ZÁKLADNÍ METABOLICKÉ TYPY + VELKÉ CYKLY PRVKŮ. (doplňky, poznámky, zajímavosti a komentáře)
|
|
- Aleš Brož
- před 8 lety
- Počet zobrazení:
Transkript
1 ZÁKLADNÍ METABLICKÉ TYPY + VELKÉ CYKLY PRVKŮ (doplňky, poznámky, zajímavosti a komentáře)
2 Metabolické typy FTLITH- TRFY (autotrofní) Příklady organismů vyšší zelené rost., sinice, prochlorobakt. sirné purpur. a zelené bakt. bezsirné purpurové bakterie FTRGA- NTRFY (heterotrofní) CHEMLITH- TRFY (autotrofní) CHEMRGA- NTRFY (heterotrofní) Zdroj C C 2 organ. látky C 2 (fixace v Calvin. cyklu) organ. látky Hlavní způsob výr. NADPH oxygenní fotosynthesa anoxygenní fotosynthesa anoxygenní fotosynthesa redukce NADP + za užití ATP redukce NADP + za užití ATP redukce NADP + na úkor protonmotivní síly pentosový cyklus + pomocné" reakce: isocitrátdehydrog. malátdehydrog. glutamátdehydr. + redukce NADP + pomocí NADH na úkor PMF Zdroj H (e ) H 2 H 2 S, H 2, S H 2 organické látky (mastné kys., sukcinát) Fe 2+, NH 4+, N 2-, S 2-, S, H 2,, CH 4 H 2 organické látky ( živiny ) Konečný akc. H (e - ) C 2 různé organické látky 2 (aerobní) C 2, S, Fe 3+ (anaerob.) 2 jiné extracelulár. (N 3-, S 2-4, C 2, fumarát ) meziprod. metabol. (pyruvát, acetaldeh.) Hlavní způsob výroby ATP membránová fosforylace ve světlé fázi fotosynthesy membr. fosforylace (bakteriorhodopsin) membránová fosforylace aerobní membránová fosforylace anaerobní membránová fosforylace (anaorobní respirující) substrátová fosforylace (pouze) (fermentující) Halobact. halobium železité, nitrifikační a sirné bakterie methanogen. b., desulfurisač. b. živočichové, plísně, bakterie denitrifikační, desulfurizační, acetogenní a sukcinogení bakterie laktobacily, kvasinky, škrkavky, klostridia
3 FTLITHTRFY světlá fáze h PMF ATP-synthasa ADP + P i ATP + H 2 h PS I? PS II NAD(P) + + H 2 D NAD(P)H + H + + D D = kyslík: oxygenní (PS I + PS II; šlo by to s jedním PS?) = jiný donor elektronů (H 2 S, H 2..): anoxygenní (jeden PS) temná fáze sumárně: C 2 + 2(NAD(P)H + H + ) + natp (HCH) + 2 NAD(P) + + nadp + np i 3 fáze: fixace: C 5 + C 2 2 C 3 ribulosa-1,5-bisfosfát 3-fosfoglycerát synteza C 6 (analogie glukogenese): 2 C 3 + 2(NAD(P)H + H + ) C 6 regenerace akceptoru: 10 C 3 6 C 5
4 Fotosynteza celkově
5 Fotosynteza temná fáze
6
7 C 4 - rostliny CAM rostliny: crasulacean acid metabolism (tučnolisté) oddělení fixace C 2 a Calvinova cyklu v čase (ochrana proti vysychání): v noci: škrob fosfoenolpyruvát malát (fixace C 2 ) ve dne: světlá fáze, dekarboxylace malátu Calvinův cyklus
8 Fototrofní mikroorganismy Bakteriální fotosynteza (odchylnosti od vyšších rostlin) bakteriochlorofyl (absorpce v rozmezí nm a v blízké IČ nm) světlá fáze v cytoplasmové membráně, temná v cytosolu sirné bakterie (jeden fotosystém, anoxygenní fotosynteza): při dostatku H 2 S: h C H 2 S <HCH> + 2S + H 2 při nedostatku H 2 S: C 2 + ½ H 2 S + H 2 <HCH> + ½ H 2 S 4 nebo ze zásob S: h h 3 C S + 5 H 2 3 <HCH> + 2H 2 S 4 u některých bakterií: redukce NADP + "zpětným tokem" e - ETC (dále) Fotoorganotrofní mikroorganismy: synteza ATP ve světlé fázi, plankton "bezchlorofylová fotosynteza": bakteriorhodopsin u extremních halofilů (vysoké ph a [Na + ]): "sodnomotivní síla"
9 vsuvka: Sekundární metabolismus Primární metabolismus: děje nezbytné pro zajištění energie a syntezu základních složek; u všech organismů více-méně stejný. Sekundární metabolismus: synteza produktů, které nemají základní význam v ekonomice organismu; významný zejména u rostlin a M Alkaloidy (dusíkaté látky rostlin), zásobárna dusíku pro nepříznivá období??, ochrana rostlin (silné a specifické účinky na živočišné organismy - využití v medicině, jedy, návykové látky) Barviva: anthokyaniny, karotenoidy, pyrrolová barviva, hem? Chinoidní látky: ubichinon, plastochinon, vitamin K Lignin: polymer (methoxyfenylpropanové jednotky), v jehličnanech až 50 % hmotnosti dřeva Kaučuk, antibiotika a tisíce dalších
10 Aerobní CHEMLITHTRFY Bakterie Donor e - Produkt G o ' Poznámka (kj/mol) oxidující H 2 H 2 H bezbarvé sírné H 2 S (S zásoba) biometalurgie, koroze S, S H 2 S trubek nitrifikační NH + 4 N koloběh N v přírodě N - 2 N železité Fe 2+ Fe ucpávání trubek, vznik železirých hornin methanotrofní CH 4 C 2 oxidují pouze jednouhlíkaté látky Anaerobní donorem e - je vždy plynný H 2 => žijí v konsorciích s bakteriemi produkujícími H 2 Bakterie Akceptor e - Produkt Poznámky methanogenní C 2 CH 4 zisk 1 ATP / mol CH 4 ETC se specifickými kofaktory, mohou též redukovat CH 3 C - a HC - anaerobní čištění odpad. vod bezbarvé sirné S 2-4 H 2 S, S železité Fe 3+ Fe 2+
11 Synteza NADPH opačným tokem elektronů elektron-transportním řetězcem hnaným ATP
12 CHEMRGANTRFY Aerobní prototyp: savčí buňky, také aerobní kvasinky, plísně apod. v nadbytku substrátu: někdy nedospějí až k C 2 a H 2 ( nepravé fermentace) např.: výroba kyselin citronové, fumarové a glukonové octové kvašení: CH 3 CH 2 H + 2 CH 3 CH + H 2 Anaerobní respirující jiný extracelulární akceptor H (e - ) než 2 : N - 3 N 2-, N 2, N 2 denitrifikační bakterie * S 2-4 S, H 2 S desulfurisační bakterie C 2 (HC 3- ) CH 3 C - acetogenní bakterie fumarát sukcinát sukcinogenní bakterie * disimilační nitráreduktasa vs asimilační nitrátreduktasa
13 Fermentující (v biochemickém pojetí): - anaerobní heterotrofní metabolismus - nepřijímají oxidační (ani redukční) činidla z vnějšího prostředí (oxidačně-redukční reakce meziproduktů metabolismu) - neprovozují membránovou fosforylaci (nemají ETC) ATP pouze substr. Fosforylací Problém: jak reoxidovat NADH vzniklý v glykolyse: CH HC H + NAD + + P i C HC H možnosti (zajímavé příklady): mléčná (laktátová) fementace: CH 3 -C-C - + NADH + H + CH 3 -CHH-C - + NAD + (LDH) mléčné bakterie (laktobacily) - specialisté b. aerobních chemoorganotrofů: - při nedostatku 2 (Coriho cyklus) - bez mitochondrie (červené krvinky) C H 2 ethanolová fermentace (alkoholové kvašení): CH 3 -C-C - + H + CH 3 -CH + C 2 (pyruvátdekarboxylasa) CH 3 -CH + NADH + H + CH 3 -CH 2 H + NAD + (ADH) nejstarší a nejvýznamnější biotechnologie (75 % zisku) Saccharomyces cerevisiae: za aerobních podmínek úplná oxidace P C H 2 P P + NADH + H +
14 glycerolová fermentace: H H CH 2 C C H 2 P + NADH + H + H H HC C H 2 CH 2 H P + NAD + CH 2 CH 2 HC C H 2 H P + H 2 HC C H 2 H H + P i Neubergův typ nefysiologické fermentace: S. cerevisiae, v prostředí disiřičitan sodný (Na 2 S 2 5 ), reaguje s acetaldehydem, zabrání jeho dehydrogenaci klasická metoda výroby glycerolu (dnes synthesou a jako odpad při zpracování triacylglycerolů)
15 fermentace vycházející z acetyl-coa: CH 3 -C-C - + HSCoA CH 3 -C-SCoA + HC - + H 2 uvolňování vodíku - viz anaerobní chemolithotrofy, většina střevních bakterií dále 2 možnosti: A: CH 3 -C-SCoA + NADH + H + + H 2 CH 3 -CH + HSCoA + NAD + CH 3 -CH + NADH + H + CH 3 -CH 2 H + NAD + na 1 AcSCoA 2 molekuly NADH 1 AcSCoA lze použít na substr. fosforylaci (acetylcoa-ligasa): AcSCoA + ADP + P i CH 3 -C - + HSCoA + ATP B: kondensace 2 Ac-SCoA acetoacetyl-scoa poté redukce za vzniku: kys. máselné, 1-butanolu, acetonu, 2-propanolu apod. výroba organických rozpouštědel v 1. pol. 20.století
16 KLBĚH BIGENNÍCH PRVKŮ V BISFÉŘE kyslík aerobní chemoorganotrofy a chemolithotrofy NADH + H + + ½ 2 NAD + + H 2 SH 2 + ½ 2 S + H 2 2 H 2 oxygenní fotosynthesa h NAD(P) + + H 2 NAD(P)H + H + + ½ 2
17 uhlík heterotrofové všeho druhu (katabolismus) organická hmota C 2 autotrofové všeho druhu (autotrofní anabolismus) horniny (vápence, dolomity..)
18 dusík
19 síra
Bioenergetika. přeměny energie v živých organismech
Bioenergetika přeměny energie v živých organismech Chemiosmotická teorie 1978 Mitchell Nobelova cena na semipermeabilní membráně tvorba elektrochemického gradientu na membráně protonové pumpy protonmotivní
METABOLISMUS SACHARIDŮ
METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces
Metabolismus. Source:
Source: http://www.roche.com/ http://www.expasy.org/ Metabolismus Source: http://www.roche.com/sustainability/for_communities_and_environment/philanthropy/science_education/pathways.htm Metabolismus -
Dýchací řetězec (Respirace)
Dýchací řetězec (Respirace) Buněčná respirace (analogie se spalovacím motorem) Odbourávání glukosy (včetně substrátových fosforylací) C 6 H 12 O 6 + 6O 2 ---------> 6 CO 2 + 6H 2 O + 38 ATP Oxidativní
Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa
8. Dýchací řetězec a fotosyntéza Obtížnost A Pomocí následující tabulky charakterizujte jednotlivé složky mitochondriálního dýchacího řetězce. SLOŽKA Pořadí v dýchacím řetězci 1) Molekulový typ 2) Charakteristika
ANABOLISMUS SACHARIDŮ
zdroj sacharidů: autotrofní org. produkty fotosyntézy heterotrofní org. příjem v potravě důležitou roli hraje GLUKÓZA METABOLISMUS SACHARIDŮ ANABOLISMUS SACHARIDŮ 1. FOTOSYNTÉZA autotrofní org. 2. GLUKONEOGENEZE
Metabolismus. - soubor všech chemických reakcí a příslušných fyzikálních procesů, které souvisejí s aktivními projevy života daného organismu
Metabolismus Obecné znaky metabolismu Získání a využití energie - bioenergetika Buněčné dýchání (glykolysa + CKC + oxidativní fosforylace) Biosynthesa sacharidů + fotosynthesa Metabolismus lipidů Metabolismus
Biosyntéza sacharidů 1
Biosyntéza sacharidů 1 S a c h a r id y p o tr a v y (š k r o b, g ly k o g e n, sa c h a r o sa, a j.) R e z e r v n í p o ly sa c h a r id y J in é m o n o sa c h a r id y Trávení (amylásy - sliny, pankreas)
Metabolismus, taxonomie a identifikace bakterií. Karel Holada khola@lf1.cuni.cz
Metabolismus, taxonomie a identifikace bakterií Karel Holada khola@lf1.cuni.cz Klíčová slova Obligátní aeroby Obligátní anaeroby Aerotolerantní b. Fakultativní anaeroby Mikroaerofilní b. Kapnofilní bakterie
Katabolismus - jak budeme postupovat
Katabolismus - jak budeme postupovat I. fáze aminokyseliny proteiny polysacharidy glukosa lipidy Glycerol + mastné kyseliny II. fáze III. fáze ETS itrátový cyklus yklus trikarboxylových kyselin, Krebsův
Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech
Citrátový cyklus Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech 1. stupeň: OXIDACE cukrů, tuků a některých aminokyselin tvorba Acetyl-CoA a akumulace elektronů v NADH a FADH 2 2.
9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy
9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy Obtížnost A Vyjmenujte kofaktory, které využívá multienzymový komplex pyruvátdehydrogenasy; které z nich řadíme mezi koenzymy
Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.
Fyziologie buňky RNDr. Zdeňka Chocholoušková, Ph.D. Přeměna látek v buňce = metabolismus Výměna látek mezi buňkou a prostředím Buňka = otevřený systém probíhá výměna látek i energií s prostředím Některé
Metabolismus mikroorganismů
Metabolismus mikroorganismů Metabolismus organismů Souvisí s metabolismem polysacharidů, bílkovin, nukleových kyselin a lipidů Cytoplazma, mitochondrie (matrix, membrána) H 3 PO 4 Polysacharidy Pentózový
Biogeochemické cykly biogenních prvků
Technologie výroby bioplynu a biovodíku http://web.vscht.cz/pokornd/bp Biogeochemické cykly biogenních prvků Ing. Pokorná Dana, CSc. (č.dv.136, pokornd@vscht.cz) Prof.Ing.Jana Zábranská, CSc. (č.dv.115,
Dýchací řetězec. Viz též přednášky prof. Kodíčka (snímky a blány v levém sloupci)
Dýchací řetězec Viz též přednášky prof. Kodíčka (snímky a blány v levém sloupci) Odbourávání glukosy (včetně substrátových fosforylací) C 6 H 12 O 6 + 6O 2 -->6 CO 2 + 6H 2 O + 38 ATP Dýchací
12-Fotosyntéza FRVŠ 1647/2012
C3181 Biochemie I 12-Fotosyntéza FRVŠ 1647/2012 Petr Zbořil 10/6/2014 1 Obsah Fotosyntéza, světelná fáze. Chlorofyly, struktura fotosyntetického centra. Komponenty přenosu elektronů (cytochromy, chinony,
B4, 2007/2008, I. Literák
B4, 2007/2008, I. Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují pořádek ve světě, který spěje k čím dál většímu chaosu Druhá věta termodynamiky: Ve vesmíru nebo jakékoliv izolované
Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron).
Otázka: Fotosyntéza a biologické oxidace Předmět: Biologie Přidal(a): Ivana Černíková FOTOSYNTÉZA = fotosyntetická asimilace: Jediný proces, při němž vzniká v přírodě kyslík K přeměně jednoduchých látek
14. Fyziologie rostlin - fotosyntéza, respirace
14. Fyziologie rostlin - fotosyntéza, respirace Metabolismus -přeměna látek a energií (informací) -procesy: anabolický katabolický autotrofie Anabolismus heterotrofie Autotrofní organismy 1. Chemoautotrofy
Konsultační hodina. základy biochemie pro 1. ročník. Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa
Konsultační hodina základy biochemie pro 1. ročník Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa Přírodní látky 1 Co to je? Cukry (Sacharidy) Organické látky,
DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal
DYNAMICKÁ BIOCHEMIE Daniel Nechvátal :: www.gymzn.cz/nechvatal Energetický metabolismus děje potřebné pro zabezpečení života organismu ANABOLISMUS skladné reakce, spotřeba E KATABOLISMUS rozkladné reakce,
Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD
Ukázky z pracovních listů z biochemie pro SŠ A ÚVD 1) Doplň chybějící údaje. Jak se značí makroergní vazba? Kolik je v ATP makroergních vazeb? Co je to ADP Kolik je v ADP makroergních vazeb 1) Pojmenuj
- metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy a jejich životním prostředím
Otázka: Obecné rysy metabolismu Předmět: Chemie Přidal(a): Bára V. ZÁKLADY LÁTKOVÉHO A ENERGETICKÉHO METABOLISMU - metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy
FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN
FYZIOLOGIE ROSTLIN Fyziologie rostlin, Biologie, 2.ročník 25 Podobor botaniky, který studuje životní funkce a individuální vývoj rostlin. Využívá poznatků z dalších odvětví biologie jako je morfologie,
Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení Ročník 1.
Energetický metabolizmus buňky
Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie
FOTOSYNTÉZA. Princip, jednotlivé fáze
FOTOSYNTÉZA Princip, jednotlivé fáze FOTOSYNTETICKÉ PIGMENTY - chlorofyl a modrozelený - chlorofyl b žlutozelený + karoteny, xantofyly žluté a oranžové zbarvení CHLOROFYL a, b CHLOROFYL a - nejdůležitější
FOTOSYNTÉZA Správná odpověď:
FOTOSYNTÉZA Správná odpověď: 1. Mezi asimilační barviva patří 1. chlorofyly, a) 1, 2, 4 2. antokyany b) 1, 3, 4 3. karoteny c) pouze 1 4. xantofyly d) 1, 2, 3, 4 2. V temnostní fázi fotosyntézy dochází
METABOLISMUS SACHARIDŮ
METABOLISMUS SACHARIDŮ PRINCIP Rozštěpené sacharidy vstřebávání střevní sliznicí do krevního oběhu dopraveny vrátnicovou žílou do jater. V játrech enzymaticky hexózy štěpeny na GLUKÓZU vyplavována do krve
Sacharidy a polysacharidy (struktura a metabolismus)
Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana
AUTOTROFNÍ A HETEROTROFNÍ VÝŽIVA ROSTLIN, VODNÍ REŽIM ROSTLIN, RŮST A POHYB ROSTLIN
Otázka: Výživa rostlin, vodní režim rostlin, růst a pohyb rostlin Předmět: Biologie Přidal(a): Cougee AUTOTROFNÍ A HETEROTROFNÍ VÝŽIVA ROSTLIN, VODNÍ REŽIM ROSTLIN, RŮST A POHYB ROSTLIN 1. autotrofní způsob
Eva Benešová. Dýchací řetězec
Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ
Fotosyntéza a Calvinův cyklus. Eva Benešová
Fotosyntéza a Calvinův cyklus Eva Benešová Fotosyntéza světlo CO 2 + H 2 O O 2 + (CH 2 O) světlo 6CO 2 + 6H 2 O 6O 2 + C 6 H 12 O 6 Opět propojení toku elektronů se syntézou ATP. Zachycení světelné energie
Název: Fotosyntéza, buněčné dýchání
Název: Fotosyntéza, buněčné dýchání Výukové materiály Autor: Mgr. Blanka Machová Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: Biologie, chemie Ročník: 2. Tematický
FOTOSYNTÉZA ZÁKLAD ŽIVOTA NA ZEMI
FOTOSYNTÉZA ZÁKLAD ŽIVOTA NA ZEMI Pavel Peč Katedra biochemie Přírodovědecké fakulty Univerzita Palackého v Olomouci Fotosyntéza fixuje na Zemi ročně asi 1011 tun uhlíku, což reprezentuje 1018 kj energie.
Cukry (Sacharidy) Sacharidy a jejich metabolismus. Co to je?
Sacharidy a jejich metabolismus Co to je? Cukry (Sacharidy) Organické látky, které obsahují karbonylovou skupinu (C=O) a hydroxylové skupiny (-O) vázané na uhlících Aldosy: karbonylová skupina na konci
Fermentace. Na fermentaci je založena řada potravinářských výrob. výroba kysaného zelí lihovarnictvní pivovarnictví. mlékárenství.
Fermentace Rozklad organických látek ( hlavně cukrů) za účasti mikrobiálních enzymů za vzniku metabolických produktů, které člověk cíleně využívá ke svému prospěchu - výroba, konzervace potravin. Fermentace
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fotosyntéza Fotosyntéza pohlcení energie slunečního záření a její přeměna na chemickou energii rovnováha fotosyntetisujících a heterotrofních
FOTOSYNTÉZA. soubor chemických reakcí,, probíhaj v rostlinách a sinicích. z CO2 a vody jediný zdroj kyslíku ku pro život na Zemi
Fotosyntéza FOTOSYNTÉZA soubor chemických reakcí,, probíhaj hajících ch v rostlinách a sinicích ch zachycení a využit ití sluneční energie k tvorbě složitých chemických sloučenin z CO2 a vody jediný zdroj
Otázka: Základní děje na buněčné úrovni. Předmět: Biologie. Přidal(a): Growler. - příjem látek buňkou
Otázka: Základní děje na buněčné úrovni Předmět: Biologie Přidal(a): Growler - příjem látek buňkou difúze prostá usnadněná transport endocytóza pinocytóza fagocytóza - výdej látek buňkou difúze exocytóza
Přednáška 6: Respirace u rostlin
Přednáška 6: Respirace u rostlin co vás v s dnes čeká: Co rostliny získávají respirací Procesy respirace: glykolýza Krebsův cyklus dýchací řetězec oxidativní fosforylace faktory ovlivňující rychlost respirace
Předmět: KBB/BB1P; KBB/BUBIO
Předmět: KBB/BB1P; KBB/BUBIO Energie z mitochondrií a chloroplastů Cíl přednášky: seznámit posluchače se základními principy získávání energie v mitochondriích a chloroplastech Klíčová slova: mitochondrie,
35.Fotosyntéza. AZ Smart Marie Poštová
35.Fotosyntéza AZ Smart Marie Poštová m.postova@gmail.com Fotosyntéza - úvod Syntéza glukosy redukcí CO 2 : chlorofyl + slun.zareni 6 CO 2 + 12H 2 O C 6 H 12 O 6 + 6O 2 + 6H 2 O (Kyslík vzniká fotolýzou
BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, 2004. Biologie 6, 2015/2016, Ivan Literák
BUŇKA A ENERGIE kajman brýlový Caiman crocodilus Kostarika, 2004 Biologie 6, 2015/2016, Ivan Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují POŘÁDEK VE SVĚTĚ, KTERÝ SPĚJE K ČÍM
Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3
Respirace (buněčné dýchání) Fotosyntéza Dýchání Energie záření teplo chem. energie CO 2 (ATP, NAD(P)H) O 2 Redukce za spotřeby NADPH BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 oxidace produkující
FOTOSYNTÉZA. CO 2 a vody. - soubor chemických reakcí. - probíhá v rostlinách a sinicích. - zachycení a využití světelné energie
Fotosyntéza FOTOSYNTÉZA - soubor chemických reakcí - probíhá v rostlinách a sinicích - zachycení a využití světelné energie - tvorba složitějších chemických sloučenin z CO 2 a vody - jediný zdroj kyslíku
DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy
Dýchání 2/38 DÝCHÁNÍ Asimiláty vzniklé v rostlinných buňkách fotosyntézou mají různé funkce: stavební, zásobní, enzymatické aj. Zásobní látky jsou v případě potřeby využívány (energie, uložená v nich fotosyntézou,
Metabolismus krok za krokem - volitelný předmět -
Metabolismus krok za krokem - volitelný předmět - Vladimíra Kvasnicová pracovna: 411, tel. 267 102 411, vladimira.kvasnicova@lf3.cuni.cz informace, studijní materiály: http://vyuka.lf3.cuni.cz Sylabus
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Metabolismus sacharidů. VY_32_INOVACE_Ch0216.
Vzdělávací materiál vytvořený v projektu VK Název školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
Vymezení biochemie moderní vědní obor, který chemickými metodami zkoumá biologické děje (bios = řecky život) spojuje chemii s biologií poznatky velmi
Základy biochemie Vymezení biochemie moderní vědní obor, který chemickými metodami zkoumá biologické děje (bios = řecky život) spojuje chemii s biologií poznatky velmi významné pro medicínu a farmacii
Hydrolytické a acidogenní mikroorganismy
Í Hydrolytické a acidogenní mikroorganismy - nejrychleji rostoucí a nejodolnější vůči změnám podmínek! - první dva kroky anaerobního rozkladu, hydrolýzu a acidogenesi - exoenzymy, které jsou uvolňovány
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická oblast Odborná biologie, část biologie organismus
1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu
Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná
BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, Biologie 8, 2017/2018, Ivan Literák
BUŇKA A ENERGIE kajman brýlový Caiman crocodilus Kostarika, 2004 Biologie 8, 2017/2018, Ivan Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují POŘÁDEK VE SVĚTĚ, KTERÝ SPĚJE K ČÍM
Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké
Fotosyntéza Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké rostliny. Zelené rostliny patří mezi autotrofy
Chemie 2018 CAUS strana 1 (celkem 5)
Chemie 2018 CAUS strana 1 (celkem 5) 1. Vápník má atomové číslo 20, hmotnostní 40. Kolik elektronů obsahuje kationt Ca 2+? a) 18 b) 20 c) 40 d) 60 2. Kolik elektronů ve valenční sféře má atom Al? a) 1
Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie
Otázka: Metabolismus Předmět: Biologie Přidal(a): Furrow - přeměna látek a energie Dělení podle typu reakcí: 1.) Katabolismus reakce, při nichž z látek složitějších vznikají látky jednodušší (uvolňuje
METABOLISMUS MONOSACHARIDŮ
METABOLISMUS MONOSACHARIDŮ Metabolismus monosacharidů (zejména jejich katabolismus) je prakticky metabolismem glukosy. Ostatní monosacharidy z ní v případě potřeby vznikají, nebo jsou na ni několika reakcemi
METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI
METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI Obsah Formy organismů Energetika reakcí Metabolické reakce Makroergické sloučeniny Formy organismů Autotrofní x heterotrofní organismy Práce a energie Energie
Citrátový cyklus. Tomáš Kučera.
itrátový cyklus Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Ústav lékařské chemie a klinické biochemie 2. lékařská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice v Motole 2017 Schéma energetického
Didaktické testy z biochemie 2
Didaktické testy z biochemie 2 Metabolismus Milada Roštejnská Helena Klímová br. 1. Schéma metabolismu Zažívací trubice Sacharidy Bílkoviny Lipidy Ukládány jako glykogen v játrech Ukládány Ukládány jako
33.Krebsův cyklus. AZ Smart Marie Poštová
33.Krebsův cyklus AZ Smart Marie Poštová m.postova@gmail.com Metabolismus Metabolismus je souhrn chemických reakcí v organismu. Základní metabolické děje jsou: a) katabolické odbourávací (složité látky
Metabolismus příručka pro učitele
Metabolismus příručka pro učitele Obecné informace Téma Metabolismus je určeno na čtyři až pět vyučovacích hodin. Toto téma je zpracováno jako jeden celek a záleží na vyučujícím, jak jej rozdělí. Celek
DEKOMPOZICE, CYKLY LÁTEK, TOKY ENERGIÍ
DEKOMPOZICE, CYKLY LÁTEK, TOKY ENERGIÍ Vše souvisí se vším Živou hmotu tvoří 3 hlavní organické složky: Bílkoviny, cukry, tuky Syntézu zajišťuje cca 20 biogenních prvků Nejdůležitější C, O, N, H, P tzv.
Biologické odstraňování nutrientů
Biologické odstraňování nutrientů Martin Pivokonský 8. přednáška, kurz Znečišťování a ochrana vod Ústav pro životní prostředí PřF UK Ústav pro hydrodynamiku AV ČR, v. v. i. Tel.: 221 951 909 E-mail: pivo@ih.cas.cz
C1200 Úvod do studia biochemie 4.2 Velké cykly prvků. OpVK CZ.1.07/2.2.00/
C1200 Úvod do studia biochemie 4.2 Velké cykly prvků OpVK CZ.1.07/2.2.00/15.0233 Petr Zbořil Biochemické cykly prvků Velké cykly prvků jako zobecnění přeměn látek při popisu jejich koloběhu Země jako superorganismus
Fotosyntéza. Dýchání a fotosyntéza, struktura a funkce antén a reakčních center, energetika transportu elektronů a protonů.
Fotosyntéza. Dýchání a fotosyntéza, struktura a funkce antén a reakčních center, energetika transportu elektronů a protonů. Šárka Gregorová, 2013 Poznámka: protože se tyhle dvě státnicové otázky z velké
FOTOSYNTÉZA. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1
FOTOSYNTÉZA Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1 Fotosyntéza (z řec. phos, photós = světlo) je anabolický děj probíhající u autotrofních organismů (řasy,
Repetitorium chemie 2015/2016. Metabolické dráhy František Škanta
Repetitorium chemie 2015/2016 Metabolické dráhy František Škanta Metabolické dráhy Primární metabolismus Metabolismus sacharidů Glykolýza Krebsův cyklus Oxidativní fosforylace Metabolismus lipidů Oxidace
pátek, 24. července 15 GLYKOLÝZA
pátek,. července 15 GLYKLÝZ sacharosa threalosa laktosa sacharasa threlasa laktasa D-glukosa D-fruktosa T T hexokinasa T hexokinasa glykogen - škrob fosforylasa D-galaktosa UD-galaktosa UD-glukosa fruktokinasa
Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje.
KOLOBĚH LÁTEK A TOK ENERGIE Látky jako uhlík, dusík, kyslík a voda v ekosystémech kolují. Energii se do ekosystémů dostává z vnějšku a opět z něj vystupuje. Základní podmínky pro život na Zemi. Světlo
Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková
Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního
Centrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
05 Biogeochemické cykly
05 Biogeochemické cykly Ekologie Ing. Lucie Kochánková, Ph.D. Prvky hlavními - biogenními prvky: C, H, O, N, S a P v menších množstvích prvky: Fe, Na, K, Ca, Cl atd. ve stopových množstvích I, Se atd.
MitoSeminář II: Trochu výpočtů v bioenergetice. Souhrn. MUDr. Jan Pláteník, PhD. Ústav lékařské biochemie 1.LF UK
MitoSeminář II: Trochu výpočtů v bioenergetice MUDr. Jan Pláteník, PhD. Ústav lékařské biochemie 1.LF UK (se zahrnutím cenných připomínek, kterými přispěl prof. MUDr. Jiří Kraml, DrSc.) 1 Dýchacířet etězec
Řízení metabolismu. Bazální metabolismus minimální látková přeměna potřebná pro udržení života při tělesném i duševním klidu
PŘEMĚNA LÁTEK A VÝŽIVA ČLOVĚKA METABOLISMUS (vzájemná přeměna látek a energie) tvoří děje: Katabolismus štěpení složitých organických látek na jednoduché, energie se uvolňuje, využíváno při rozkladu přijaté
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická oblast Odborná biologie, část biologie organismus
Repetitorium chemie 2016/2017. Metabolické dráhy František Škanta
Repetitorium chemie 2016/2017 Metabolické dráhy František Škanta Metabolické dráhy Primární metabolismus-trávení Metabolismus sacharidů Glykolýza Krebsův cyklus Oxidativní fosforylace Metabolismus lipidů
Stavba prokaryotické buňky
Prokaryota Stavba prokaryotické buňky Stavba prokaryotické buňky Tvary bakterií Rozmnožování bakterií - 1) příčné dělení nepohlavní 2) pučení 3) pomocí artrospór artrospóra vzniká fragmentací vláken u
Metabolické dráhy. František Škanta. Glykolýza. Repetitorium chemie X. 2011/2012. Glykolýza. Jaký je osud pyruátu bez přítomnosti kyslíku?
Repetitorium chemie X. 2011/2012 Metabolické dráhy František Škanta Metabolické dráhy xidativní fosforylace xidace mastných kyselin 1. fosforylace 2. štěpení hexosy na dvě vzájemně převoditelné triosy
ení k tvorbě energeticky bohatých organických sloučenin
Fotosyntéza mimořádně významný proces, využívající energii slunečního zářenz ení k tvorbě energeticky bohatých organických sloučenin (sacharidů) z jednoduchých anorganických látek oxidu uhličitého a vody
TECHNIKA PRO ZPRACOVÁNÍ ODPADŮ (13)
3. června 2015, Brno Připravil: doc. Mgr. Monika Vítězová, Ph.D. TECHNIKA PRO ZPRACOVÁNÍ ODPADŮ (13) Základní biologické principy využívané v rámci zpracování Inovace studijních programů AF a ZF MENDELU
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Citrátový a glyoxylátový cyklus
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Citrátový a glyoxylátový cyklus Buněčná respirace I. Fáze Energeticky bohaté látky jako glukosa, mastné kyseliny a některé aminokyseliny
Glykolýza Glukoneogeneze Regulace. Alice Skoumalová
Glykolýza Glukoneogeneze Regulace Alice Skoumalová Metabolismus glukózy - přehled: 1. Glykolýza Glukóza: Univerzální palivo pro buňky Zdroje: potrava (hlavní cukr v dietě) zásoby glykogenu krev (homeostáza
Fotosyntéza (2/34) = fotosyntetická asimilace
Fotosyntéza (2/34) = fotosyntetická asimilace FOTO - protože k fotosyntéze je třeba fotonů Jedná se tedy o zachycování sluneční energie a přeměnu jednoduchých anorganických látek (CO 2 a H 2 O) na složitější
Bioenergetika a makroergické sloučeniny
Bioenergetika a makroergické sloučeniny Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Ústav lékařské chemie a klinické biochemie 2. lékařská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice v Motole
Biochemie. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Platnost: od 1. 9. 2009 do 31. 8.
Studijní obor: Aplikovaná chemie Učební osnova předmětu Biochemie Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za
Inovace profesní přípravy budoucích učitelů chemie
Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
Efektivní adaptace začínajících učitelů na požadavky školské praxe
Mezipředmětová integrace tělesná výchova biologie chemie Biochemie pro učitele tělesné výchovy III.: aerobní metabolismus (průvodce studiem) Filip Neuls, Ph.D. Průvodce studiem Z pohledu tělesného zatížení
Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN
Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0940
2.2. Základní biogeochemické pochody. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín
2.2. Základní biogeochemické pochody Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín Obsah přednášky 1. Biogeochemický cyklus obecně 2. Cykly nejdůležitějších
1- Úvod do fotosyntézy
1- Úvod do fotosyntézy Prof. RNDr. Petr Ilík, Ph.D. KBF a CRH, PřF UP FS energetická bilance na povrch Země dopadá 2/10 10 energie ze Slunce z toho 30% odraz do kosmu 47% teplo 23% odpar vody 0.02% pro
METABOLISMUS. Úvod. Enzymy: kinetika a mechanismus působení. Ovlivnění enzymové aktivity. Vytváření energie (katabolismus)
Úvod METABOLISMUS Tvorba energie a syntéza malých molekul Množící se buňka musí rozkládat potravu, aby získala energii = katabolický proces Potrava slouží také jako zdroj prekursorových metabolitů pro
Brno e) Správná odpověď není uvedena. c) KHPO4. e) Správná odpověď není uvedena. c) 49 % e) Správná odpověď není uvedena.
Brno 2019 1. Vyberte vzoreček hydrogenfosforečnanu draselného. a) K2HP4 d) K3P4 b) K(HP4)2 c) KHP4 2. Vyjádřete hmotnostní procenta síry v kyselině thiosírové. Ar(S) = 32, Ar() = 16, Ar(H) = 1 a) 28 %
Fotosyntéza Světelné reakce. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni
Fotosyntéza Světelné reakce Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni Literatura Plant Physiology (L.Taiz, E.Zeiger), kapitola 7 pdf verze na požádání www.planthys.net Fotosyntéza
Biochemie dusíkatých látek při výrobě vína
Biochemie dusíkatých látek při výrobě vína Ing. Michal Kumšta www.zf.mendelu.cz Ústav vinohradnictví a vinařství kumsta@mendelu.cz Vzdělávací aktivita je součástí projektu CZ.1.07/2.4.00/31.0089 Projekt
Biologické odstraňování nutrientů
Biologické odstraňování nutrientů Martin Pivokonský, Jana Načeradská 8. přednáška, kurz Znečišťování a ochrana vod Ústav pro životní prostředí PřF UK Ústav pro hydrodynamiku AV ČR, v. v. i. Nutrienty v
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Glykolýza a neoglukogenese
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Glykolýza a neoglukogenese z řečtiny glykos sladký, lysis uvolňování sled metabolických reakcí od glukosy přes fruktosa-1,6-bisfosfát
Praktické cvičení č. 11 a 12 - doplněno
Praktické cvičení č. 11 a 12 - doplněno Téma: Metabolismus eukaryotické buňky Pomůcky: pracovní list, učebnice botaniky Otázky k opakování: Co je anabolismus a co je katabolisimus? Co jsou enzymy a jak