spotřeby energie
1.3 Zhodnocení výchozího stavu Energetická bilance Kontrola stávaj vajících ch údajů: vstupy paliv a energie, změnu stavu zásob z paliv prodej energie fyzickým a právnickým osobám provozní ukazatele zdroje
VícePROJEKTOVÁ DOKUMENTACE
Revel s.r.o. Dubno 127, 261 01 Příbram Telefon, fax : 318628697, 318541905 Gen.projektant : Akce : Obsah : Investor : Ing. Václav Ureš, Mariánské údolí 126, 261 01 Příbram II Kanalizace a vodovod Hostomice
VíceGIENGER VELKOOBCHOD TZB KVALITNÍ VĚTRÁNÍ A REKUPERACE RODINNÝCH DOMŮ A BYTŮ ZDRAVÝ VZDUCH A PŘÍJEMNÉ KLIMA PO CELÝ ROK BEZ ÚNIKU TEPLA.
GIENGER VELKOOBCHOD TZB KVALITNÍ VĚTRÁNÍ A REKUPERACE RODINNÝCH DOMŮ A BYTŮ ZDRAVÝ VZDUCH A PŘÍJEMNÉ KLIMA PO CELÝ ROK BEZ ÚNIKU TEPLA. REKUPERACE - ARGUMENTY KOMPONENTY Proč rekuperaci? Moderní domy ztrácejí
VíceDUPLEX RB teplovzdušné vytápěcí a větrací jednotky pro bytové nízkoenergetické objekty a pasivní rodinné domy
DUPLEX RB teplovzdušné vytápěcí a větrací jednotky pro bytové nízkoenergetické objekty a pasivní rodinné domy REGULÁTOR CP 7 RD display provozních stavů kabelové propojení slaboproudé otočný ovladač vestavěné
VíceKLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÝ PŘÍKLAD KE CVIČENÍ II.
KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÝ PŘÍKLAD KE CVIČENÍ II. (DIMENZOVÁNÍ VĚTRACÍHO ZAŘÍZENÍ BAZÉNU) Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší
Více1. TECHNICKÁ ZPRÁVA. Rekonstrukce plynové kotelny v bytovém domě Hlavní 824, Zubří. Místo stavby: ul. Hlavní 824 Zubří
1. TECHNICKÁ ZPRÁVA Název zakázky: Rekonstrukce plynové kotelny v bytovém domě Hlavní 824, Zubří Místo stavby: ul. Hlavní 824 Zubří Investor: Projektant: Vypracoval: Zodpov. proj.: Stupeň: Město Zubří
Více3.022012 UB 80-2 3.022013 UB 120-2 3.022014 UB 200-2
3.022012 UB 80-2 3.022013 UB 120-2 3.022014 UB 200-2 Nerezové zásobníky teplé vody (TUV) řady UB-2 Návod k montáži a použití s kotli Immergas NEREZOVÉ ZÁSOBNÍKY TEPLÉ VODY (TUV) - řada UB-2 VÁŽENÝ ZÁKAZNÍKU
VícePRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Mařenice č.p. 16, č.p. 21 (okr. Česká Lípa) parc. č. st. 128/1, 128/2 dle Vyhl.
PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Mařenice č.p. 16, č.p. 21 (okr. Česká Lípa) parc. č. st. 128/1, 128/2 dle Vyhl. 148/2007 Sb Zadavatel: Vypracoval: František Eis Dubická 1804, Česká Lípa,
VíceVZDUCHOTECHNIKA V RODINNÉM DOMĚ S KRYTÝM BAZÉNEM
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV TECHNICKÝCH ZAŘÍZENÍ BUDOV FACULTY OF CIVIL ENGINEERING INSTITUTE OF BUILDING SERVICES VZDUCHOTECHNIKA V RODINNÉM DOMĚ
VíceEVORA CZ, s.r.o. Rekuperace v budovách pro bydlení a služby 23.4.2015. Radek Peška
EVORA CZ, s.r.o. Rekuperace v budovách pro bydlení a služby 23.4.2015 Radek Peška PROČ VĚTRAT? 1. KVALITNÍ A PŘÍJEMNÉ MIKROKLIMA - Snížení koncentrace CO2 (max. 1500ppm) - Snížení nadměrné vlhkosti v interiéru
VícePOPIS VÝCHozíHO STAVU, REFERENČNí SPOTŘEBY A REFERENČNí NÁKLADY K 31.12.2010
ÚPMD Praha - opatření na ÚSPOfu energií - modernizace energetického hospodářství Příloha č. 1 POPIS VÝCHozíHO STAVU, REFERENČNí SPOTŘEBY A REFERENČNí NÁKLADY K 31.12.2010 Základní údaje: Popis vnitřních
VíceT E C H N I C K Á Z P R Á V A
P15 P126 REKONSTRUKCE INTERIÉRŮ ADMINISTRATIVNÍ BUDOVY C BRNO, ŠUMAVSKÁ 519/36, VZT, CHL, VYT, ZTI DOKUMENTACE PRO VÝBĚR DODAVATELE Z.č. D.1.4.c.101-00 Počet stran: 17+9 T E C H N I C K Á Z P R Á V A D1.
VíceVytápění BT01 TZB II cvičení
CZ.1.07/2.2.00/28.0301 Středoevropské centrum pro vytváření a realizaci inovovaných technicko-ekonomických studijních programů Vytápění BT01 TZB II cvičení Cvičení 6: Návrh zdroje tepla pro RD Zadání V
VíceAnotace. Náhrada pohonů napájecích čerpadel Teplárna Otrokovice a.s.
TECHNICKÁ ZPRÁVA DRUH ZPRÁVY konečná DATUM VYDÁNÍ 30. 4. 2012 NÁZEV ÚKOLU ZAKÁZKOVÉ ČÍSLO 51113620 ČÍSLO DOKUMENTU OBJEDNATEL 51113620/BMZ001/00 Objízdná 1777, 765 39 Otrokovice VEDOUCÍ ÚKOLU AUTOR ZPRÁVY
VíceSKV Zářivkové osvětlení chráněné proti vlhkosti transparentním obloukovým krytem
, větrací a osvětlovací stropy pro velkokuchyně nízké pořizovací náklady uzavřený systém odsávání vylučuje vznik plísní automatické řízení provozu atraktivní design rekuperace tepla snadná údržba snadné
VíceILTO 650/850 a 1000 ČISTÉ OVZDUŠÍ A ÚSPORA ENERGIE PRO NOVÉ A RENOVOVANÉ OBJEKTY ÚČINNÉ VĚTRACÍ JEDNOTKY. www.nativa.biz
ILTO 650/850 a 1000 ČISTÉ OVZDUŠÍ A ÚSPORA ENERGIE PRO NOVÉ A RENOVOVANÉ OBJEKTY ÚČINNÉ VĚTRACÍ JEDNOTKY www.nativa.biz ILTO mění znečištěný vzduch za čerstvý VĚTRÁNÍ je významnou součástí komplexní stavební
VíceNástěnný kondenzační kotel s průtokovým ohřevem vody TALIA GREEN 25, 30, 35 FF
Nástěnný kondenzační kotel s průtokovým ohřevem vody TALIA GREEN 25, 30, 35 FF teplo pro všechny Koncentrický výfuk spalin Kondenzační výměník z nerezové oceli v ISOtermickém provedení (záruka 5 let) Nízkoemisní
VíceNástěnný kondenzační kotel s průtokovým ohřevem vody TALIA GREEN 25, 30, 35 FF
Nástěnný kondenzační kotel s průtokovým ohřevem vody TALIA GREEN 25, 30, 35 FF teplo pro všechny Koncentrický výfuk spalin Kondenzační výměník z nerezové oceli v ISOtermickém provedení (záruka 5 let) Nízkoemisní
VíceCVIČENÍ 3: VLHKÝ VZDUCH A MOLLIÉRŮV DIAGRAM
CVIČENÍ 3: VLHKÝ VZDUCH A MOLLIÉRŮV DIAGRAM Co to je vlhký vzduch? - vlhký vzduch je směsí suchého vzduchu a vodní páry okupující společný objem - vodní pára ve směsi může měnit formu z plynné na kapalnou
VíceDecentrální větrání bytových a rodinných domů
1. Úvod Větrání představuje systém, který slouží k výměně vzduchu v místnostech. Může být přirozené, založené na proudění vzduchu v důsledku jeho rozdílné hustoty, která odpovídá tlakovým poměrům (podobně
VíceČIŠTĚNÍ VZDUCHOTECHNICKÝCH SYSTÉMŮ A DOSAŽITELNÉ ENERGETICKÉ ÚSPORY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PROCESS AND ENVIRONMENTAL
VíceI N V E S T I C E D O V A Š Í B U D O U C N O S T I
Příloha č. 1 - Technická specifikace pro výběrové řízení na dodavatele opatření pro Snížení energetické náročnosti firmy Koyo Bearings Česká Republika s.r.o. ČÁST Č. 1 Výměna chladícího zařízení technologie
VíceTechnická zpráva - vytápění
INDEX ZMĚNA DATUM JMÉNO PODPIS Vedoucí projektant Vedoucí zakázky Pluhař Martin Ing., CSc. Projektant BPO spol. s r.o. Lidická 1239 363 01 OSTROV Tel.: +420353675111 Fax: +420353612416 projekty@bpo.cz
VíceREKONSTRUKCE VYTÁPĚNÍ ZŠ A TĚLOCVIČNY LOUČOVICE
REKONSTRUKCE VYTÁPĚNÍ ZŠ A TĚLOCVIČNY LOUČOVICE Objekt Základní školy a tělocvičny v obci Loučovice Loučovice 231, 382 76 Loučovice Stupeň dokumentace: Dokumentace pro výběr zhotovitele (DVZ) Zodpovědný
VíceNabízíme víc než. horký vzduch. Plynové horkovzdušné jednotky: aeroschwank AT
Nabízíme víc než horký vzduch. Plynové horkovzdušné jednotky: aeroschwank T aeroschwank T- horkovzdušné jednotky plynové horkovzdušné jednotky typ TH modulární konstrukce hořáku pro bezpečný provoz a dlouhou
VícePraktická aplikace metodiky hodnocení energetické náročnosti budov RODINNÝ DŮM. PŘÍLOHA 4 protokol průkazu energetické náročnosti budovy
Příloha č. 4 k vyhlášce č. xxx/26 Sb. Protokol pro průkaz energetické náročnosti budovy a) Identifikační údaje budovy Adresa budovy (místo, ulice, číslo, PSČ): Rodinný dům Účel budovy: Rodinný dům Kód
VíceVyhláška č. xx/2012 Sb., o energetické náročnosti budov. ze dne 2012, Předmět úpravy
Verze 2. 3. 202 Vyhláška č. xx/202 Sb., o energetické náročnosti budov ze dne 202, Ministerstvo průmyslu a obchodu (dále jen ministerstvo ) stanoví podle 4 odst. 5 zákona č. 406/2000 Sb., o hospodaření
VíceCeník. Vytápěcí systémy. platné od 1. 8. 2015
Ceník Vytápěcí systémy platné od 1. 8. 2015 Komfortní větrání obytných prostorů Komfortní větrání CWL Excellent Strana 146 obytných prostorů CWL-F Excellent Strana 147 CWL Strana 148 Regulace a elektropříslušenství
Více5. Význam cirkulace vzduchu pro regulaci
Regulace v technice prostředí (staveb) (2161087 + 2161109) 5. Význam cirkulace vzduchu pro regulaci 27. 4. 2016 a 4. 5. 2016 Ing. Jindřich Boháč Regulace v technice prostředí Přednášky: Cvičení: Celkem:
VíceOD NÁPADU K VÝROBKU ANEB APLIKOVANÝ VÝZKUM V PRAXI
OD NÁPADU K VÝROBKU ANEB APLIKOVANÝ VÝZKUM V PRAXI Doc. Ing. Aleš Rubina, Ph.D., Ing. Pavel Uher, Ing. Olga Rubinová, Ph.D. Vysoké učení technické v Brně, Fakulta stavební, Ústav technických zařízení budov,
VíceKomfortní větrání obytných prostorů
Stručná technická informace Komfortní větrání obytných prostorů CWL Excellent CWL-T Excellent CWL-F Excellent 2 Stručný přehled jednotek CWL Excellent Typ CWL-F-150 Excellent CWL-F-300 Excellent CWL-180
VíceRekuperační jednotky
Rekuperační jednotky Vysoká účinnost výměníku účinnosti jednotky a komfortu vnitřního prostředí je dosaženo koncepcí výměníku, v němž dochází k rekuperaci energie vnitřního a venkovního vzduchu a takto
VíceIDENTIFIKAČNÍ ÚDAJE. Stavebník : HOTEL FREUD s.r.o. Ostravice 190 739 14, Ostravice. Místo stavby : parc. č. 530/1, 530/2 k.ú.
IDENTIFIKAČNÍ ÚDAJE Stavebník : HOTEL FREUD s.r.o. Ostravice 190 739 14, Ostravice Místo stavby : parc. č. 530/1, 530/2 k.ú. Ostravice Okres : Frýdek - Místek Zhotovitel : C.E.I.S. CZ s.r.o. Masarykovy
VíceModifikace VUT R EH EC Rekuperační jednotky s elektrickým ohřevem. VUT WH EC Rekuperační jednotky s vodním ohřevem (voda, glykol).
Rekuperační jednotky VUT R EH VUT R WH Vzduchotechnické rekuperační jednotky s kapacitou až 1500 m 3 /h, integrovaným elektrickým (VUT R EH ) nebo vodním (VUT R WH ) ohřívačem a účinností rekuperace až
VíceROZPOČET Stavba: Komunitní dům pro seniory Broumov Objekt: zdravotní technika Část:
ROZPOČET Stavba: Komunitní dům pro seniory Broumov Objekt: zdravotní technika Část: Objednatel: Město Broumov JKSO: EČO: Zpracoval: Jiří Zahradníček Zhotovitel: Datum: 16.2.2016 P.Č. Kód položky Popis
Více1/ Vlhký vzduch
1/5 16. Vlhký vzduch Příklad: 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7, 16.8, 16.9, 16.10, 16.11, 16.12, 16.13, 16.14, 16.15, 16.16, 16.17, 16.18, 16.19, 16.20, 16.21, 16.22, 16.23 Příklad 16.1 Teplota
VíceKLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I.
KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 Obsah 1 Obsah... 2 2 Označení...3
VíceVětrání obytných budov
Větrání obytných budov Vladimír Zmrhal ČVUT v Praze, Fakulta strojní Ústav techniky prostředí http://users.fs.cvut.cz/~zmrhavla 1 Obsah prezentace 1. Úvod do větrání 2. Požadavky na větrání 3. Systémy
Více2015 / 16 AIR TO AIR ŘEŠENÍ PŘÍVODU ČERSTVÉHO VZDUCHU
2015 / 16 AIR TO AIR ŘEŠENÍ PŘÍVODU ČERSTVÉHO VZDUCHU ŘEŠENÍ PŘÍVODU ČERSTVÉHO VZDUCHU 2 I TOSHIBA ČERSTVÝ, ZDRAVÝ A SVĚŽÍ VZDUCH klíč k vyšší kvalitě života Po celém světě se hledá řešení problému znečištění
VíceTECHNICKÁ ZPRÁVA. JIŘÍ POKORNÝ PROJEKCE PT Beethovenova 12/234 400 01 Ústí nad Labem IČO : 650 75 200 DIČ : CZ510820017 ČKAIT 0401617
JIŘÍ POKORNÝ PROJEKCE PT Beethovenova 12/234 400 01 Ústí nad Labem IČO : 650 75 200 DIČ : CZ510820017 ČKAIT 0401617 tel: +420 777 832 853 e-mail: pokorny@projekce-pt.cz TECHNICKÁ ZPRÁVA Akce: REKONSTRUKCE
Víceh nadmořská výška [m]
Katedra prostředí staveb a TZB KLIMATIZACE, VĚTRÁNÍ Cvičení pro navazující magisterské studium studijního oboru Prostředí staveb Cvičení č. 1 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly za
VíceVětránípřirozenéa nucené, výpočet průtoku vzduchu oknem
Větránípřirozenéa nucené, výpočet průtoku vzduchu oknem Modernizace vzdělávacího obsahu a podpora rozvoje na SPŠS Havlíčkův Brod zavřeným a otevřeným VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ ÚSTAV
VíceCoolTop. Unikátní klimatizační jednotka pro horní chlazení serveroven a datových sálů AC-TOPx-CW-240/60
CoolTop Unikátní klimatizační jednotka pro horní chlazení serveroven a datových sálů AC-TOPx-CW-240/60 Aplikace CoolTop je unikátní chladicí jednotka vyráběná společností Conteg. Tato jednotka pro datová
Více1. IDENTIFIKAČNÍ ÚDAJE
REKONSTRUKCE BYTU NA HUTÍCH STUPEŇ DSP TECHNICKÁ ZPRÁVA-VYTÁPĚNÍ OBSAH 1. IDENTIFIKAČNÍ ÚDAJE... 1 2. ÚVOD... 1 3. VÝCHOZÍ PODKLADY... 2 4. VÝPOČTOVÉ HODNOTY KLIMATICKÝCH POMĚRŮ... 2 5. TEPELNÁ BILANCE...
VíceDobrý den, jsem tu zas. Rád Tě vidím.
Dobrý den, jsem tu zas. Rád Tě vidím. Minule jsme probrali jedno zařízení. Myslím, že do dalšího se můžeš pustit sama. Vyber si co bude dál. Jsem z toho dost zničená. Leda že mi ještě pomůžeš. Když jinak
VícePodíl dodané energie připadající na [%]: Větrání 0,6 06.04.2020. Jméno a příjmení : Ing. Jan Chvojka. Osvědčení č. : 0440
PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY Typ budovy, místní označení: novostavba rodinného domu Adresa budovy: bytová zástavba Nová Cihelna Celková podlahová plocha A c : 158.3 m 2
VíceŠTROB & spol. s r.o. PROJEKČNÍ KANCELÁŘ V OBORU TECHNIKY PROSTŘEDÍ STAVEB
ŠTROB & spol. s r.o. PROJEKČNÍ KANCELÁŘ V OBORU TECHNIKY PROSTŘEDÍ STAVEB Senovážné náměstí 7, 370 01 České Budějovice, tel.: 387 756 111, fax: 387 756 444, e-mail: tzb@strob.cz Akce: STAVEBNÍ ÚPRAVY A
VícePRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Hraničná parc. č. 12/4 (67) dle Vyhl. 148/2007 Sb
PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Hraničná parc. č. 12/4 (67) dle Vyhl. 148/2007 Sb Zadavatel: Jiří a Markéta Matějovic Energetický auditor: ING. PETR SUCHÁNEK, PH.D. energetický auditor
VíceOdborný seminář Protherm 2013
ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Odborný seminář Protherm 2013 Novinky v legislativě oboru technických zařízení budov v roce 2012 Prof. Ing. Karel Kabele, CSc. Doc. Ing.
VíceOBSAH : 1 ) Úvod 2 ) Vstupní údaje 3 ) Stanovení parametr VZT za ízení 4 ) Popis koncepce projektu 5 ) M
Obsah dokumentace : 1 ) Technická zpráva 2 ) Technická specifikace Výkaz výměr 3 ) Výkresová dokumentace K-01 KLIMATIZACE ČÁSTEČNÝ PŮDORYS 1.NP A STŘECHY OBSAH : 1 ) Úvod 2 ) Vstupní údaje 3 ) Stanovení
VíceTHERM 28 KD.A, KDZ.A, KDC.A, KDZ5.A, KDZ10.A
TŘÍDA NOx THERM KD.A, KDZ.A, KDC.A, KDZ.A, KDZ0.A THERM KD.A, KDZ.A, KDC.A, KDZ.A, KDZ0.A Kotle jsou určeny pro vytápění objektů s tepelnou ztrátou do kw. Díky široké modulaci výkonu se optimálně přizpůsobují
VíceVRF-R410A-TECHNOLOGIES
VRF-R410A-TECHNOLOGIES Nástěnné jednotky (Série 3) Vnitřní jednotka MMK- AP0073H AP0093H AP0123H AP0153H AP0183H AP0243H Chladicí výkon kw 2,20 2,80 3,60 4,50 5,60 7,10 Topný výkon kw 2,50 3,20 4,00 5,00
VíceOTOPNÁ TĚLESA Rozdělení otopných těles 1. Lokální tělesa 2. Konvekční tělesa Článková otopná tělesa
OTOPNÁ TĚLESA Rozdělení otopných těles Stejně jako celé soustavy vytápění, tak i otopná tělesa dělíme na lokální tělesa a tělesa ústředního vytápění. Lokální tělesa přeměňují energii v teplo a toto předávají
VíceT E C H N I C K Á Z P R Á V A :
Základní škola Partyzánská ZAŘÍZENÍ VYTÁPĚNÍ Investor: Město Česká Lípa, nám. TGM 1, 470 36 Česká Lípa Číslo zakázky: 17/2013 /DOKUMENTACE PROVEDENÍ STAVBY/ ********************************************************
VícePRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Třeboc 83, 270 54 parc. č. 103 dle Vyhl. 148/2007 Sb
PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Třeboc 83, 270 54 parc. č. 103 dle Vyhl. 148/2007 Sb Zadavatel: Lukáš Kubín, Žerotínova 1144/40, Praha 3, 130 00 Energetický auditor: ING. PETR SUCHÁNEK,
VíceZADÁVACÍ DOKUMENTACE
vydaná v souladu se Zákonem o veřejných zakázkách č. 137/2006 Sb. (dále jen zákon ) u zakázek spolufinancovaných z Operačního programu podnikání a inovace. Zadávací dokumentace se zadává v rámci projektu
VíceHybridní chladiče. O nás. Princip provozu Hybridní chladič
O nás Hybridní chladiče Společnost Sultrade Praha s.r.o. zastupuje v oblasti hybridních chladičů švýcarskou společnost Jäggi/ Gűntner (Schweiz). Jäggi vyvíjí, vyrábí a dodává hybridní chladiče, které jsou
VíceVnitřní vodovod - příprava teplé vody -
ČVUT v PRAZE, Fakulta stavební - katedra technických zařízení budov Vnitřní vodovod - příprava teplé vody - Ing. Stanislav Frolík, Ph.D. Ing. Hana Doležílková katedra technických zařízení budov NAVRHOVÁNÍ
VíceDUPLEX Flexi 2 kompaktní větrací jednotky s rekuperací tepla
s a v e y o u r e n e r g y UPLEX Flex kompaktní větrací jednotky s rekuperací tepla Větrací jednotky nové originální patentované konstrukce řady UPLEX Flexi jsou určeny pro komfortní větrání s nejvyšší
VíceProtokol k průkazu energetické náročnosti budovy
Protokol k průkazu energetické náročnosti budovy (1) Protokol a) identifikační údaje budovy Adresa budovy (místo, ulice, číslo, PSČ): Účel budovy: BYTOVÝ DŮM NA p.č. 2660/1, 2660/5. 2660/13, k.ú. ČESKÉ
VícePROJEKTOVÁ DOKUMENTACE PRO INSTALACI TEPLOVZDUŠNÉHO VYTÁPĚNÍ S REKUPERACÍ TEPLA PROVÁDĚCÍ PROJEKT (OBEC OKROUHLO)
PROJEKTOVÁ DOKUMENTACE PRO INSTALACI TEPLOVZDUŠNÉHO VYTÁPĚNÍ S REKUPERACÍ TEPLA - PROVÁDĚCÍ PROJEKT (OBEC OKROUHLO) Obsah Obsah...2 1 Úvod...4 2 Výchozí podklady...4 3 Tepelně technické vlastnosti objektu...4
VíceTematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov
Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov 1. Klimatické poměry a prvky (přehled prvků a jejich význam z hlediska návrhu a provozu otopných systémů) a. Tepelná
VíceLogamax U052(T)/U054(T)
a zvláštnosti Vhodné pro modernizace v řadových domech, rodinných domech a dvojdomech a také při etážovém vytápění Velikost kotle s modulačním rozsahem výkonu od 7,8 do 28 kw Varianty provedení pro zemní
VíceAkce : Stupeň: PMS PÍSEK - ÚPRAVA STÁVAJÍCÍCH PROSTOR PRO POTŘEBY STŘEDISKA PMS Dokumentace pro provedení stavby Datum: Květen 2015 Část : F1.4c - VZDUCHOTECHNIKA TECHNICKÁ ZPRÁVA OBSAH : 1) ÚVOD 2) TECHNICKÝ
VícePRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Horosedly parc. č. st. 26 dle Vyhl. 148/2007 Sb
PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Horosedly parc. č. st. 26 dle Vyhl. 148/2007 Sb Zadavatel: Anna Polívková, Pečice 65, 262 31 Příbram Energetický auditor: ING. PETR SUCHÁNEK, PH.D. energetický
Více