KUFŘÍK ŠÍŘENÍ VLN
|
|
- Andrea Procházková
- před 8 lety
- Počet zobrazení:
Transkript
1 KUFŘÍK ŠÍŘENÍ VLN
2 ŠÍŘENÍ VZRUCHU NA PROVAZE (.1) POMŮCKY Dlouhý provaz (4 m až 5 m) Vlákno (2 m) CÍL Studovat šíření vzruchu na provaze. POSTUP I. Dva žáci drží na koncích dlouhý provaz tak, aby byl dostatečně napnutý. Jeden z nich trhne provazem doprava (kolmo na směr provazu) a ihned vrátí ruku do původní polohy. Druhou ruku použije jako zarážku. Na provaze se vytvoří izolovaná půlvlna, kterou můžeme nazývat deformace, rozruch nebo signál. Tento rozruch se šíří provazem od jednoho konce k druhému a přitom má stále stejný tvar. Jeho rychlost je tím větší, čím více je provaz napnutý. II. Vytvoří-li rozruch oba žáci, budou se rozruchy šířit opačným směrem, setkají se v bodě M a budou se šířit dále, aniž by byly jeden druhým ovlivněny (co do tvaru i co do rychlosti). Tato zvláštnost je typická pro všechny vlny. Abychom pochopili, jak je to možné, nakreslíme několik po sobě následujících poloh obou rozruchů během setkání. Přidáme odpovídající měřítko na svislé ose a dostaneme vzhled provazu v jednotlivých okamžicích (obrázek 1), protože pohyb každého bodu provazu je dán složením nezávislých pohybů obou rozruchů. 2
3 III. Již v předchozích pokusech jste pozorovali odraz rozruchu. Aby byl konec provazu dobře upevněn, je dobré ho přivázat k nějakému pevnému tělesu, například ke stojanu tabule. Druhým koncem rychle a silně trhněte v příčném směru. Rozruch se šíří směrem k pevnému konci a tam se odráží. V tomto případě si všimněte, že pokud se rozruch způsobený rukou šíří vlevo od provazu, odražený rozruch se šíří vpravo od něj - má opačnou fázi (obrázek 2). IV. Zopakujte předchozí pokus s tím, že druhý konec provazu nepřivážete k tabuli, ale k vláknu po délce dvou až třech metrů, jehož druhý konec přivážete ke stolu. Tento konec je považován za volný a může se pohybovat. Rozruch se na něm rovněž odráží, ale vrací se zpět po stejné straně provazu jako rozruch vyvolaný rukou - má stejnou fázi (obrázek 3). Obr. 2 Obr. 3 DŮSLEDKY A NÁVRHY Studujte tyto jevy s vlnami v nádržce s vodou. 3
4 ŠÍŘENÍ PODÉLNÝCH VLN NA PRUŽINĚ. ODRAZ (. ) POMŮCKY Čelist s tyčkou Pružina 40 mm Svorka pro přichycení ke stolu CÍL Pozorovat šíření a odraz podélných vln na pružině. POSTUP Dva žáci drží konce vhodně napnuté pružiny. Jeden z nich trhne ve směru pružiny. Pozorujete, že v pružině se šíří rozruch (deformace, signál), jehož rychlost závisí na vlastnostech prostředí, ve kterém se šíří (pružiny). Pokud oba žáci vytvoří rozruch na obou koncích současně, šíří se tyto v opačných směrech a kříží se, aniž by se vzájemně ovlivňovaly co do tvaru nebo do rychlosti. Přidržte jeden konec pružiny tak, jak je nakresleno na obrázku, a na druhém konci vytvořte podélný rozruch. Pozorujte, že rozruch se šíří směrem k pevnému konci a na něm se odráží. 4
5 ŠÍŘENÍ PŘÍČNÝCH VLN V PRUŽINĚ. ODRAZ (. ) POMŮCKY Čelist s tyčkou Pružina 40 mm Svorka pro připevnění ke stolu CÍL Pozorujte šíření a odraz příčných vln na pružině. POSTUP Dva žáci drží na koncích pružinu tak, aby byla dostatečně napnutá. Jeden z nich trhne pružinou doprava (kolmo na směr pružiny) a ihned vrátí ruku do původní polohy. Druhou ruku použije jako zarážku. Na pružině se vytvoří izolovaná půlvlna, kterou můžeme nazývat deformace, rozruch nebo signál. Tento rozruch se šíří pružinou od jednoho konce k druhému a přitom má stále stejný tvar. Jeho rychlost je tím větší, čím více je pružina natažená. Natáhněte pružinu více a ověřte to. Obecně lze říci, že rychlost šíření vlny závisí na elastických vlastnostech prostředí, ve kterém se vlna šíří. Vytvoří-li rozruch oba žáci, budou se rozruchy šířit opačným směrem, setkají se v bodě M a budou se šířit dále, aniž by byly jeden druhým ovlivněny (co do tvaru i co do rychlosti). Tato zvláštnost je typická pro všechny vlny. Abychom pochopili, jak je to možné, nakreslíme několik po sobě následujících poloh obou rozruchů během setkání. Přidáme odpovídající měřítko na svislé ose a dostaneme vzhled pružiny v jednotlivých okamžicích (obrázek 1), protože pohyb každého bodu pružiny je dán složením nezávislých pohybů obou rozruchů. 5
6 Obr 1 Obr. 2 Obr. 3 Upevněte jeden konec pružiny do čelisti tak, jak je nakresleno na obrázku. Druhým koncem rychle a silně trhněte v příčném směru. Rozruch se šíří směrem k pevnému konci a tam se odráží. V tomto případě si všimněte, že pokud se rozruch způsobený rukou šíří vlevo od pružiny, odražený rozruch se šíří vpravo od ní - má opačnou fázi. Zopakujte předchozí pokus s tím, že druhý konec pružiny neupevníte do čelisti, ale k vláknu po délce dvou až třech metrů, jehož druhý konec přivážete ke stolu. Tento konec je považován za volný a může se pohybovat. Rozruch se na něm rovněž odráží, ale vrací se zpět po stejné straně provazu jako rozruch vyvolaný rukou - má stejnou fázi (obrázek 3). Obecně vysvětlujeme odraz na pevném konci takto: odraz nastane, jako kdyby rozruch šířící se podél pružiny potkal na konci pružiny jiný virtuální rozruch s opačnou fází přicházející z opačného směru z myšleného prodloužení pružiny. Tyto dva rozruchy se setkají, ten, který byl skutečný se stane virtuálním, virtuální skutečným a oba pokračují dále. Konec pružiny tak zůstane nehybný (obrázek 2). Odraz na volném konci pružiny se vysvětluje obdobně. Skutečný i virtuální signál se šíří proti sobě, ale po stejné straně pružiny. Konec pružiny tedy kmitne s velkou amplitudou, což jsme skutečně pozorovali. V obou případech pružina získává energii, kterou jsme jí dodali kmitem ruky. Tato energie se zachovává a vrací se k nám v odraženém rozruchu. 6
7 RYCHLOST PŘÍČNÝCH VLN NA PROVAZE (. ) POMŮCKY Gumové vlákno Chronovibrátor Vlákno Třiceticentimetrové pravítko CÍL Pozorovat, že rychlost šíření vlny po provaze závisí na pružnosti provazu POSTUP Sestavte pokus podle obrázku. Gumové vlákno připevněte k chronovibrátoru. K volnému konci gumy přivažte nylonové vlákno. Zapněte chronovibrátor a udržujte soustavu guma vlákno napnutou. Pozorujte, že pro jisté polohy ruky se na obou vláknech tvoří stacionární vlny. Změřte vlnovou délku pro obě vlákna. 7
8 STACIONÁRNÍ PODÉLNÉ VLNY NA PRUŽINĚ (..) POMŮCKY Základna stojanu Spojovací vodič 1000 R (2) Chronovibrátor Napájecí zdroj Pružina 40 mm Spojovací díl se dvěma šrouby Svorka na byretu Tyč stojanu se závitem CÍL Vytvořit stacionární podélné vlny na pružině, pozorovat je a nakonec porovnat se stacionárními příčnými vlnami. TEORIE Vytvoří-li se v pružném prostředí stacionární podélné vlny, vytvoří se posloupnost uzlů a kmiten. Mezi dvěma uzly je vzdálenost λ/2 a mezi uzlem a sousední kmitnou je vzdálenost λ/4. Je-li jeden konec pevný, vytvoří se na něm vždy uzel, protože částice jsou v tom místě pevně vázány a nemohou kmitat. Celková délka prostředí je dána : λ L = (2K + 1) 4 POSTUP 1. Sestavte pokus podle obrázku, abyste dostali uzly a kmitny na pružině, jejíž jeden konec je pevný (viz detail 1). Natáhněte pružinu tak, aby její vlastní frekvence byla stejná jako síťová frekvence. Pozorujte rozložení uzlů a kmiten na spodním konci, abyste dostali maximální amplitudu kmitů pružiny. 8
9 2. Zopakujte pokus s tím, že upevníte spodní konec tak, jak je nakresleno na detailu 2. Dostanete tak pružinu s jedním volným koncem. K upevnění pružiny doporučujeme použít gumičku toho druhu, jaké se používají v papírnictví. Natáhněte ji tak, aby se objevily kmitny a uzly. Pozorujte nyní kmitny a uzly u volného konce (spodního) a porovnejte pak s předchozím případem. DŮSLEDKY A NÁVRHY Závity, ve kterých jsou uzly, jsou v klidu, což můžete ověřit tím, že se jich dotknete prsty. 9
10 PŘÍČNÉ STACIONÁRNÍ VLNY NA PROVAZU (. ) POMŮCKY Spojovací vodič 1000 R (2) Gumový provaz Chronovibrátor Napájecí zdroj Vlákno CÍL Zavést pojem příčných stacionárních vln. TEORIE Předpokládejme, že máme provaz nebo pružinu, které jsou nekonečně dlouhé nebo přinejmenším velmi dlouhé. Pokud trhneme koncem doprava a hned nato doleva, vytvoří se vlna, která bude mít přibližně sinusový tvar a která se šíří podél provazu či pružiny. Při jistém konstantním napětí je rychlost šíření vlny stálá pro každý provaz či pružinu. Pokud je tato rychlost například 4m/s a pohyb ruky, která vytváří vlnu, trvá jednu sekundu, je vlna čtyři metry dlouhá. Pokud pohyb ruky trvá jen půl sekundy, je délka vlny dva metry atd. Kmitáme-li rukou nepřetržitě a stále stejně, vytvoří se posloupnost vln, která postupuje podél provazu. Nazývá se postupná vlna. Nekonečně dlouhé provazy či pružiny ovšem neexistují a postupná vlna tak vždy dojde na konec, kde se odráží. Odražená vlna má stejnou či opačnou fázi podle toho, zda se jedná o konec volný nebo pevný. Složením vln šířících se tam a zpět vzniknou stacionární vlny. Říká se jim tak proto, že se pružina nebo provaz pohybují zvláštním způsobem a není vidět nic, co by se pohybovalo od jednoho konce ke druhému. Můžeme jen pozorovat, že některé body kmitají s velkou amplitudou, zatímco jiné se téměř nebo vůbec nepohybují. Prvním bodům se říká kmitny, těm druhým uzly. 10
11 POSTUP 1. Pro pozorování těchto vln použijte provaz, který budou držet na koncích ve vzduchu dva žáci. Jeden z nich ponechá ruku v klidu (například přitlačenou ke stolu), zatímco druhý bude rukou kmitat ve vhodném rytmu. Je snadné najít frekvenci kmitání, při které se vytvoří stacionární vlny. Je-li frekvence malá, vytvoří se jen jedna půlvlna s uzly na koncích a kmitnou ve středu. Pokud zvyšujte frekvenci kmitání, jsou vlny kratší a vzhled provazu je takový, jako na obrázcích 2 a Je možné provést jednoduchý pokus v uspořádání zachyceném na obrázku. Provaz připevněte k destičce chronovibrátoru tak, aby mohl kmitat v rezonanci se střídavým proudem, a natáhněte ho rukou. V závislosti na napětí se na provaze tvoří stacionární vlny s různým počtem uzlů a kmiten a s různou délkou. 11
12 CONATEX DIDACTIC UČEBNÍ POMŮCKY s.r.o. Velvarská Praha 6 Tel.: Tel./Fax: conatex@conatex.cz http:
2. Vlnění. π T. t T. x λ. Machův vlnostroj
2. Vlnění 2.1 Vlnění zvláštní případ pohybu prostředí Vlnění je pohyb v soustavě velkého počtu částic navzájem vázaných, kdy částice kmitají kolem svých rovnovážných poloh. Druhy vlnění: vlnění příčné
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou
ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0
Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t
POZOROVÁNÍ VLN NA VLNOSTROJI
POZOROVÁNÍ VLN NA VLNOSTROJI Obecná část Vlna vzniká, pokud řada vzájemně vázaných kmitavých systémů vykonává postupně oscilace stejného typu. V hmotném prostředí kmitají kolem rovnovážné polohy hmotné
POZOROVÁNÍ VLN NA VLNOSTROJI
POZOROVÁNÍ VLN NA VLNOSTROJI Obecná část Vlna vzniká, pokud řada vzájemně vázaných kmitavých systémů vykonává postupně oscilace stejného typu. V hmotném prostředí kmitají kolem rovnovážné polohy hmotné
4. Pokusy z vlnové optiky
4. Pokusy z vlnové optiky V následující kapitole jsou popsány pokusy z vlnové optiky, které lze provádět v Interaktivní fyzikální laboratoři MFF UK. Je to tedy jakýsi manuál k návštěvě IFL. Kromě pokusů,
Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední
Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední a ta jej zase předá svému sousedovi. Částice si tedy
Interference vlnění
8 Interference vlnění Umět vysvětlit princip interference Umět vysvětlit pojmy interferenčního maxima a minima 3 Umět vysvětlit vznik stojatého vlnění 4 Znát podobnosti a rozdíly mezi postupnýma stojatým
Elektromagnetický oscilátor
Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický
Zvuk. 1. základní kmitání. 2. šíření zvuku
Zvuk 1. základní kmitání - vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin - podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění elastického
Fyzikální podstata zvuku
Fyzikální podstata zvuku 1. základní kmitání vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění
DUM č. 14 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia
projekt GML Brno Docens DUM č. 14 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 04.05.2014 Ročník: 1. ročník Anotace DUMu: Mechanické vlnění, zvuk Materiály
Mechanické kmitání a vlnění
Mechanické kmitání a vlnění Pohyb tělesa, který se v určitém časovém intervalu pravidelně opakuje periodický pohyb S kmitavým pohybem se setkáváme např.: Zařízení, které volně kmitá, nazýváme mechanický
Měření pilového a sinusového průběhu pomocí digitálního osciloskopu
Měření pilového a sinusového průběhu pomocí digitálního osciloskopu Úkol : 1. Změřte za pomoci digitálního osciloskopu průběh pilového signálu a zaznamenejte do protokolu : - čas t, po který trvá sestupná
Fyzika II, FMMI. 1. Elektrostatické pole
Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých
ZVUKOVÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie
ZVUKOVÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Odraz zvuku Vznik ozvěny Dozvuk Několikanásobný odraz Ohyb zvuku Zvuk se dostává za překážky Překážka srovnatelná s vlnovou délkou Pružnost Působení
Klasické a inovované měření rychlosti zvuku
Klasické a inovované měření rychlosti zvuku Jiří Tesař katedra fyziky, Pedagogická fakulta JU Klíčová slova: Rychlost zvuku, vlnová délka, frekvence, interference vlnění, stojaté vlnění, kmitny, uzly,
PSK1-15. Metalické vedení. Úvod
PSK1-15 Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Tematická oblast: Výsledky vzdělávání: Klíčová slova: Druh učebního materiálu: Typ vzdělávání: Ověřeno: Zdroj: Vyšší odborná škola a Střední
Laboratorní úloha č. 7 Difrakce na mikro-objektech
Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového
Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017
Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 6. Vedení 1 Homogenní vedení vedení se ztrátami R/2 L/2 L/2 R/2 C G bezeztrátové vedení L/2 L/2 C 2 Model
Elektrický signál - základní elektrické veličiny
EVROPSKÝ SOCIÁLNÍ FOND Elektrický signál - základní elektrické veličiny PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P05 MECHANICKÉ VLNĚNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P05 MECHANICKÉ VLNĚNÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH 1 Úvod...5
Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.
Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu
OPTICKÝ KUFŘÍK OA1 410.9973 Návody k pokusům
OPTICKÝ KUFŘÍK OA 40.9973 Návody k pokusům Učitelská verze NÁVODY K POKUSŮM OPTIKA 2 NÁVODY K POKUSŮM OPTIKA SEZNAM POKUSŮ ŠÍŘENÍ SVĚTLA Přímočaré šíření světla (..) Stín a polostín (.2.) ODRAZ SVĚTLA
KMITÁNÍ A VLNĚNÍ. Kmitavý pohyb je pravidelně se opakující pohyb tělesa kolem rovnovážné polohy (stálé).
FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2017 KMITAVÝ POHYB Kmitavý pohyb je pravidelně se opakující pohyb tělesa kolem rovnovážné polohy (stálé). Příklady: (II.str.
Obrázek 2: Experimentální zařízení pro E-I. [1] Dřevěná základna [11] Plastové kolíčky [2] Laser s podstavcem a držákem [12] Kulaté černé nálepky [3]
Stránka 1 ze 6 Difrakce na šroubovici (Celkový počet bodů: 10) Úvod Rentgenový difrakční obrázek DNA (obr. 1) pořízený v laboratoři Rosalindy Franklinové, známý jako Fotka 51 se stal základem pro objev
3.2.5 Odraz, lom a ohyb vlnění
3..5 Odraz, lom a ohyb vlnění Předpoklady: 304 Odraz a lom vlnění na rozhranní dvou prostředí s různou rychlostí šíření http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=16.0 Rovinná vlna dopadá šikmo
1.2.9 Tahové a tlakové síly
129 Tahové a tlakové síly Předpoklady: 1201, 1203, 1207 Teď když známe Newtonovy pohybové zákony, můžeme si trochu zrevidovat a zopakovat naše znalosti o silách Podmínky pro uznání síly: Existuje původce
Pracovní list pro žáky Jméno: Třída: Transformátor
Transformátor Úvod: Elektrárny vyrábějí střídavé napětí, jehož efektivní hodnota je několik kilovoltů. Do našich domovů přichází napětí s efektivní hodnotou 230 V, ale v krajině můžete vidět sloupy elektrického
ELEKTROMAGNETICKÉ KMITÁNÍ A VLNĚNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D18_Z_OPAK_E_Elektromagneticke_kmitani_a_ vlneni_t Člověk a příroda Fyzika Elektromagnetické
Jednotlivé body pouze kmitají kolem rovnovážných poloh. Tato poloha zůstává stálá.
MECHANICKÉ VLNĚNÍ Dosud jsme při studiu uvažovali pouze harmonický pohyb izolované částice (hmotného bodu nebo tělesa), která konala kmitavý pohyb kolem rovnovážné polohy Jestliže takový objekt bude součástí
4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru
4. Měření rychlosti zvuku ve vzduchu Pomůcky: 1) Generátor normálové frekvence 2) Tónový generátor 3) Digitální osciloskop 4) Zesilovač 5) Trubice s reproduktorem a posuvným mikrofonem 6) Konektory A)
Hračky ve výuce fyziky
Veletrh ndpadů učitelii: fyziky Hračky ve výuce fyziky Zdeněk Drozd, Jitka Brockmeyerová, Jitka Houfková, MFF UK Praha Fyzika patří na našich školách stále k jednomu z nejméně obh'bených předmětů. Jedním
Vlny kolem nás. Název. Jméno a e-mailová adresa autora Cíle
Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Vlny kolem nás Vlnění Jiří Kvapil renata.holubova@upol.cz Žáci rozeznají typy vlnění a podstatu vlnění v každodenním životě
ELEKTROCHEMIE 419.0002
ELEKTROCHEMIE 419.0002 LABORATORNÍ PRÁCE Z ELEKTROCHEMIE NÁVODY PRO VYUČUJÍCÍHO Miguel Angel Gomez Crespo Mario Redondo Ciércoles Francouzský překlad : Alain Vadon Český překlad: Jaromír Kekule ELEKTROCHEMIE
Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály
FP 1 Měření a analýza mechanických vlastností materiálů a konstrukcí Úkoly : 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály 2. Určete moduly pružnosti vzorků nepřímo pomocí měření rychlosti
MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH
Úloha č. 6 MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH ÚKOL MĚŘENÍ: 1. V zapojení dvou RC generátorů nalezněte na obrazovce osciloskopu Lissajousovy obrazce pro frekvence 1:1, 2:1, 3:1, 2:3 a 1:4 a zakreslete
Oborový workshop pro ZŠ FYZIKA
PRAKTICKÁ VÝUKA PŘÍRODOVĚDNÝCH PŘEDMĚTŮ NA ZŠ A SŠ CZ.1.07/1.1.30/02.0024 Tento projekt je spolufinancován Evropským sociální fondem a státním rozpočtem České republiky. Oborový workshop pro ZŠ FYZIKA
Zvukové jevy ZVUKOVÉ JEVY. Kmitání a vlnění. VY_32_INOVACE_117.notebook. June 07, 2012
Zvukové jevy Základní škola Nový Bor, náměstí Míru 28, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 00; fax: 487 722 378 Registrační číslo: CZ..07/.4.00/2.3267
Mechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování
Stejnosměrné stroje Konstrukce
Stejnosměrné stroje Konstrukce 1. Stator část stroje, která se neotáčí, pevně spojená s kostrou může být z plného materiálu nebo složen z plechů (v případě napájení např. usměrněným napětím) na statoru
Obvod střídavého proudu s indukčností
Obvod střídavého proudu s indukčností Na obrázku můžete vidět zapojení obvodu střídavého proudu s indukčností. Pomocí programů Nové přístroje 2012 a Dvoukanálový osciloskop pro SB Audigy 2012 proveďte
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #9 Základní experimenty akustiky Jméno: Ondřej Finke Datum měření: 3.11.014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě spočítejte,
Vlníme podélně i příčně
Vlníme podélně i příčně OLDŘICH LEPIL Přírodovědecká fakulta UP, Olomouc Veletrh nápadů učitelů!vziáy VI Je řada demonstrací mechanického kmitání a vlnění, při nichž potřebujeme plynule měnit frekvenci
1. Mechanické vlastnosti šitých spojů a textilií
Mechanické vlastnosti šitých spojů a textilií 1. Mechanické vlastnosti šitých spojů a textilií 1.1 Teoretická pevnost švu Za teoretickou hodnotu pevnosti švu F š(t), lze považovat maximálně dosažitelnou
Mechanické kmitání Kinematika mechanického kmitání Vojtěch Beneš
Mechanické kmitání Vojtěch Beneš Výstup RVP: Klíčová slova: žák užívá základní kinematické vztahy při řešení problémů a úloh o pohybech mechanické kmitání, kinematika, harmonický oscilátor Sexta Příprava
Sada Optika. Kat. číslo 100.7200
Sada Optika Kat. číslo 100.7200 Strana 1 z 63 Všechna práva vyhrazena. Dílo a jeho části jsou chráněny autorskými právy. Jeho použití v jiných než zákonem stanovených případech podléhá předchozímu písemnému
KUFŘÍK MECHANIKA MA
KUFŘÍK MECHANIKA MA2 419.0010 MECHANIKA 1 SEZNAM POKUSŮ MĚŘENÍ DÉLEK ŠUPLEROU Měření délek šuplerou (1.3.) MĚŘENÍ ČASU STOPKAMI Měření času stopkami(1.4.) Měření času chronovibrátorem (1.5.) PŘÍMOČARÝ
Studium ultrazvukových vln
Číslo úlohy: 8 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum měření: 12. 10. 2009 Číslo kroužku: pondělí 13:30 Číslo skupiny: 6 Klasifikace: Fyzikální praktikum FJFI ČVUT v Praze Studium ultrazvukových
E-II. Difrakce způsobená povrchovými vlnami na vodě
Strana 1 z 6 Difrakce způsobená povrchovými vlnami na vodě Úvod Vznik a šíření vln na povrchu kapaliny jsou důležité a dobře prozkoumané jevy. U těchto vln je vratná síla působící na kmitající tekutinu
L a b o r a t o r n í c v i č e n í z f y z i k y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE K ATEDRA FYZIKY L a b o r a t o r n í c v i č e n í z f y z i k y Jméno TUREČEK Daniel Datum měření 15.11.2006 Stud. rok 2006/2007 Ročník 2. Datum odevzdání 29.11.2006
Název: Měření rychlosti zvuku různými metodami
Název: Měření rychlosti zvuku různými metodami Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, biologie Ročník: 4.
Příklady: 31. Elektromagnetická indukce
16. prosince 2008 FI FSI VUT v Brn 1 Příklady: 31. Elektromagnetická indukce 1. Tuhý drát ohnutý do půlkružnice o poloměru a se rovnoměrně otáčí s úhlovou frekvencí ω v homogenním magnetickém poli o indukci
mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s
1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření
4.2.3 ŠÍŘE FREKVENČNÍHO PÁSMA CHOROVÉHO ELEMENTU A DISTRIBUČNÍ FUNKCE VLNOVÝCH NORMÁL
4.2.3 ŠÍŘE FREKVENČNÍHO PÁSMA CHOROVÉHO ELEMENTU A DISTRIBUČNÍ FUNKCE VLNOVÝCH NORMÁL V předchozích dvou podkapitolách jsme ukázali, že chorové emise se mohou v řadě případů šířit nevedeným způsobem. Připomeňme
4.1 Kmitání mechanického oscilátoru
4.1 Kmitání mechanického oscilátoru 4.1 Komorní a má frekvenci 440 Hz. Určete periodu tohoto kmitání. 4.2 Časový signál v rozhlase je tvořen čtyřmi zvukovými značkami o frekvenci 1 000 Hz, z nichž první
Sada Síly a pohyb. Kat. číslo 104.0025
Sada Síly a pohyb Kat. číslo 104.0025 Strana 1 z 36 Všechna práva vyhrazena. Dílo a jeho části jsou chráněny autorskými právy. Jeho použití v jiných než zákonem stanovených případech podléhá předchozímu
Rezonance v obvodu RLC
99 Pomůcky: Systém ISES, moduly: voltmetr, ampérmetr, dva kondenzátory na destičkách (černý a stříbrný), dvě cívky na uzavřeném jádře s pohyblivým jhem, rezistor 100 Ω, 7 spojovacích vodičů, 2 krokosvorky,
Ele 1 elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu
Předmět: Ročník: Vytvořil: Datum: ELEKTROTECHNIKA PRVNÍ ZDENĚK KOVAL Název zpracovaného celku: 30. 9. 203 Ele elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu
Ing. Stanislav Jakoubek
Ing. Stanislav Jakoubek Číslo DUMu Název DUMu 1 Vznik a druhy vlnění 2 Rychlost vlnění, vlnová délka 3 Rovnice postupné vlny 4 Interference vlnění 5 Stojaté vlnění 6 Šíření vlnění v prostoru 7 Odraz a
Název: Základní pokusy na elektromagnetickou indukci
Název: Základní pokusy na elektromagnetickou indukci Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek:
DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory
DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory Karla Majera 370, 252 31 Všenory. Datum (období) vytvoření:
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny
Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.28 EU OP VK. Šíření zvuku
Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.28 EU OP VK Škola, adresa Autor ZŠ Smetanova 1509, Přelouč Mgr. Ladislav Hejný Období tvorby VM Duben 2012 Ročník 9. Předmět Fyzika Šíření zvuku
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 25.3.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Mikrovlny Abstrakt V úloze je
Obvod střídavého proudu s kapacitou
Obvod střídavého proudu s kapacitou Na obrázku můžete vidět zapojení obvodu střídavého proudu s kapacitou. Pomocí programů Nové přístroje 2012 a Dvoukanálový osciloskop pro SB Audigy 2012 proveďte daná
pracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Goniometrické funkce Mirek Kubera žák načrtne grafy elementárních funkcí a určí jejich vlastnosti, při konstrukci grafů aplikuje znalosti o zobrazeních,
Vlnění. vlnění kmitavý pohyb částic se šíří prostředím. přenos energie bez přenosu látky. druhy vlnění: 1. a. mechanické vlnění (v hmotném prostředí)
Vlnění vlnění kmitavý pohyb částic se šíří prostředím přenos energie bez přenosu látky Vázané oscilátory druhy vlnění: Druhy vlnění podélné a příčné 1. a. mechanické vlnění (v hmotném prostředí) b. elektromagnetické
KMITÁNÍ A VLNĚNÍ. Kmitavý pohyb je pravidelně se opakující pohyb tělesa kolem rovnovážné polohy (stálé).
FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2015 KMITAVÝ POHYB Kmitavý pohyb je pravidelně se opakující pohyb tělesa kolem rovnovážné polohy (stálé). Příklady: (II.str.
Mechanické kmitání - určení tíhového zrychlení kyvadlem
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 9 Mechanické kmitání - určení
Měření tíhového zrychlení matematickým a reverzním kyvadlem
Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte
Martin Feigl Matematicko-Fyzikální soustředění v Nekoři, 2005. Dopplerův jev
1. Prolog 2. Dopplerův efekt & teorie relativity 3. Náš pokus 4. Teorie 5. Vzorečky 6. Závěr 7. Epilog Dopplerův jev 1. Prolog Pokud se zdroj a přijímač akustického či elektromagnetického vlnění pohybují
Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky
Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky Úkol : 1. Určete mřížkovou konstantu d optické mřížky a porovnejte s hodnotou udávanou výrobcem. 2. Určete vlnovou délku λ jednotlivých
ÚLOHA 1 Ladi = 100 Hz = 340 m/s Úkoly: lnovou d él é ku k periodu T frekvenci f =? vlnovou délku =?
ÚLOHA 1 Ladička má rekvenci 100 Hz. Kmitá ve vzduchu, kde je rychlost zvuku přibližně c 340 m/s. Úkoly: a) Jak lze u zvuku charakterizovat vlnovou délku λ? b) Jak lze u zvuku charakterizovat periodu T?
4.1.5 Jedna a jedna může být nula
4.1.5 Jedna a jedna může být nula Předpoklady: 040104 Pomůcky: reproduktory, Online tone generator, papírky s vlněním Př. 1: Ze dvou reproduktorů je puštěn jednoduchý sinusový zvukový signál a stejné frekvenci.
A. STANDARDNÍ INSTALACE
NÁVOD NA MONTÁŽ ČTYŘHRANNÉ PLETIVO A. STANDARDNÍ INSTALACE V uvažované vytyčené budoucí trase oplocení se připraví díry o průměru od 15 do 23 cm pro sloupky a vzpěry ve vzdálenosti 2,5 až 3 m od sebe.
Zajímavé pokusy s keramickými magnety
Veletrh nápadů učitelů fyziky Vl Zajímavé pokusy s keramickými magnety HANS-JOACHIM WILKE Technická UIŮverzita, Drážďany, SRN Překlad - R. Holubová V úvodu konference byla přednesena velice zajímavá přednáška
VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník
VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají
Optika. Co je světlo? Laser vlastnosti a využití. Josef Štěpánek Fyzikální ústav MFF UK
Optika Co je světlo? Laser vlastnosti a využití Josef Štěpánek Fyzikální ústav MFF UK Optika Vědecká disciplína zabývající se světlem a zářením obdobných vlastností (optické záření) z hlediska jeho vzniku,
Návod na stavbu čtyřhranného pletiva
Návod na stavbu čtyřhranného pletiva Standardní instalace V uvažované vytyčené budoucí trase oplocení se připraví díry o průměru od 15 do 23 cm pro sloupky a vzpěry ve vzdálenosti 2,5 až 3 m od sebe. Díry
Úvod do praxe stínového řečníka. Proces vytváření řeči
Úvod do praxe stínového řečníka Proces vytváření řeči 1 Proces vytváření řeči člověkem Fyzikální podstatou akustického (tedy i řečového) signálu je vlnění elastického prostředí v oboru slyšitelných frekvencí.
1.8. Mechanické vlnění
1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal
(test version, not revised) 16. prosince 2009
Mechanické vlnění (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 16. prosince 2009 Obsah Vznik a druhy vlnění Interference Odraz vlnění. Stojaté vlnění Vlnění v izotropním prostředí Akustika
Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -
Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické
2.1.7 Zrcadlo I. Předpoklady: Pomůcky: zrcadla, laser, rozprašovač, bílý a černý papír, velký úhloměr
2.1.7 Zrcadlo I ředpoklady: 020106 omůcky: zrcadla, laser, rozprašovač, bílý a černý papír, velký úhloměr edagogická poznámka: K pokusům používám obyčejné velké, které si beru z pánských záchodů, aby bylo
3.1.5 Složené kmitání
315 Složené kmitání Předpoklady: 3104 Pokus: Dvě pružiny zavěsíme vedle sebe, na obě dáme závaží Spodní konce obou pružin spojíme gumovým vláknem (velmi pružným, aby ho bylo možno prodloužit malou silou)
17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický
Úloha č. 6 Ohniskové vzdálenosti a vady čoček, zvětšení optických přístrojů Václav Štěpán, sk. 5 17. března 2000 Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický
frekvence f (Hz) perioda T = 1/f (s)
1.) Periodický pohyb - každý pohyb, který se opakuje v pravidelných intervalech Poet Poet cykl cykl za za sekundu sekundu frekvence f (Hz) perioda T 1/f (s) Doba Doba trvání trvání jednoho jednoho cyklu
Mechanické kmitání. Def: Hertz je frekvence periodického jevu, jehož 1 perioda trvá 1 sekundu. Y m
Mehaniké kmitání Periodiký pohyb - harakterizován pravidelným opakováním pohybového stavu tělesa ( kyvadlo, těleso na pružině, píst motoru, struna na kytaře, nohy běžíího člověka ) - nejkratší doba, za
Registrační číslo projektu: CZ.1.07/1.4.00/
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 5. 11. 2012 Pořadové číslo 06 1 Vlnění a užití v praxi Předmět: Ročník: Fyzika
Kinetická teorie ideálního plynu
Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na
pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa
pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa Výstup RVP: Klíčová slova: Eva Bochníčková žák měří vybrané veličiny vhodnými metodami, zpracuje získaná data
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Elektromagnetické vlnění
Elektromagnetické vlnění kolem vodičů elmag. oscilátoru se vytváří proměnné elektrické i magnetické pole http://www.walter-fendt.de/ph11e/emwave.htm Radiotechnika elmag vlnění vyzářené dipólem můžeme zachytit
Rovinná harmonická elektromagnetická vlna
Rovinná harmonická elektromagnetická vlna ---- 1. příklad -------------------------------- 2 GHz prochází prostředím s parametry: r 5, r 1, 0.005 S / m. Amplituda intenzity magnetického pole je H m 0.25
ZMĚNY PRAVIDLA 11 OFSAJD
Aktivní zapojení do hry ZMĚNY PRAVIDLA 11 OFSAJD předseda pravidlové komise FAČR Změny a doplňky výkladu Pokyny a instrukce Pravidla fotbalu 2013-2014 Moderní pojetí ofsajdu Aktivní zapojení do hry : ovlivňuje
Fyzika - Sexta, 2. ročník
- Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 17. 10. 2012 Pořadové číslo 05 1 Kmitavý pohyb Předmět: Ročník: Jméno autora:
1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu
Měření modulu pružnosti Úkol : 1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu Pomůcky : - Měřící zařízení s indikátorovými hodinkami - Mikrometr - Svinovací metr