8. Tepelné zpracování ocelí
|
|
- Květoslava Mašková
- před 8 lety
- Počet zobrazení:
Transkript
1 8. Tepelné zpracování ocelí t 1 t 2 t 3 Teplota ohřev výdrž v 1 ochlazování v 2 v 0 čas Správným využitím vlastností kovů a slitin lze např. snížit hmotnost stroje nebo strojního zařízení, anebo použít materiály levnější. Obojí vede ke zvýšení ekonomie výroby. Tepelným zpracováním rozumíme všechny postupy, při nichž předmět nebo materiál v tuhém stavu záměrně ohříváme a ochlazujeme určitým způsobem tak, aby získal požadované vlastnosti. Tepelným zpracováním ovlivňujeme mechanické vlastnosti (pevnost, tvrdost, tažnost, vrubovou houževnatost, odolnost proti opotřebení ) V mnoha případech je s tím spojena změna struktury, proto se vyžaduje znalost rovnovážných diagramů a fázových změn. Protože dosažení rovnovážného stavu při fázových změnách v tuhém stavu je zcela určováno difuzí, bude pro výsledek tepelného zpracování rozhodující, jaký vliv bude mít průběh difúze. Průběh difúze je ovlivněn jednak teplotou a jednak výdrží (dobou) na určité teplotě, při níž ještě difúze může probíhat. Právě způsob ovlivnění difúze dělí tepelné zpracování do dvou základních skupin: 1. žíháním Způsob u kterého je nebržděná difuze 2. kalení Způsob u kterého je omezena difuze Ohřev Austenitizace při postupném ohřevu nad teploty a 1 a a m získáme homogení austenit U eutektoidní oceli vznikají při dosažení teploty a 1 austenitická zrna na zárodcích z lamel perlitického feritu a cementitu. U podeutektoidní oceli dochází nejprve k přeměně perlitu na nehomogení austenit a teprve pak následuje přeměna feritu na austenit. U nadeutektoidní oceli je průběh přeměny obdobný jako u podeutektoidní, jen s tím rozdílem, že teplota a 3 je nahrazena teplotou a m a ferit sekundárním cementitem. Ochlazení 1. Izotermický rozpad austenitu - slitina se ohřeje do oblasti austenitu, ponechá se na této teplotě dokud neproběhne úplná austenitizace a pak se prudce ochladí na určitou teplotu. Tu pak udržujeme konstantní a sledujeme rozpad austenitu v závislosti na čase.
2 2. Anizotermický rozpad austenitu - slitina se z austenitizační teploty plynule ochlazuje (v praxi nejčastější případ) a sleduje se průběh rozpadu. Izotermický rozpad austenitu, diagram IRA Přeměna austenitu na perlit trvá určitou dobu a průběh rozpadu můžeme pro danou teplotu vyjádřit křivkou závislosti procenta vzniklých rozpadových struktur na čase. Rozpad austenitu začne v bodě 1 až po tzv. inkubační době, která je nutná pro vznik zárodků nové fáze. Vlastní rozpad trvá určitou dobu a končí v bodě 3. Perlitická přeměna Za teplot nad nosem křivky rozpadu probíhá rozpad austenitu podle zákonů vzniku perlitu. Čím více se bude teplota rozpadu blížit k teplotě nosu křivky, tím jemnější bude vzniklý lamelární perlit. Čím více se bude teplota izotermického rozpadu blížit teplotě a 1,tím bude perlit hrubozrnější. Bainitická přeměna Pod nosem křivky v důsledku snížené difúze probíhá rozpad austenitu odlišně od perlitické přeměny. Čím bude teplota izotermického rozpadu nižší, tím výrazněji vzniká z austenitu ferit a teprve potom vzniká z přesyceného feritu cementit. Bainitická přeměna se ukončí po určité době, i když zůstane určitý podíl austenitu nepřeměněn. Tomuto austenitu říkáme zbytkový austenit, který snižuje pevnost bainitu. Množství Zbytkového austenitu je závislé na složení oceli.
3 Martenzitická přeměna Ochladíme-li prudce austenit na teplotu pod M s, jsou zcela potlačeny difúzní jevy a proběhne pouze přeměna mřížky gama na alfa. Navenek se projeví velkou tvrdostí a křehkostí. Takto vzniklá struktura se nazývá martenzit. Anizotermický rozpad austenitu, diagram IRA Anizotermický rozpad austenitu nastává při plynulém ochlazování. Přeměny probíhají podobně jako při IRA. Výsledná struktura je však tvořena směsí rozpadových struktur, vznikajících při různých teplotách podle rychlosti ochlazování. Stejně jako u IRA lze i pro anizotermický rozpad zjistit pro každou rychlost ochlazování průběh rozpadu, tj. počátek a konec jednotlivých přeměn. Z nich pak sestrojíme diagram ARA. Při plynulém ochlazování se perlitická přeměna posouvá k delším časům, jinak jsou si diagramy IRA a ARA podobné. Žíhání křivka 1: Austenit zůstane zcela zachován až do teploty Ms, pod níž dojde k martenzitické přeměně. Proto tuto rychlost nazýváme horní kritickou rychlostí ochlazování, neboť je to nejnižší rychlost podmiňující vznik prakticky jen martenzitické struktury. Bude-li rychlost ochlazování menší než dle křivky 1, pak příslušná křivka protne čáru Ps a část austenitu se rozpadne na perlit a bainit a teprve zbytek na martenzit. křivka 3: Je spodní kritickou rychlostí ochlazování, protože při větší rychlosti se ve struktuře objeví martenzit. křivka 2: Odpovídá přibližně rychlosti ochlazování na povrchu předmětu po ponoření do vody Žíhání je způsob tepelného zpracování, kterým chceme u součásti dosáhnout stavu blízkého stavu rovnovážnému. Podstatou je rovnoměrný ohřev součásti na teplotu žíhání, setrvání na této teplotě po určitou dobu, a potom velmi pomalé ochlazování. Ocel můžeme žíhat buď bez překrystalizace (teplota nepřekročí teplotu A 1 ), nebo s překrystalizací (teplota překročí teplotu A 1, A 3, A m ), anebo kombinovaně. Při rekrystalizaci jde o regeneraci zrn beze změny krystalografické mřížky.
4 Žíhání rekrystalizační Slouží k obnovení tvárnosti po předchozím zpevnění oceli tvářením za studena. Je to ohřev na teplotu v oblasti rekrystalizace, výdrž na této teplotě a ochlazení, přičemž rychlost ochlazování není rozhodující. Aby nedošlo k okujení povrchu, žíháme pod ochrannou atmosférou. Žíhání ke snížení pnutí Používáme ke snížení vnitřních pnutí, která vznikají ve výrobcích např. po svařování, obrábění apod. Žíhání na měkko Používáme u nástrojových ocelí a některých konstrukčních slitinových ocelí. Účelem je dosažení nejnižší možné tvrdosti a struktury s převážně globulárními karbidy. Ac1 Ac1 tepl. ( o C) podeutektoidní ocel nadeutektoidní ocel čas (h) čas (h) Ac1 teplota ( o C) nástrojová ocel (zvlášť tvrdá) Žíhání normalizační čas (h) Dochází k překrystalizaci a následuje ochlazení na klidném vzduchu. Výsledkem je jemnozrnná struktura s vyšší pevností. U tuhých součásti může ve struktuře vzniknout i bainit, někdy i částečně martenzit. Žíhání základní Je modifikací žíhání normalizačního. Probíhá za stejných podmínek jako žíhání normalizační, ale ochlazování se děje pomalu v peci rychlostí pod 200 C/h Žíhání homogenizační Používá se u ocelových ingotů. Po homogenizačním žíhání žíháme normalizačně, abychom docílili zjemnění struktury. Žíhání izotermické Slouží k témuž účelu jako žíhání základní, popř. na měkko; může však být hospodárnější, neboť žíhací doby jsou kratší Kalení Účelem kalení je zvýšit tvrdost oceli. Je to ohřev součásti na teplotu nad A c3 popř. A c1, výdrž na této teplotě a ochlazování kritickou rychlostí, čímž se potlačí vznik feritu a
5 perlitu a zachovaný nestabilní austenit při teplotách pod 500 C se přemění na bainit nebo martenzit. Kalitelnost Je to schopnost oceli dosáhnout kalením zvýšení tvrdosti. Přitom nejvyšší dosažitelná tvrdost oceli po kalení je závislá především na obsahu uhlíku. Při nízkém obsahu uhlíku se nedosáhne vysoké tvrdosti. Prokalitelnost Je schopnost dosáhnout po kalení v určité hloubce pod povrchem tvrdosti odpovídající kalitelnosti dané oceli při 50% martenzitu ve struktuře. Prokalitelnost bude v první řadě závislá na tvaru diagramu ARA. Na tvar diagramu ARA mají velký vliv přísadové prvky a budou proto určovat prokalitelnost ocelí. Veškeré prvky, s výjimkou kobaltu, které se rozpouštějí v austenitu, zpomalují rozpad austenitu, prodlužují inkubační doby a posunují rozpadové křivky doprava k delším časům. Snižují tedy kritickou rychlost ochlazování. Při této zkoušce se čelo standardního válcového zkušebního vzorku, který se v peci ohřeje na kalící teplotu, ochlazuje ve zvláštním přípravku proudem vody. Zjištěné hodnoty tvrdosti v jednotlivých bodech vyneseme do diagramu a jejich spojením dostaneme tzv.křivku prokalitelnosti.
6 Kalící prostředí Pro oceli s malou prokalitelností, tj. s krátkou inkubační dobou podle diagramu ARA, musíme volit kalící prostředí intenzivněji působící. Voda - nejstarší kalící prostředí. Ochlazení však neprobíhá plynule. Olej - mnohem mírnější prostředí, ale ochlazování v nich proniká podobně jako u vody. Solné lázně - vyznačují se plynulým ochlazováním. Kovové lázně - používáme jen v některých případech, podobné vlastnosti jako solné. Vzduchem - kalí se hluboko prokalitelné oceli, např. rychlořezné oceli. Způsoby kalení KALENÍ Kalení martenzitické Kalení bainitické nepřetržité přetržité izotermické nepřetržité lomené termální se zmrazováním Chemické tepelné zpracování Cementování Jeden z nejpoužívanějších způsobů chemicko-tepelného zpracování. Pří něm se povrch ocelového předmětu z měkké oceli (s obsahem uhlíku max. 0.2%) nasycuje uhlíkem v pevném, kapalném nebo plynném prostředí. Jako kapalné cementační prostředí se používají solné lázně obsahující kyanid sodný. Po cementaci musíme součásti ještě kalit, aby nauhličená vrstva dosáhla potřebné tvrdosti a odolnosti proti opotřebení. Nitridování Je to sycení povrchu oceli dusíkem, který reaguje se železem a s jinými úmyslně přidávanými prvky (Al, Cr) a vytváří tím tvrdé nitridy, které způsobují značné zvýšení tvrdosti povrchové vrstvy. V plynném prostředí je zdrojem dusíku čpavek, který ve styku s povrchem součásti při nitridačních teplotách disociuje na atomární dusík a vodík. Vzhledem k nízkým nitridačním teplotám mohou být součásti před nitridací plně zušlechtěny a vzhledem k neoxidačnímu prostředí obrobené na hotovo. Nitrocementování Nitrocementuje se v kyanidových lázní při teplotě 750 až 850 C, nebo v plynné cementační atmosféře s přísadou čpavku při teplotách 800 až 880 C. Dojde k sycení povrchu dusíkem a uhlíkem současně tak, že čím vyšší teplota, tím víc převládá nasycení uhlíkem a naopak. Po nitrocementaci se součásti kalí do oleje, což snižuje pnutí. Po kalení se součásti popouštějí stejně jako po cementaci. Kromě uvedených způsobů se někdy používá tzv. sulfonitridace. Je to sycení povrchu sírou, uhlíkem a dusíkem. Tyto vrstvy se vyznačují výbornými kluznými vlastnostmi i při špatném mazání.
Základy metalografie a tepelné zpracování
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Základy metalografie a tepelné zpracování Mechanické vlastnosti slitin železa jsou dány jejich chemickým složením.
ϑ 0 čas [ s, min, h ]
TEPELNÉ ZPRACOVÁNÍ 1 KOVOVÝCH MATERIÁLŮ Obsah: 1. Účel a základní rozdělení způsobů tepelného zpracování 2. Teorie tepelného zpracování 2.1 Ohřev 2.2 Ochlazování 2.2.1 Vliv rychlosti ochlazování na segregaci
TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ - 2008. Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika
TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ - 2008 Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT Práce obsahuje charakteristiku konstrukčních ocelí
Vybrané technologie povrchových úprav. Nitridace Doc. Ing. Karel Daďourek 2006
Vybrané technologie povrchových úprav Nitridace Doc. Ing. Karel Daďourek 2006 Diagram Fe N - nitridy Nitrid Fe 4 N s KPC mřížkou také γ fáze. Tvrdost 450 až 500 HV. Přítomnost uhlíku v oceli jeho výskyt
ŽÍHÁNÍ 1. ŽÍHÁNÍ OCELÍ
1 ŽÍHÁNÍ Žíhání je způsob tepelného zpracování, kterým chceme u součásti dosáhnout stavu blízkého stavu rovnovážnému. Podstatou je rovnoměrný ohřev součásti na teplotu žíhání, setrvání na této teplotě
MENDELOVA UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA BAKALÁŘSKÁ PRÁCE
MENDELOVA UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA BAKALÁŘSKÁ PRÁCE BRNO 2010 PETR DOSKOČIL Mendelova univerzita v Brně Agronomická fakulta Ústav techniky a automobilové dopravy Tepelné zpracování oceli Bakalářská
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY TEPELNÉ ZPRACOVÁNÍ RUČNÍCH UTAHOVACÍCH NÁSTROJŮ HEAT TREATMENT OF HAND TIGHTENING TOOLS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATERIAL SCIENCE AND ENGINEERING
Jominiho zkouška prokalitelnosti
Jominiho zkouška prokalitelnosti Zakalitelnost je schopnost materiálu při ochlazování nad kritickou rychlost přejít a setrvat v metastabilním stavu, tj. u ocelí získat martenzitickou strukturu. Protože
Povrchové kalení. Teorie tepelného zpracování Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2007
Povrchové kalení Teorie tepelného zpracování Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2007 Vlastnosti rychlých ohřevů Ohřívá se jen povrchová vrstva Ohřev
ŽÍHÁNÍ. Tepelné zpracování kovových materiálů
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 vnávaznosti na platnost norem. Zákaz šířěnía modifikace těchto materiálů. Děkuji Ing. D. Kavková
Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Ing. Ivana Bočková Číslo projektu CZ.1.07/1.5.00/34.
Škola Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Ing. Ivana Bočková Číslo projektu CZ.1.07/1.5.00/34.0394 Číslo dumu VY_32_INOVACE_14_MY_1.01 Název Vlastnosti
Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne: 25.9.2012
Označení materiálu: VY_32_INOVACE_ZMAJA_VODARENSTVI_15 Název materiálu: Přehled vlastností a struktura materiálu Tematická oblast: Vodárenství 1. ročník instalatér Anotace: Prezentace uvádí základní vlastnosti
TEPELNÉ ZPRACOVÁNÍ OCELÍ
TEPELNÉ ZPRACOVÁNÍ OCELÍ HEAT TREATMENT OF STEELS BAKALÁŘSKÁ PRÁCE BACHELOR THESIS AUTOR PRÁCE AUTHOR EVA ROSECKÁ VEDOUCÍ PRÁCE SUPERVISOR doc. Ing. JAROSLAV ŠENBERGER CSc. BRNO 2013 Vysoké učení technické
Povrchové kalení. Teorie tepelného zpracování Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2007
Povrchové kalení Teorie tepelného zpracování Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2007 Vlastnosti rychlých ohřevů Ohřívá se jen povrchová vrstva Ohřev
Tepelné a chemickotepelné zpracování slitin Fe-C. Žíhání, kalení, cementace, nitridace
Tepelné a chemickotepelné zpracování slitin Fe-C Žíhání, kalení, cementace, nitridace Tepelné zpracování Tepelné zpracování je pochod, při kterém je součást podrobena jednomu nebo několika tepelným cyklům,
Tepelná výměna. výměna tepla může probíhat vedením (kondukce), sáláním (radiace) nebo prouděním (konvekce).
Tepelná výměna tepelná výměna je termodynamický děj, při kterém dochází k samovolné výměně tepla mezi dvěma tělesy s různou teplotou. Tepelná výměna vždy probíhá tak, že teplejší těleso předává svou vnitřní
Věra Keselicová. červen 2013
VY_52_INOVACE_VK67 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace Věra Keselicová červen 2013 9. ročník
Požadavky na nástroj při stříhání. Charakteristika. Použití STRUKTURA CHIPPER / VIKING
1 CHIPPER / VIKING 2 Charakteristika VIKING je vysoce legovaná ocel, kalitelná v oleji, na vzduchu a ve vakuu, která vykazuje následující charakteristické znaky: Dobrá rozměrová stálost při tepelném zpracování
Tepelné a chemickotepelné zpracování slitin Fe-C. Žíhání, kalení, cementace, nitridace
Tepelné a chemickotepelné zpracování slitin Fe-C Žíhání, kalení, cementace, nitridace Tepelné zpracování Tepelné zpracování je pochod, při kterém je součást podrobena jednomu nebo několika tepelným cyklům,
OBRÁBĚNÍ ROTAČNÍCH SOUČÁSTÍ Z KALENÝCH OCELÍ SE ZAMĚŘENÍM NA STAV POVRCHU
OBRÁBĚNÍ ROTAČNÍCH SOUČÁSTÍ Z KALENÝCH OCELÍ SE ZAMĚŘENÍM NA STAV POVRCHU MACHINING OF ROTATING PARTS OF HARDENED STEEL FOCUSING ON THE SURFACE CONDITION DIPLOMOVÁ PRÁCE MASTER'S THESIS AUTOR PRÁCE AUTHOR
4. KOVOVÉ MATERIÁLY A JEJICH ZPRACOVÁNÍ. 4.1 Technické slitiny železa. 4.1.1 Slitiny železa s uhlíkem a vliv dalších prvků
4. KOVOVÉ MATERIÁLY A JEJICH ZPRACOVÁNÍ 4.1 Technické slitiny železa 4.1.1 Slitiny železa s uhlíkem a vliv dalších prvků Železo je přechodový kov s atomovým číslem 26, atomovou hmotností 55,85, měrnou
Metalografie ocelí a litin
Metalografie ocelí a litin Metalografie se zabývá pozorováním a zkoumáním vnitřní stavby neboli struktury kovů a slitin. Dále také stanoví, jak tato struktura souvisí s chemickým složením, teplotou a tepelným
TEPELNÉ ZPRACOVÁNÍ RYCHLOŘEZNÝCH OCELÍ SVOČ FST 2010 Lukáš Martinec, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika
ABSTRAKT TEPELNÉ ZPRACOVÁNÍ RYCHLOŘEZNÝCH OCELÍ SVOČ FST 2010 Lukáš Martinec, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika Hlavní skupinu materiálů, pouţívanou pro výrobu
Použití. Vlastnosti. Fyzikalní vlastnosti. Teplota. Měrná hmotnost kg/m³. Modul pružnosti Mpa
1 STAVAX SUPREME 2 Charakteristika Požadavky při zpracování plastu se neustále zvyšují. Tyto podmínky vyžadují použití ocelí s jedinečnou kombinací s obrobitelnosti, odolnosti proti korozi a schopností
Technické materiály test
test 1.Technické materiály dělíme na: A kovy, přírodní B oceli, nekovy, vrstvené materiály, syntetické Cmateriály, provozní a materiály, provozní a pomocné látky pomocné látky C kovy, nekovy, D kovy, nekovy,
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATERIALS SCIENCE AND ENGINEERING
Charakteristika. Použití VYŠŠÍ ŽIVOTNOST NÁSTROJÚ ORVAR SUPERIOR
1 ORVAR SUPERIOR 2 Charakteristika ORVAR SUPERIOR je Cr-Mo-V legovaná ocel pro práci za tepla, která je charakterizována následujícími vlastnostmi: vysoká odolnost proti teplotním šokům a tepelné únavě
Projekt: 1.5, Registrační číslo: CZ.1.07/1.5.00/ Tepelné zpracování
Druhy tepelného zpracování: Tepelné zpracování 1. Žíhání (ochlazení je tak pomalé, že nevzniká zákalná struktura) 2. Kalení (ohřev nad překrystalizační teplotu a ochlazení je tak prudké, aby vznikla zákalná
VANADIS 10 Super Clean
1 VANADIS 10 Super Clean 2 Charakteristika VANADIS 10 je Cr-Mo-V legovaná prášková ocel, pro kterou jsou charakteristické tyto vlastnosti: Extrémně vysoká odolnost proti opotřebení Vysoká pevnost v tlaku
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Číslo projektu CZ.1.07/1.5.00/34.0514 Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast Strojírenská technologie, vy_32_inovace_ma_22_18 Autor
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2. Obor CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Strojírenská technologie, vy_32_inovace_ma_22_14
Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice
6. FÁZOVÉ PŘEMĚNY KOVOVÝCH SOUSTAVÁCH Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace
Nauka o materiálu. Přednáška č.6 Únava materiálu
Nauka o materiálu Přednáška č.6 Únava materiálu Cyklické namáhání a životnost součástí Většina lomů v technické praxi je způsobena proměnlivým zatížením, přičemž největší napětí v součásti často nepřesáhne
KALENÍ A POPOUŠTĚNÍ. 0 0,4 0,8 1,2 1,6 1,8 Obsah C (%) Oblasti vhodných kalících teplot v diagramu Fe - Fe3C
1 KALENÍ A POPOUŠTĚNÍ Účelem kalení je zvýšit tvrdost oceli. Je to ohřev součásti na teplotu nad A c3 popř. A c1, výdrž na této teplotě a ochlazování kritickou rychlostí, čímž se potlačí vznik feritu a
PRÁŠKOVÁ METALURGIE. Ing. V. Kraus, CSc. Opakování z Nauky o materiálu 1
PRÁŠKOVÁ METALURGIE Ing. V. Kraus, CSc. Opakování z Nauky o materiálu 1 PRÁŠKOVÁ METALURGIE Progresívní technologie vysoké využití materiálu nízká teplota zpracování vysoká čistota možnost spojení nejen
Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ
Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 7.10.2013
Název a registrační číslo projektu: Číslo a název oblasti podpory: Realizace projektu: Autor: Období vytváření výukového materiálu: Ročník:
Název a registrační číslo projektu: CZ.1.07/1.5.00/34.0498 Číslo a název oblasti podpory: 1.5 Zlepšení podmínek pro vzdělávání na středních školách Realizace projektu: 02. 07. 2012 01. 07. 2014 Autor:
FÁZOVÉ PŘEMĚNY. Hlediska: termodynamika (velikost energie k přeměně) kinetika (rychlost nukleace a rychlost růstu = celková rychlost přeměny)
FÁZOVÉ PŘEMĚNY Hlediska: termodynamika (velikost energie k přeměně) kinetika (rychlost nukleace a rychlost růstu = celková rychlost přeměny) mechanismus difúzní bezdifúzní Austenitizace Vliv: parametry
Označování dle 11/2002 označování dle ADR, označování dle CLP
Označování dle 11/2002 označování dle ADR, označování dle CLP Nařízení 11/2002 Sb., Bezpečnostní značky a signály 4 odst. 1 nařízení 11/2002 Sb. Nádoby pro skladování nebezpečných chemických látek, přípravků
Měření mikro-mechanických vlastností tepelně zpracovaných ocelí. Jaroslav Zapletal
Měření mikro-mechanických vlastností tepelně zpracovaných ocelí Jaroslav Zapletal Bakalářská práce 2014 ABSTRAKT Tato bakalářská práce se zabývá měřením mikro-mechanických vlastností modifikovaných
POUZDRA S KLUZNOU VRSTVOU PTFE (TEFLON)
POUZDRA S KLUZNOU VRSTVOU PTFE (TEFLON) POUZDRA S KLUZNOU VRSTVOU PTFE Popis materiálu... 3 Vlastnosti... 3 Tření... 3 Opotřebení... 3 Mazání... 3 Válcované kluzné pouzdro OCEL/PTFE bezúdržbové... 4 Válcované
VÝROBA TEMPEROVANÉ LITINY
VÝROBA TEMPEROVANÉ LITINY Temperovaná litina (dříve označovaná jako kujná litina anglicky malleable iron) je houževnatý snadno obrobitelný materiál vyráběný tepelným zpracováním odlitků z bílé litiny.
4.6.6 Složený sériový RLC obvod střídavého proudu
4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu
Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení
Metalografie Praktické příklady z materiálových expertíz 4. cvičení Obsah Protahovací trn Povrchově kalená součást Fréza Karbidické vyřádkování Cementovaná součást Pozinkovaná součást Pivní korunky Klíč
Možnosti Impact testu při posuzování správnosti tepelného zpracování ocelí. Ing. Petr Beneš
Možnosti Impact testu při posuzování správnosti tepelného zpracování ocelí Vedoucí: Konzultanti: Vypracoval: Doc. Dr. Ing. Antonín Kříž Ing. Jiří Hájek Ph.D Ing. Petr Beneš Martin Vadlejch Impact test
Metodika hodnocení strukturních změn v ocelích při tepelném zpracování
Metodika hodnocení strukturních změn v ocelích při tepelném zpracování Bc. Pavel Bílek Ing. Jana Sobotová, Ph.D Abstrakt Předložená práce se zabývá volbou metodiky hodnocení strukturních změn ve vysokolegovaných
Měření mikrotvrdosti tepelně zpracovaných ocelí. Petr Nedbal
Měření mikrotvrdosti tepelně zpracovaných ocelí Petr Nedbal Bakalářská práce 2015 ABSTRAKT Zaměření této bakalářské práce je na měření mikrotvrdosti tepelně zpracovaných ocelí. První část práce je
1) U neredoxních dějů se stechiometrické koeficienty doplňují zkusmo
CHEMICKÉ ROVNICE Popisují kvalitativně a kvantitativně chemické reakce. Na levou stranu rovnice zapisujeme výchozí látky (reaktanty), na pravou stranu produkty reakce. Obě strany chemické rovnice se spojují
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Číslo projektu CZ.1.07/1.5.00/34.0514 Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast Strojírenská technologie, vy_32_inovace_ma_22_16 Autor
Tváření za tepla. Jedná se o proces, kdy na materiál působíme vnějšími silami a měníme jeho tvar bez porušení celistvosti materiálu.
Tváření za tepla Tváření za tepla je hospodárná a produktivní metoda výroby výrobků a polotovarů s malým množstvím odpadu materiálu (5-10%). Tvářecí procesy lez dobře mechanizovat a automatizovat. Jedná
Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení
Metalografie Praktické příklady z materiálových expertíz 4. cvičení Příprava metalografických výbrusů Odběr vzorků nesmí dojít k změně struktury (deformace, ohřev) světelný mikroskop pro dosažení požadovaných
1 Typografie. 1.1 Rozpal verzálek. Typografie je organizace písma v ploše.
1 Typografie Typografie je organizace písma v ploše. 1.1 Rozpal verzálek vzájemné vyrovnání mezer mezi písmeny tak, aby vzdálenosti mezi písmeny byly opticky stejné, aby bylo slovo, řádek a celý text opticky
OCELI A LITINY. Ing. V. Kraus, CSc. Opakování z Nauky o materiálu
OCELI A LITINY Ing. V. Kraus, CSc. 1 OCELI Označování dle ČSN 1 Ocel (tvářená) Jakostní Tř. 10 a 11 - Rm. 10 skupina oceli Tř. 12 a_ 16 (třída) 3 obsah všech leg. prvků /%/ Význačné vlastnosti. Druh tepelného
NTI/USM Úvod do studia materiálů Ocel a slitiny železa
NTI/USM Úvod do studia materiálů Ocel a slitiny železa Petr Šidlof Připraveno s využitím skript Úvod do studia materiálů, Prof. RNDr. Bohumil Kratochvíl, DSc., Prof. Ing. Václav Švorčík, DrSc., Doc. Dr.
NAMÁHÁNÍ NA TAH NAMÁHÁNÍ NA TAH
Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 10. BŘEZNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA TAH NAMÁHÁNÍ NA TAH Přímá tyč je namáhána na tah, je-li zatíţena dvěma silami
Diagram Fe N a nitridy
Nitridace Diagram Fe N a nitridy Nitrid Fe 4 N s KPC mřížkou také γ fáze. Tvrdost 450 až 500 HV. Přítomnost uhlíku v oceli jeho výskyt silně omezuje. Nitrid Fe 2-3 N s HTU mřížkou, také εε fáze. Je stabilní
Oddělení teplárenství sekce regulace VYHODNOCENÍ CEN TEPELNÉ ENERGIE
Oddělení teplárenství sekce regulace VYHODNOCENÍ CEN TEPELNÉ ENERGIE Obsah: 1. Úvod 2. Přehled průměrných cen 3. Porovnání cen s úrovněmi cen 4. Vývoj průměrné ceny v období 21 26 5. Rozbor cen za rok
CHEMICKO-TEPELNÉ ZPRACOVÁNÍ OCELÍ
1 CHEMICKO-TEPELNÉ ZPRACOVÁNÍ OCELÍ Pod pojmem chemicko-tepelné zpracování se obvykle zařazuje řada způsobů, při nichž se sytí povrch oceli různými prvky, aby se dosáhlo různých vlastností, např. žárovzdornost,
neviditelné a o to více nebezpečné radioaktivní částice. Hrozbu představují i freony, které poškozují ozónovou vrstvu.
OCHRANA OVZDUŠÍ Ovzduší je pro člověka jednou z nejdůležitějších složek, které tvoří životního prostředí a bez které se nemůže obejít. Vdechovaný vzduch a vše, co obsahuje, se dostává do lidského těla
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2. 10 Základní části strojů Kapitola 28
1 Statické zkoušky. 1.1 Zkouška tahem L L. R = e [MPa] S S
1 Statické zkoušky 1.1 Zkouška tahem Zkouška tahem je základní a nejrozšířenější mechanická zkouška. Princip: Přetržení zkušební tyče a následné stanovení tzv. napěťových a deformačních charakteristik
K618 - Materiály listopadu 2013
Tepelné zpracování ocelí. Žíhání Tomáš Doktor K618 - Materiály 1 19. listopadu 2013 Tomáš Doktor (18MRI1) Žíhání 19. listopadu 2013 1 / 15 Cyklus tepelného zpracování Cyklus tepelného zpracování Žíhání
Žíhání druhého druhu. Teorie tepelného zpracování Katedra materiálu Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2007
Žíhání druhého druhu Teorie tepelného zpracování Katedra materiálu Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2007 Rozdělení Žíhání 2. druhu oceli litiny Neželezné kovy austenitizace Rozpad
Základní chemické pojmy a zákony
Základní chemické pojmy a zákony LRR/ZCHV Základy chemických výpočtů Jiří Pospíšil Relativní atomová (molekulová) hmotnost A r (M r ) M r číslo udávající, kolikrát je hmotnost daného atomu (molekuly) větší
Fe Fe 3 C. Metastabilní soustava
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 v návaznosti na platnost norem. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D.
Ploché výrobky pro tlakové nádoby a zařízení z legovaných a nelegovaných ocelí pro vyšší teploty Technické dodací podmínky
Ploché výrobky pro tlakové nádoby a zařízení z legovaných a nelegovaných ocelí pro vyšší teploty Technické dodací podmínky Předmět normy Podle ČSN EN 100282012010 Tato norma stanovuje požadavky na ploché
ÚSTAV KONSTRUOVÁNÍ seminář 27.10.2006. Degradace nízkolegovaných ocelí v. abrazivním a korozivním prostředí
ÚSTAV KONSTRUOVÁNÍ seminář 27.10.2006 Degradace nízkolegovaných ocelí v abrazivním a korozivním prostředí ÚSTAV KONSTRUOVÁNÍ seminář 27.10.2006 Odborný Curiculum Vitae Curiculum Vitae Michal Černý - 29.
CHEMICKO-TEPELNÉ ZPRACOVÁNÍ OCELÍ CHEMICAL HEAT TREATMENT OF STEEL
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATERIALS SCIENCE AND ENGINEERING
Proces hoření. - snadno a rychle
Proces hoření - snadno a rychle Hoření Jako hoření označujeme každou chemickou oxidačně-redukční reakci, při které látky rychle reagují s oxidačním prostředkem. Při této reakci vzniká teplo (jedná se tedy
HAIGHŮV DIAGRAM VYBRANÉ PRUŽINOVÉ OCELI HAIGH DIAGRAM OF SELECTED SPRING STEEL
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATERIALS SCIENCE AND ENGINEERING
TEPELNÉ ZPRACOVÁNÍ. Ing. V. Kraus, CSc. Opakování z Nauky o materiálu
TEPELNÉ ZPRACOVÁNÍ Ing. V. Kraus, CSc. 1 TEPELNÉ ZPRACOVÁNÍ záměrné využívání fázových a strukturních přeměn v tuhém stavu ke změně struktury a tím k získání požadovaných mechanických nebo strukturních
Odpadové hospodářství na Ostravsku ve světle nových požadavků ČR a EU
OZO Ostrava s.r.o. Odpadové hospodářství na Ostravsku ve světle nových 27.4. 2016 www.ozoostrava.cz Požadavky ČR POH ČR a MSK Kraje Závazná část Do roku 2020 zvýšit nejméně na 50 % hmotnosti celkovou úroveň
TEPELNÉ A CHEMICKO-TEPELNÉ ZPRACOVÁNÍ OCELI
TEPELNÉ A CHEMICKO-TEPELNÉ ZPRACOVÁNÍ OCELI - Princip tepelného zpracování - Způsoby ohřevu a ochlazení - Ţíhání - Kalení - Jominiho zkouška - Druhy chemicko-tepelného zpracování a jejich vyuţití ve strojírenské
VESMÍR. za počátek vesmíru považujeme velký třesk před 13,7 miliardami let. dochází k obrovskému uvolnění energie, která se rozpíná
VESMÍR za počátek vesmíru považujeme velký třesk před 13,7 miliardami let dochází k obrovskému uvolnění energie, která se rozpíná vznikají první atomy, jako první se tvoří atomy vodíku HVĚZDY vznikají
Základní rozdělení slitin Al z hlediska jejich vhodnosti ke tváření, slévání a tepelnému zpracování vytvrzováním:
HLINÍK A JEHO SLITINY Al je nepolymorfní kov, o měrné hmotnosti 2.69.10 3 kg/m 3. Krystalizuje v soustavě fcc. T T je 660 C, bod varu 2060 C. Elektrická vodivost se pohybuje v rozmezí 30.10 6 až 36.10
A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ 1 3 0 4 _ T E P E L N É Z P R A C O V Á N Í _ P W
A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ 1 3 0 4 _ T E P E L N É Z P R A C O V Á N Í _ P W P Název školy: Číslo a název projektu: Číslo a název
Charakteristika. Rozhodující vlastnosti nástrojových ocelí pro. Použití. VANADIS 4 Extra. Optimální výkon HOSPODÁRNOU VÝROBU NÁSTROJŮ PODMIŇUJE
1 VANADIS 4 Extra 2 Rozhodující vlastnosti nástrojových ocelí pro Optimální výkon správná tvrdost pro dané použití vysoká odolnost proti opotřebení vysoká houževnatost. Vysoká odolnost proti opotřebení
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.6 k prezentaci Kalení
Číslo projektu CZ.1.07/1.5.00/34.0514 Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast Strojírenská technologie, vy_32_inovace_ma_22_13 Autor
Nauka o materiálu. Krystalizace, difúze
Nauka o materiálu Krystalizace, difúze Krystalizace je difúzní fázová přeměna, při níž kov přechází ze skupenství kapalného do tuhého, tzn., že se tavenina přemění na krystaly. Přeměna taveniny v krystaly
TECHNOLOGICAL PROCESS IN ISOTHERMAL HEAT TREATMENT OF STEEL TECHNOLOGICKÝ POSTUP PŘI IZOTERMICKÉM TEPELNÉM ZPRACOVÁNÍ OCELI
TECHNOLOGICAL PROCESS IN ISOTHERMAL HEAT TREATMENT OF STEEL TECHNOLOGICKÝ POSTUP PŘI IZOTERMICKÉM TEPELNÉM ZPRACOVÁNÍ OCELI Učeň M., Filípek J. Ústav techniky a automobilové dopravy, Agronomická fakulta,
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VLIV TEPELNÉHO ZPRACOVÁNÍ NA STRUKTURU A MECHANICKÉ VLASTNOSTI NÁSTROJOVÝCH OCELÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUE OF MATERIALS SCIENCE AND ENGINEERING
Charakteristika. Vlastnosti. Použití NÁSTROJE NA TLAKOVÉ LITÍ NÁSTROJE NA PROTLAČOVÁNÍ NÁSTROJE PRO TVÁŘENÍ ZA TEPLA VYŠŠÍ ŽIVOTNOST NÁSTROJŮ
DIEVAR DIEVAR 2 DIEVAR Charakteristika DIEVAR je Cr-Mo-V legovaná vysoce výkonná ocel pro práci za tepla s vysokou odolností proti vzniku trhlin a prasklin z tepelné únavy a s vysokou odolností proti opotřebení
PRŮBĚH CHEMICKÉ REAKCE
PRŮBĚH CHEMICKÉ REAKCE Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 12. 12. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce 1 Anotace: Žáci se seznámí s chemickou
Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1
Škola Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Ing. Ivana Bočková Číslo projektu CZ.1.07/1.5.00/34.0394 Číslo dumu VY_32_INOVACE_13_V_3.02 Název Centralizované
Atom je základní částice hmoty dále chemicky nedělitelná. Z hlediska strojírenské technologie je důležitá, protože určuje vlastnosti hmoty.
NAUKA O MATERIÁLU Obsah: 1) Atom základní stavební prvek hmoty 2) Druhy chemických vazeb 3) Krystalové mřížky 4) Vady mřížek 5) Difuze 6) Základní termodynamické a kinetické pojmy 7) Gibbsův zákon fází
Díly forem. Vložky forem Jádra Vtokové dílce Trysky Vyhazovače (nitridované) tlakové písty, tlakové komory (normálně nitridované) V 0,4
1 VIDAR SUPREME 2 Charakteristika VIDAR SUPREME je Cr-Mo-V legovaná ocel pro práci za tepla, pro kterou jsou charakteristické tyto vlastnosti: Velmi dobrá odolnost proti náhlým změnám teploty a tvoření
5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN
5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN Metody zkoumání fázových přeměn v kovech a slitinách jsou založeny na využití změn převážně fyzikálních vlastností, které fázovou přeměnu a s ní spojenou změnu struktury
Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice
10.ZÁKLADY TEPELNÉHO ZPRACOVÁNÍ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace
TECHNICKÉ ZNALECTVÍ. Oceňování strojů a zařízení. prof. Ing. Jan Mareček, DrSc. ÚZPET
TECHNICKÉ ZNALECTVÍ Oceňování strojů a zařízení ÚZPET prof. Ing. Jan Mareček, DrSc. Cena je obecně myšlena suma peněz, která musí být předána výměnou za výrobek nebo službu, které jsou nakupovány. Hodnota
Vlastnosti V 0,2. Modul pružnosti Součinitel tepelné roztažnosti C od 20 C. Tepelná vodivost W/m. C Měrné teplo J/kg C
1 CALMAX 2 Charakteristika CALMAX je Cr-Mo-V legovaná ocel, pro kterou jsou charakteristické tyto vlastnosti: Vysoká houževnatost Dobrá odolnost proti opotřebení Dobrá prokalitelnost Dobrá rozměrová stálost
Úpravy skříní a čelních ploch pro úchopovou lištou
Úpravy skříní a čelních ploch pro úchopovou lištou Úchopová lišta znamená hliníkovou lištu, která je součástí korpusu. Skříňky jsou připraveny pro osazení této lišty, lišta samotná se osazuje až na montáži.
Vybrané technologie povrchových úprav. Cementace Doc. Ing. Karel Daďourek 2006
Vybrané technologie povrchových úprav Cementace Doc. Ing. Karel Daďourek 2006 Oblast cementačních teplot Tvrdosti před a po cementaci V zelené oblasti je tvrdost uhlíkových cementačních ocelí před cementací
Použití. Charakteristika SLEIPNER PŘÍKLADY:
1 SLEIPNER 2 Charakteristika SLEIPNER je Cr-Mo-V nástrojová legovaná ocel, kterou charakterizují tyto vlastnosti: Dobrá odolnost proti opotřebení Dobrá odolnost proti vyštipování hran a ostří Vysoká pevnost
Filtrace olejů a čištění strojů
Filtrace olejů a čištění strojů Moderní technologie současnosti kladou vysoké nároky nejen na kvalitu olejů po stránce složení a aditivace, ale také nízké míry znečištění mechanickými částicemi vzniklých
2.7.2 Mocninné funkce se záporným celým mocnitelem
.7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,
Charakteristika. Vlastnosti. Použití FYZIKÁLNÍ VLASTNOSTI TEPLOTA KOROZNÍ ODOLNOST ELMAX. Kaleno a popouštěno na 58 HRC
1 ELMAX 2 Charakteristika ELMAX je Cr-Mo-V slitinová, práškovou metalurgií vyrobená ocel, s následujícími vlastnostmi: vysoká odolnost proti opotřebení vysoká pevnost v tlaku vysoká rozměrová stabilita
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV STROJÍRENSKÉ TECHNOLOGIE FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MANUFACTURING TECHNOLOGY NÁSTROJE
Důchody v Pardubickém kraji v roce 2014
Důchody v Pardubickém kraji v roce 2014 V Pardubickém kraji v prosinci 2014 splňovalo podmínky pro výplatu některého z důchodů 145 266 osob. Mezi příjemci bylo 58 754 mužů a 86 512 žen. Z celkového počtu
Sada 1 Technologie betonu
S třední škola stavební Jihlava Sada 1 Technologie betonu 06. Chemické reakce cementu Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona:
SMA 2. přednáška. Nauka o materiálu NÁVRHY NA OPAKOVÁNÍ
SMA 2. přednáška Nauka o materiálu NÁVRHY NA OPAKOVÁNÍ Millerovy indexy rovin (h k l) nesoudělné převrácené hodnoty úseků, které vytíná rovina na osách x, y, z Millerovy indexy této roviny jsou : (1 1