Minerální výživa. Jiří Šantrůček. Katedra fyziologie rostlin Přírodovědecká fakulta JU lab. B353;
|
|
- Dušan Král
- před 8 lety
- Počet zobrazení:
Transkript
1 Minerální výživa Jiří Šantrůček Katedra fyziologie rostlin Přírodovědecká fakulta JU lab. B353;
2 Obsah Které prvky se v rostlině vyskytují? V jakém množství? Jsou všechny nezbytně nutné? Přehled esenciálních prvků Příjem živin z půdy Adaptace a aklimace rostlin k nedostatku a nadbytku živin Vedení živin v rostlině Asimilace dusíku v rostlině
3 Attwel et al. Plants in Action 1999 Taiz&Zeiger 2010 Fyziologie rostlin - Minerální výživa Úvod Koloběh prvků obsažených v zemské kůře (N, P, K) začíná v půdě. Rostliny = horníci zemské kůry. příjem, transport, metabolismus mykorrhizní houby, N 2 fixující bakterie, organická výživa Praktické aplikace: + výnos, hnojení rostlin (výnos většiny plodin roste lineárně s množstvím přijatých živin) - rezidua, znečištění (NO 3 - ve vodách, narušení ekosystémů) Obor pro: půdoznalce, hydrology, atmosférické chemiky, mikrobiology, ekology, fyziology
4 Které prvky se v rostlině vyskytují? V jakém množství? Jsou všechny nezbytně nutné? Prvkové složení půdy je jiné než složení rostlin; selektivní příjem rostlinou. Dělení prvků Podle množství: - Makroelementy (více než 0,1%) - Mikroelementy (stopové prvky) Podle nepostradatelnosti: - nezbytné (esenciální) - postradatelné (rostlina bez nich může žít; ale: druhově specifické Podle zdroje: z půdy ze vzduchu a vody Podle role v metabolismu: - v uhlíkových řetězcích - v energetice a struktuře - zůstávající v iontové struk. - v redoxních pochodech
5
6
7 Jak se přišlo na to, které látky (prvky) rostlina potřebuje? Julius von Sachs ( ) Institutions Alma mater Influences University of Bonn University of Freiburg University of Würzburg Charles University in Prague Jan Evangelista Purkyně Wilhelm Knop (živný roztok bez stopových prvků) DENNIS R. HOAGLAND (stopové prvky) ( )
8 Přehled esenciálních prvků výskyt, funkce symptomy deficitu Dusík z organických látek v půdě: aminokyseliny-amoniak (amonifikace) NO 2 - NO 3 - (nitrifikace) N 2 (denitrifikace) příjem jako NO 3 - (preferenčně) i NH 4-. Bílkoviny, nukleové kyseliny Transportovatelný, proto nedostatek dříve se starých listech. Fosfor apatit (Ca 5 (PO 4 ) 3 F), Fe, Al- fosfáty, špatně rozpustné (ph) Nukleové kyseliny, fosfolipidy, ATP (energie) Předpovídán celosvětový nedostatek fosforu Listy se při nedostatku fosforu barví do červených až fialových odstínů (především stonky, listová žilnatina a spodní strana listů) Draslík v živcích, slídách, jílových minerálech vyměňuje se s Ca 2+, Mg 2+ Řídí osmotický potenciál buněk, pohyby, aktivátor enzymů Síra Organické zbytky, pyrit (oxidují sirné bakterie až na síran), sádrovec Aminokyseliny cystein, methionon; glutathion, feredoxin, biotin U bobovitých rostlin se v důsledku nedostatečného zásobení sírou sníží nebo úplně zastaví fixace N 2
9 Vápník Přehled esenciálních prvků výskyt, funkce symptomy deficitu Vápence, dolomity [CaMg(CO 3 ) 2 ], hlinitokřemičitany; vápnění - úprava ph kyselých půd (výměna Ca 2+ za H + ) V buněčné stěně (pektát vápenatý), při tvorbě mitotického vřeténka, ve vakuole, druhý posel signální dráhy; Málo pohyblivý v rostlině, proto příznaky v meristémech, deficit na kyselých půdách. Hořčík Zvětráváním magnezitu (MgCO 3 ), dolomitu, křemičitanů V chlorofylu, aktivátorem Rubisco, PEPC, v syntéze nukleových kyselin; vyzrávání dřeva Deficit: chlorosa (ztráta chlorofylu mezi žilkami), Železo Hydratované oxidy, sulfidy; v půdě převážně Fe 3+, rostliny přijímají lépe Fe 2+ Enzymy energetického metabolismu (cytochromoxidáza), v přenašečích elektronů (feredoxin), redukci nirátu Def.: chlorosa čepele listu mezi žilkami (příčina tzv. kalciosa broskvoní)
10 Přehled esenciálních prvků výskyt, funkce symptomy deficitu Mangan Provází železo; v několika mocenstvích: Mn 2+ rozpustný, dostupný, ostatní (v oxidech) ne. Aktivátor dýchacích enzymů, složka kyslík vyvíjejícího komplexu Molybden Jako MoS 2, MoO 4 2-, Součást nitrátreduktázy a nitrogenázy Deficience není častá Deficience není častá Zinek Provází železo, málo dostupný při alkalickém ph Součástí anhydrázy kyseliny uhličité, alkoholdehydrogenazy, úloha při přenosu fosfátů v rostlině v nadbytku Chlor Všeobecně rozšířen v půdách v chloridech, přijímán i listy kapénkami V rostlině jen jako ion; součást kyslík vyvíjejícího komplexu; při dělení buněk; regulace osmotických poměrů; v rostlině v nadbytku Bor Boritany, kyselina boritá (B(OH)3; málo zastoupen v kyselých půdách Význam pro syntézu b. stěn, floémový transport, syntézu DNA Deficit: dobře popsaný (zelenina): přestane se dělit meristem. pletivo (inhibice synt. DNA); neklíčí pyl; deformace plodů hrušek
11 Přehled esenciálních prvků symptomy deficitu Symptomy často obtížně rozeznatelné (souběh několika, mohou být obdobné symptomům virových chorob) Deficit prvku s větší pohyblivostí v rostlině je viditelný spíše na starších listech a naopak, deficit málo pohyblivých prvků postihuje mladé listy a meristémy. Analýza rostlinné tkáně může pomoci stanovit úroveň výživy rostliny (zásobu prvku v půdě, jeho dostupnost a příjem).
12 Příjem živin z půdy Půda: anorganické částice (hlinitokřemičitany) organické částice Náhradou Si 4+ a Al 3+ za kationty s nižším mocenstvím (Ca 2+, Fe 2+ ) dostávají částice záporné náboje (podobně u organických při disociaci H + karboxylových skupin). To vede k adsorbci kationtů na površích částic. Kationty se přitom mohou vzájemně vyměňovat vlastnost půdy, tzv. kationtová výměnné kapacita (Afinitní řada: H + >Ca 2+ >Mg 2+ >K + =NH + >Na + ) Kořeny rostlin vylučují protony a CO 2 napomáhají tak uvolnění ostatních kationtů z povrchů částic.
13 Příjem živin z půdy Chelatační činidla Fe, Zn, Cu ionty jsou málo rozpustné a jejich příjem při ph>5 může být obtížný. Proto se do živných roztoků nebo půdy přidávají tzv. chelatační činidla. Nejznámější je EDTA (etylendiamintetraoctová kyselina) nebo DTPA (dietylentriaminpentaoctová k. viz obrázek vpravo) Tip: pokud připravujete živný roztok a nemáte po ruce EDTA, stačí přidat kyselinu citronovou. Využívají to i rostliny na Fe-chudých půdách: vylučují z kořenů kyselinu citronovou a jiné trikarboxylové kyseliny specializovanými typy kořenů - tzv. proteoroots DTPA samotná (A) a s iontově vázaným trojmocným železem (B). V blízkosti kořenů se redukuje Fe 3+ na Fe 2+ a uvolní se k komplexu
14 Příjem živin z půdy Tip: pokud připravujete živný roztok a nemáte po ruce EDTA, stačí přidat kyselinu citronovou. Vědí to i rostliny na Fechudých půdách: vylučují z kořenů kyselinu citronovou a jiné trikarboxylové kyseliny specializovanými typy kořenů - tzv. proteoroots (A) (B) Klastry kořenů typu proteo-kořeny stromu Banksia serrata (z lokality poblíž Sydney). (A) kořeny banksie rostoucí na mrtvém listu eukalyptu a extrahující živiny z rozkládajícího se listu. (B) klastry kořínků u růstového vrcholu. Podobné typy kořenů produkuje z u nás rostoucích rostlin např. lupina. Jinak jsou ale proteoroots typické pro rostliny čeledi Proteaceae.
15 Příjem živin z půdy Banksia serrata Proteaceae.
16 Příjem živin z půdy dostupnost minerálních živin Listová výživa Dostupnost minerálních živin v závislosti na ph (acidita podporuje zvětrávání a uvolňuje kationty, zvyšuje rozpustnost karbonátů, fosfátů; dýchání (rozklad organické hmoty) okyseluje půdu. Srážkově bohaté oblasti vyplavování kationtů, další okyselení; aridní oblasti alkalické půdy. Limitace nadbytkem iontů Vápnobytné/milné vs. vápnostřežné rostliny (kalcifilní, kalcifobní) Slanotolerantní až halofytní rostliny (zasolení zemědělských půd; na přirozených ekosystémech) Výživa přes list: - Rychlejší příjem - Dostupnější než přes půdu - Surfaktanty (detergent Tween) - Transport přes kutikulu - (produkční hnojení obilovin)
17 Příjem živin kořenem, růst kořenů Anatomie kořene endodermis (Caspariho proužek, suberin) Rhizosféra Gravitropismus, chemotropismus, hydrotropismus
18 Adaptace a aklimace rostlin k nedostatku a nadbytku živin Architektura kořenového systému: - Klastry kořenů při deficitu, gradientu živin (viz také proteo-kořeny dříve) - Redukce biomasy kořenů při nadbytku živin, alokace asimilátů do nadzemní části rostliny (prýtu) - Root/shoot ratio poměr suché hmoty nadzemní a podzemní části rostlin Rostliny pšenice, do jejichž kořenového media byl přidán síran amonný jak zdroj N (šipka)
19 Vedení živin v rostlině Hromadným tokem (ne difusí) - Xylémem nahoru - transpirační tok - Floémem dolů a k meristémům spolu s asimiláty Energie: 1/ tlak generovaný povrchovým napětím vody + teplo ze slunce + transpirační proud 2/ kořenový vztlak (osmosa) Buchanan et al. 2000
20 Mykorrhizní asociace Symbióza houby a rostliny Vzájemný profit: rostlina dostává živiny (P) a vodu a zásobuje houbu uhlovodíky (asimiláty) Téměř univerzální jev: 83% dvouděložných 79% jednoděložných, všechny nahosemenné. (není u Brasicaceae, Chenopodiaceae, Proteaceae, vodní rostliny) Arbuskolární mykorrhiza (hyfy i uvnitř buněk kortexu tvoří tzv. vesikuly a arbuskuly, vyrůstají ven, inokulace procesem podobným s N 2 fixujícími organizmy; u většiny krytosemnných bylin; ~10 % hmotnosti kořene) Ektotrofní mykorrhiza Hartigova síť; hyfy v b. stěnách; u 3% vyšších rostlin; i větší masa než samotný kořen Plant Physiology, Taiz, Zeiger 2010
21 Asimilace dusíku v rostlině koloběh N
22 Asimilace dusíku v rostlině Plant Physiology, Taiz, Zeiger 2010
23 Biologická fixace dusíku Volně žijící a symbiotické bakterie fixující vzdušný dusík Hlízky (nody) na kořenech soje Miscanthus Azospirillum (ne vždy hlízky: u cukrové třtiny jsou bakterie v apoplastu stonku) N 2 fixující enzym - Nitrogenáza vyžaduje anearobní (bezkyslíkové) podmínky. Heterocysty sinice Anabaena (zdroj N v rýžových polích)
24 Biologická fixace dusíku Nitrogenáza fixuje N 2 : N 2 +8e - +8H + +16ATP 2NH 3 +H 2 +16ADP+16P i Složena ze dvou proteinů: 1/ obsahující Fe-S ; 2/ obsahující Mo-Fe-S klastry Fe-S: má dvě podjednotky; citlivý na O 2 Mo-Fe-S: 4 podjednotky; méně citlivý na O 2 Donorem e - je feredoxin Redukuje i iné substráty než N 2 : např. acetylén na etylén (využití pro měření aktivity nitrogenázy) leghemoglobin Přítomen v cytoplasmě hlízek ve vysoké koncentraci (=růžová barva hlízek) Protein produkován hostitelskou rostlinou v reakci na infekci bakteriemi; hem produkuje symbiont 5x vyšší afinitu k O 2 než řetězec lidského hemoglobinu Omezuje přístup O 2 k nitrogenáze a/nebo dopravuje O 2 pro respiraci cymbiotické bakterie NH 3 se transportuje do prýtů rostlin v podobě amidů (leguminózy mírného pásma) nebo ureidů (tropické)
25 Biologická fixace dusíku Iniciace symbiózy: nod geny (A) Rhizobia se na signál rostliny soustředí u povrchu kořínku (B) Rostoucí kořen. Vlásek se na signál z bakterií zakřivuje (curling growth) (C) porušení b. stěny a tvorba infekčního vlákna (D) fúze membrán kořenových buněk (E) rhizobia jdou do apoplastu a subepidermálních buněk kořene (F) infekční vlákno se větví a dosahuje cílových buněk, kde se formuje hlízka (váčky obklopující bakterie) Nodulin (Nod) geny specifické hostiteli; Nodulační (nod) geny specifické bakterii Plant Physiology, Taiz, Zeiger 2010
Minerální výživa na extrémních půdách. Půdy silně kyselé, alkalické, zasolené a s vysokou koncentrací těžkých kovů
Minerální výživa na extrémních půdách Půdy silně kyselé, alkalické, zasolené a s vysokou koncentrací těžkých kovů Procesy vedoucí k acidifikaci půd Zvětrávání hornin s následným vymýváním kationtů (draslík,
Jaro 2010 Kateřina Slavíčková
Jaro 2010 Kateřina Slavíčková Biogenní prvky Organismy se liší od anorganického okolí mimo jiné i složením prvků. Některé prvky, které jsou v zemské kůře zastoupeny hojně (např. hliník), organismus buď
5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku
5. Příjem, asimilace a fyziologické dopady anorganického dusíku Zdroje dusíku dostupné v půdě: Amonné ionty + Dusičnany = největší zdroj dusíku v půdě Organický dusík (aminokyseliny, aminy, ureidy) zpracování
Půda - 4 složky: minerálníčástice organickéčástice voda vzduch
Půda - 4 složky: minerálníčástice organickéčástice voda vzduch kameny a štěrk písek (částice o velikosti 2-0,05mm) prachovéčástice (0,05-0,002mm) jílovéčástice (méně než 0,002mm) F t = F m + F d F d =
- Cesta GS GOGAT - Cesta GDH
Buchanan 2000 Asimilace amonného iontu: - Cesta GS GOGAT - Cesta GDH Buchanan 2000 GS (glutaminsyntetáza, EC 6.3.1.2) - oktamerní protein o velikosti 350-400 kda, tvořený 8 téměř identickými podjednotkami
10. Minerální výživa rostlin na extrémních půdách
10. Minerální výživa rostlin na extrémních půdách Extrémní půdy: Kyselé Alkalické Zasolené Kontaminované těžkými kovy Kyselé půdy Procesy vedoucí k acidifikaci (abnormálnímu okyselení): Zvětrávání hornin
DOKONČENÍ PŘÍJEM ŽIVIN
DOKONČENÍ PŘÍJEM ŽIVIN Aktivní příjem = příjem vyžadující energii, dodává ji ATP (energie k regeneraci nosičů) Pasivní příjem = příjem na základě elektrochemického potenciálu (ve vnitřním prostoru převažuje
Transport živin do rostliny. Radiální a xylémový transport. Mimokořenová výživa rostlin.
Transport živin do rostliny Radiální a xylémový transport. Mimokořenová výživa rostlin. Zóny podél kořene, jejich vztah s anatomií a příjmem živin Transport iontů na střední vzdálenosti Radiální transport
05 Biogeochemické cykly
05 Biogeochemické cykly Ekologie Ing. Lucie Kochánková, Ph.D. Prvky hlavními - biogenními prvky: C, H, O, N, S a P v menších množstvích prvky: Fe, Na, K, Ca, Cl atd. ve stopových množstvích I, Se atd.
Odborná škola výroby a služeb, Plzeň, Vejprnická 56, Plzeň. Číslo materiálu 19. Bc. Lenka Radová. Vytvořeno dne
Název školy Název projektu Číslo projektu Číslo šablony Odborná škola výroby a služeb, Plzeň, Vejprnická 56, 318 00 Plzeň Digitalizace výuky CZ.1.07/1.5.00/34.0977 VY_32_inovace_ZZV19 Číslo materiálu 19
Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje.
KOLOBĚH LÁTEK A TOK ENERGIE Látky jako uhlík, dusík, kyslík a voda v ekosystémech kolují. Energii se do ekosystémů dostává z vnějšku a opět z něj vystupuje. Základní podmínky pro život na Zemi. Světlo
Hořčík. Příjem, metabolismus, funkce, projevy nedostatku
Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán
Mendělejevova tabulka prvků
Mendělejevova tabulka prvků V sušině rostlin je obsaženo přibližně 45% uhlíku, 42% kyslíku, 6,5% vodíku, 1,5% dusíku a 5% minerálních prvků. Tzv. organogenní prvky (C, O, H, N) představují tedy 95% veškerých
značné množství druhů a odrůd zeleniny ovocné dřeviny okrasné dřeviny květiny travní porosty.
o značné množství druhů a odrůd zeleniny ovocné dřeviny okrasné dřeviny květiny travní porosty. Podobné složení živých organismů Rostlina má celkově více cukrů Mezidruhové rozdíly u rostlin Živočichové
Teoretický úvod: MINERÁLNÍ VÝŽIVA. Praktikum fyziologie rostlin. MINERÁLNÍ VÝŽIVA - teoretický úvod 1
Teoretický úvod: MINERÁLNÍ VÝŽIVA Praktikum fyziologie rostlin MINERÁLNÍ VÝŽIVA - teoretický úvod 1 Teoretický úvod: MINERÁLNÍ VÝŽIVA Vedle prvků, které tvoří organické látky C, H a O funkční struktury
Odběr rostlinami. Amonný N (NH 4 )
Složka N do půdy N z půdy Spady Export Atmosférický dusík Minerální hnojiva Stájová hnojiva Fixace N Organický dusík Rostlinné zbytky Amonný N + (NH 4 ) Odběr rostlinami Volatilizace Nitrátový N - (NO
6. Mikroelementy a benefiční prvky. 7. Toxické prvky Al a těžké kovy, mechanismy účinku, obranné mechanismy rostlin
1. Základní úvod do problematiky Historie studia minerální výživy rostlin, obecné mechanismy příjmu minerálních živin, transportní procesy na membránách. 2. Příjem minerálních živin kořeny rostlin a jejich
DEKOMPOZICE, CYKLY LÁTEK, TOKY ENERGIÍ
DEKOMPOZICE, CYKLY LÁTEK, TOKY ENERGIÍ Vše souvisí se vším Živou hmotu tvoří 3 hlavní organické složky: Bílkoviny, cukry, tuky Syntézu zajišťuje cca 20 biogenních prvků Nejdůležitější C, O, N, H, P tzv.
STANOVENÍ OBSAHŮ PŘÍSTUPNÝCH MIKROELEMENTŮ V PŮDÁCH BMP. Šárka Poláková
STANOVENÍ OBSAHŮ PŘÍSTUPNÝCH MIKROELEMENTŮ V PŮDÁCH BMP Šárka Poláková Přístupné mikroelementy Co jsou mikroelementy a jaká je jejich funkce v živých organismech Makrobiogenní prvky (H, C, O, N) Mikrobiogenní
Obsah 5. Obsah. Úvod... 9
Obsah 5 Obsah Úvod... 9 1. Základy výživy rostlin... 11 1.1 Rostlinné živiny... 11 1.2 Příjem živin rostlinami... 12 1.3 Projevy nedostatku a nadbytku živin... 14 1.3.1 Dusík... 14 1.3.2 Fosfor... 14 1.3.3
Fyziologie rostlin. 8. Minerální výživa rostlin část 3. Ca, Mg a mikroelementy. Alena Dostálová, Ph.D.
Fyziologie rostlin 8. Minerální výživa rostlin část 3. Ca, Mg a mikroelementy Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014 Min. výživa rostl. Ca, Mg, mikroelementy - vápník,
Pedogeochemie. Sorpce fosforečnanů FOSFOR V PŮDĚ. 11. přednáška. Formy P v půdě v závislosti na ph. Koloběh P v půdě Přeměny P v půdě.
Pedogeochemie 11. přednáška FOSFOR V PŮDĚ v půdách běžně,8 (,2 -,) % Formy výskytu: apatit, minerální fosforečnany (Ca, Al, Fe) silikáty (substituce Si 4+ v tetraedrech) organické sloučeniny (3- %) inositolfosfáty,
Dekompozice, cykly látek, toky energií
Dekompozice, cykly látek, toky energií Vše souvisí se vším Živou hmotu tvoří 3 hlavní organické složky: - Bílkoviny, cukry, tuky Syntézu zajišťuje cca 20 biogenních prvků - Nejdůležitější C, O, N, H, P
= prvky, které rostlina přijímá jen ve stopovém množství, o to více jsou ale pro ni důležité
9. Mikroprvky = prvky, které rostlina přijímá jen ve stopovém množství, o to více jsou ale pro ni důležité Mangan Mn - Mnoho různých oxidačních stavů (II a IV nejvíce) - Velikost iontu je podobná Mg a
Diagnostika dřevin pomocí analýzy šťávy listů
Diagnostika dřevin pomocí analýzy šťávy listů Ing. Zbyněk Slezáček, MSc. Gramoflor Školkařské dny Svazu školkařů ČR 14.-16.1.2013 Skalský Dvůr Diagnostika dřevin pomocí analýzy šťávy listů Rychlý a komplexní
Složení látek a chemická vazba Číslo variace: 1
Složení látek a chemická vazba Číslo variace: 1 Zkoušecí kartičku si PODEPIŠ a zapiš na ni ČÍSLO VARIACE TESTU (číslo v pravém horním rohu). Odpovědi zapiš na zkoušecí kartičku, do testu prosím nepiš.
Ukázka knihy z internetového knihkupectví www.kosmas.cz
Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 0 0 1 1 U k á z k a k n i h
2.2. Základní biogeochemické pochody. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín
2.2. Základní biogeochemické pochody Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín Obsah přednášky 1. Biogeochemický cyklus obecně 2. Cykly nejdůležitějších
Správná zemědělská praxe a zdravotní nezávadnost a kvalita potravin. Daniela Pavlíková Česká zemědělská univerzita v Praze
Správná zemědělská praxe a zdravotní nezávadnost a kvalita potravin Daniela Pavlíková Česká zemědělská univerzita v Praze Správná zemědělská praxe a hnojení plodin Spotřeba minerálních hnojiv v ČR 120
Hořčík. Příjem, metabolismus, funkce, projevy nedostatku
Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán
a) pevná fáze půdy jíl, humusové částice vážou na svém povrchu živiny v podobě iontů
Otázka: Minerální výživa rostlin Předmět: Biologie Přidal(a): teriiiiis MINERÁLNÍ VÝŽIVA ROSTLIN - zahrnuje procesy příjmu, vedení a využití minerálních živin - nezbytná pro život rostlin Jednobuněčné
Agroekologie. Globální a lokální cykly látek. Fotosyntéza Živiny Rhizosféra Mykorhiza
Agroekologie Globální a lokální cykly látek Fotosyntéza Živiny Rhizosféra Mykorhiza Cyklus prvků transport prvků v prostoru uvolnění prvků nebo jejich sloučenin následný transport opětné zadržení prvku
10. MINERÁLNÍ A ORGANICKÁ VÝŽIVA ROSTLIN
VÝŽIVA ROSTLIN 10.1 PRVKY MINERÁLNÍ VÝŽIVY : JEJICH OBSAH A ÚLOHA V ROSTLINĚ, JEJICH FORMA V PŮDĚ, PŘÍZNAKY NEDOSTATKU V tabulkách 10.1-1 a 10.1-2 jsou obecné údaje o obsahu jednotlivých prvků v sušině
Voda jako životní prostředí rozpuštěné látky : sloučeniny dusíku
Hydrobiologie pro terrestrické biology Téma 9: Voda jako životní prostředí rozpuštěné látky : sloučeniny dusíku Koloběh dusíku Dusík je jedním z hlavních biogenních prvků Hlavní zásobník : atmosféra, plynný
Koloběh látek v přírodě - koloběh dusíku
Koloběh látek v přírodě - koloběh dusíku Globální oběh látek v přírodě se žádná látka nevyskytuje stále na jednom místě díky různým činitelům (voda, vítr..) se látky dostávají do pohybu oběhu - cyklu N
Abiotické faktory působící na vegetaci
Abiotické faktory působící na vegetaci Faktory ovlivňující strukturu a diverzitu rostlinných společenstev Abiotické - sluneční záření - vlhkost půdy - chemismus půdy nebo vodního prostředí (ph, obsah žvin)
Cykly živin v terestrických
Cykly živin v terestrických ekosystémech (EKO/CZ) Mgr. Jan Mládek, Ph.D. (2012/2013) 2. blok 1/10/2012 Rozvoj a inovace výuky ekologických oborů formou komplementárního propojení Rozvoj a inovace výuky
Základy pedologie a ochrana půdy
Základy pedologie a ochrana půdy 6. přednáška VZDUCH V PŮDĚ = plynná fáze půdy Význam (a faktory jeho složení): dýchání organismů výměna plynů mezi půdou a atmosférou průběh reakcí v půdě Formy: volně
MINERÁLNÍ VÝŽIVA ROSTLIN. Minerální živiny Koloběh živin Mechanizmy transportu minerálních živin v rostlině Funkce jednotlivých živin
MINERÁLNÍ VÝŽIVA ROSTLIN Minerální živiny Koloběh živin Mechanizmy transportu minerálních živin v rostlině Funkce jednotlivých živin Minerální živina prvek, při jehož nedostatku přestávají rostliny růst
ROZDĚLENÍ A POŽADAVKY NA KATEGORIE FUNKCE VÝROBKU, KATEGORIE SLOŽKOVÝCH MATERIÁLŮ. Jana Meitská Sekce zemědělských vstupů ÚKZÚZ Brno
ROZDĚLENÍ A POŽADAVKY NA KATEGORIE FUNKCE VÝROBKU, KATEGORIE SLOŽKOVÝCH MATERIÁLŮ Jana Meitská Sekce zemědělských vstupů ÚKZÚZ Brno KATEGORIE HNOJIVÝCH VÝROBKŮ (DLE FUNKCE) 1. Hnojivo 2. Materiál k vápnění
Fyziologie rostlin - maturitní otázka z biologie (3)
Otázka: Fyziologie rostlin Předmět: Biologie Přidal(a): Isabelllka FOTOSYNTÉZA A DÝCHANÍ, VODNÍ REŽIM ROSTLINY, POHYBY ROSTLIN, VÝŽIVA ROSTLIN (BIOGENNÍ PRVKY, AUTOTROFIE, HETEROTROFIE) A)VODNÍ REŽIM VODA
11. Zásobení rostlin živinami a korekce nedostatku
11. Zásobení rostlin živinami a korekce nedostatku = kapitola,,jak poznáme nedostatek které živiny a jak a čím hnojíme - Diagnostika nedostatku: o Vizuální o Chemická analýza biomasy o Histologické a biochemické
EU peníze středním školám
EU peníze středním školám Název projektu Registrační číslo projektu Název aktivity Název vzdělávacího materiálu Číslo vzdělávacího materiálu Jméno autora Název školy Moderní škola CZ.1.07/1.5.00/34.0526
J a n L e š t i n a Výzkumný ústav rostlinné výroby, v.v.i. Praha - Ruzyně
Hospodaření zemědělce v krajině a voda J a n L e š t i n a Výzkumný ústav rostlinné výroby, v.v.i. Praha - Ruzyně lestina@vurv.cz tel. 737 233 955 www.vurv.cz ZEMĚDĚLSTVÍ A VODA Zemědělská výroba má biologický
N N N* Cyklus a transformace N. Dvě formy: N 2 a N* Mikrobiální ekologie vody. Cyklus uhlíku a dusíku - rozdíly
Mikrobiální ekologie vody 5. Cyklus dusíku a transformace PřFUK Katedra ekologie Josef K. Fuksa, VÚV T.G.M.,v.v.i. josef_fuksa@vuv.cz Cyklus a transformace N Mechanismy transformace N v přírodě. Vztahy
Stav lesních půd drama s otevřeným koncem
Stav lesních půd drama s otevřeným koncem Pavel Rotter Ca Mg Lesní půda = chléb lesa = Prvek K význam pro výživu rostlin příznaky nedostatku podporuje hydrataci pletiv a osmoregulaci, aktivace enzymů ve
Anorganické látky v buňkách - seminář. Petr Tůma některé slidy převzaty od V. Kvasnicové
Anorganické látky v buňkách - seminář Petr Tůma některé slidy převzaty od V. Kvasnicové Zastoupení prvků v přírodě anorganická hmota kyslík (O) 50% křemík (Si) 25% hliník (Al) 7% železo (Fe) 5% vápník
Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních.
1 (3) CHEMICKÉ SLOŢENÍ ORGANISMŮ Prvky Stejné prvky a sloučeniny se opakují ve všech formách života, protože mají shodné principy stavby těla i metabolismu. Např. chemické děje při dýchání jsou stejné
umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík,
DÝCHÁNÍ ROSTLIN systém postupných oxidoredukčních reakcí v živých buňkách, při kterých se z organických látek uvolňuje energie, která je zachycena jako krátkodobá energetická zásoba v ATP, umožňují enzymatické
Klí k urování deficiencí kukuice seté (Zea mays) autoi: E. Tylová, L. Moravcová
Klí k urování deficiencí kukuice seté (Zea mays) autoi: E. Tylová, L. Moravcová Takto vypadají kontrolní, kultivované v roztoku obsahujícím všechny živiny. Pokud se vaše rostlinka vizuáln liší, kliknte
Speciální osevní postupy Střídání s běžnými plodinami. Variabilita plodin Volba stanoviště Obtížná volba systému hnojení
Speciální osevní postupy Střídání s běžnými plodinami Variabilita plodin Volba stanoviště Obtížná volba systému hnojení 1 2 3 Organická hnojiva 3 tratě 1. Přímé hnojení organickými hnojivy Košťálová zelenina,
Srovnání obsahů makro- a mikroživin v biomase rostlin
Srovnání obsahů makro- a mikroživin v biomase rostlin Mangan Příjem, funkce v rostlině, projevy nedostatku Formy Manganu v půdě a rostlinách Mnoho různých oxidačních stavů (II a IV nejčast.) Velikost iontu
Jednotné pracovní postupy ÚKZÚZ Zkoušení hnojiv 2. vydání Brno 2015
Číslo Název postupu postupu ÚKZÚZ 20001.1 Stanovení obsahu vlhkosti gravimetricky a dopočet sušiny Zdroj 20010.1 Stanovení obsahu popela a spalitelných látek gravimetricky 20020.1 Stanovení obsahu chloridů
jungle kompletní výživa rostlin Nahlédnutí pod pokličku indabox pro všechny typy pěstebních systémů /mírně odborné pojednání MEDICAL QUALITY GROWIN
/mírně odborné pojednání kompletní výživa rostlin pro všechny typy pěstebních systémů JungleInDaBox je třísložkový komplex minerálního základu a synergicky působících biologických doplňků. Vysoká efektivita
Vyjádření fotosyntézy základními rovnicemi
FOTOSYNTÉZA Fotochemický proces, při němž fotosynteticky aktivní pigmenty v zelených částech rostlin přijímají energii světelného záření a přeměňují ji na energii chemickou. Ta je dále využita při biologických
Sledujte v TV Receptáři padů
04/ Sledujte v TV Receptáři prima nápadn padů každou neděli kolem 12:00 hodiny na TV Prima Neděle 17.3. Podpora z přírodyp rody Jarní přírodní výživa celé zahrady Nezapomeň Výživa pokojových kyselomilných
DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy
Dýchání 2/38 DÝCHÁNÍ Asimiláty vzniklé v rostlinných buňkách fotosyntézou mají různé funkce: stavební, zásobní, enzymatické aj. Zásobní látky jsou v případě potřeby využívány (energie, uložená v nich fotosyntézou,
Dlouhodobé monokultura Problémy zapravení hnojiv během růstu Ca, P, K
Dlouhodobé monokultura Problémy zapravení hnojiv během růstu Ca, P, K 1 2 3 Ohled na Stáří rostliny Vegetační fáze Typ podnože Druh, odrůda Agrotechnika Agrotechnika - zatravnění nebo úhor? 1 2 3 Černý
CHEMIE ŽIVOTNÍHO PROSTŘEDÍ I. (06) Biogeochemické cykly
Centre of Excellence CHEMIE ŽIVOTNÍHO PROSTŘEDÍ I Environmentální procesy (06) Biogeochemické cykly Ivan Holoubek RECETOX, Masaryk University, Brno, CR holoubek@recetox. recetox.muni.cz; http://recetox.muni
Složky potravy a vitamíny
Složky potravy a vitamíny Potrava musí být pestrá a vyvážená. Měla by obsahovat: základní živiny cukry (60%), tuky (25%) a bílkoviny (15%) vodu, minerální látky, vitaminy. Metabolismus: souhrn chemických
Fotosyntéza (2/34) = fotosyntetická asimilace
Fotosyntéza (2/34) = fotosyntetická asimilace FOTO - protože k fotosyntéze je třeba fotonů Jedná se tedy o zachycování sluneční energie a přeměnu jednoduchých anorganických látek (CO 2 a H 2 O) na složitější
Výživa a hnojení ovocných rostlin
Ovocné dřeviny v krajině 2007 projekt OP RLZ CZ.04.1.03/3.3.13.2/0007 Výživa a hnojení ovocných rostlin Stanislav Boček Tento projekt je spolufinancován Evropským sociálním fondem EU, státním rozpočtem
ostatní rozpuštěné látky: křemík, vápník, železo, síra
uhlík dusík fosfor ostatní rozpuštěné látky: křemík, vápník, železo, síra opakování z minulé lekce: uhličitanová rovnováha CO 2 v povrchových vodách ne více než 20-30 mg l -1 podzemní vody obvykle desítky
Biologie 31 Příjem a výdej, minerální výživa, způsob výživy, vodní režim
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 31 Příjem a výdej, minerální výživa, způsob výživy, vodní režim Ročník
Vodní režim rostlin. Úvod Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, lišejníky, kapradiny, vyšší rostliny) a homoiohydrické.
Vodní režim rostlin Úvod Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, lišejníky, kapradiny, vyšší rostliny) a homoiohydrické. Obsah vody, RWC, vodní potenciál a jeho komponenty: charakteristika,
Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková
Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního
FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN
FYZIOLOGIE ROSTLIN Fyziologie rostlin, Biologie, 2.ročník 25 Podobor botaniky, který studuje životní funkce a individuální vývoj rostlin. Využívá poznatků z dalších odvětví biologie jako je morfologie,
AUTOTROFNÍ A HETEROTROFNÍ VÝŽIVA ROSTLIN, VODNÍ REŽIM ROSTLIN, RŮST A POHYB ROSTLIN
Otázka: Výživa rostlin, vodní režim rostlin, růst a pohyb rostlin Předmět: Biologie Přidal(a): Cougee AUTOTROFNÍ A HETEROTROFNÍ VÝŽIVA ROSTLIN, VODNÍ REŽIM ROSTLIN, RŮST A POHYB ROSTLIN 1. autotrofní způsob
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_04_BUŇKA 1_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077
Seminář z anorganické chemie
Univerzita Jana Evangelisty Purkyně v Ústí nad Labem Přírodovědecká fakulta Studijní opora pro dvouoborové kombinované bakalářské studium Seminář z anorganické chemie Ing.Fišerová Cílem kurzu je seznámit
C1200 Úvod do studia biochemie 4.2 Velké cykly prvků. OpVK CZ.1.07/2.2.00/
C1200 Úvod do studia biochemie 4.2 Velké cykly prvků OpVK CZ.1.07/2.2.00/15.0233 Petr Zbořil Biochemické cykly prvků Velké cykly prvků jako zobecnění přeměn látek při popisu jejich koloběhu Země jako superorganismus
FOTOSYNTÉZA Správná odpověď:
FOTOSYNTÉZA Správná odpověď: 1. Mezi asimilační barviva patří 1. chlorofyly, a) 1, 2, 4 2. antokyany b) 1, 3, 4 3. karoteny c) pouze 1 4. xantofyly d) 1, 2, 3, 4 2. V temnostní fázi fotosyntézy dochází
DRASLÍK NEPOSTRADATELNÝ PRVEK PRO VÝNOS A KVALITU OVOCE
DRASLÍK NEPOSTRADATELNÝ PRVEK PRO VÝNOS A KVALITU OVOCE Význam hnojení ovocných kultur draslíkem Pěstování ovoce má v Českých zemích dlouholetou tradici. Podle posledních zpráv jeho výměra dosahuje 18
FOTOSYNTÉZA. Princip, jednotlivé fáze
FOTOSYNTÉZA Princip, jednotlivé fáze FOTOSYNTETICKÉ PIGMENTY - chlorofyl a modrozelený - chlorofyl b žlutozelený + karoteny, xantofyly žluté a oranžové zbarvení CHLOROFYL a, b CHLOROFYL a - nejdůležitější
NEŽIVÁ PŘÍRODA. 1. Spoj čarami NEŽIVOU přírodu a její složky: Název materiálu: Opakování- vztahy mezi organizmy Autor: Mgr.
1. Spoj čarami NEŽIVOU přírodu a její složky: NEŽIVÁ PŘÍRODA 1 2. Spoj čarami ŽIVOU přírodu a její složky: ŽIVÁ PŘÍRODA 2 3. Z nabídky vyber (podtrhni), které látky řadíme mezi LÁTKY ORGANICKÉ (ústrojné).
Eva Benešová. Dýchací řetězec
Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ
Hydrochemie Oxid uhličitý a jeho iontové formy, ph, NK
1 Oxid uhličitý - CO 2 původ: atmosférický - neznečištěný vzduch 0,03 obj. % CO 2 biogenní aerobní a anaerobní rozklad OL hlubinný magma, termický rozklad uhličitanových minerálů, rozklad uhličitanových
Biogeochemické cykly biogenních prvků
Technologie výroby bioplynu a biovodíku http://web.vscht.cz/pokornd/bp Biogeochemické cykly biogenních prvků Ing. Pokorná Dana, CSc. (č.dv.136, pokornd@vscht.cz) Prof.Ing.Jana Zábranská, CSc. (č.dv.115,
Mikroelementy Chlór Bór Železo Mangan Zinek Měď Molybden Nikl
Prvek Chemický symbol Koncentrace v sušině (µg/g) Koncentrace v čerstvé biomase Makroelementy Dusík Draslík Vápník Hořčík Fosfor Síra N K Ca Mg P S 15 000 10 000 5 000 2 000 2 000 1 000 71,4 mm 17 mm 8,3
N 2 + 8[H] + 16 ATP 2NH 3 + H 2 + 16ADP + 16P i
1. Fixace N 2 v širším kontextu Biologická fixace vzdušného dusíku představuje z hlediska globální bilance N 2 důležitý proces jímž je plynný dusík asimilován do živé biomasy. Z povahy vazby mezi atomy
Síra. Deficience síry: řepka. - 0,2-0,5% SH, nedostatek při poklesu obsahu síranů pod 0,01% SH
Síra řepka - 0,2-0,5% SH, nedostatek při poklesu obsahu síranů pod 0,01% SH - toxicita není příliščastá (nad 4000 mg SO 4 2- l -1 ), poškození může vyvolat SO 2 (nad 1-1,5 mg m 3 1 ) fazol Deficience síry:
OBECNÁ FYTOTECHNIKA BLOK: VÝŽIVA ROSTLIN A HNOJENÍ Témata konzultací: Základní principy výživy rostlin. Složení rostlin. Agrochemické vlastnosti půd a půdní úrodnost. Hnojiva, organická hnojiva, minerální
Typy hnojiv. močovma kyanamid dusíkaté vápno s 18%N celkový dusík, dusíkjako celkový; kyanamid vápenatý,
Příloha č. 3 k vyhlášce č. 474/2000 Sb. Typy hnojiv Druh hnojiva: 1. Minerální jednosložková hnojiva a) dusíkatá hnojiva typ označení typu minimální součásti určující hodnocené součásti a složení, způsob
Abiotický stres - sucho
FYZIOLOGIE STRESU Typy stresů Abiotický (vliv vnějších podmínek) sucho, zamokření, zasolení půd, kontaminace prostředí toxickými látkami, chlad, mráz, vysoké teploty... Biotický (způsobený jiným druhem
Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron).
Otázka: Fotosyntéza a biologické oxidace Předmět: Biologie Přidal(a): Ivana Černíková FOTOSYNTÉZA = fotosyntetická asimilace: Jediný proces, při němž vzniká v přírodě kyslík K přeměně jednoduchých látek
Hnojiva NPK. Co znamenají ona tři čísla?
Hnojiva NPK Co znamenají ona tři čísla? Tuto otázku dostávám od svých zákazníků téměř denně. Ona tři malá čísla, která jsou vytištěna na přední straně vašeho pytle s hnojivem nebo na straně kontejneru
Jak funguje zdravá krajina? Prof. RNDr. Hana Čížková, CSc.
Jak funguje zdravá krajina? Prof. RNDr. Hana Čížková, CSc. Obsah přednášky 1. Tradiční pohled na zdravou krajinu 2. mechanismy pohybu látek postupně od úrovně celé rostliny přes porosty, ekosystémy až
Odběr rostlinami. Amonný N (NH 4 )
Složka N do půdy N z půdy Spady Export Atmosférický dusík Minerální hnojiva Stájová hnojiva Fixace N Organický dusík Rostlinné zbytky Amonný N + (NH 4 ) Odběr rostlinami Volatilizace Nitrátový N - (NO
HYCOL. Lis tová hno jiva. HYCOL-Zn kulturní rostliny. HYCOL-Cu kulturní rostliny. HYCOL-E OLEJNINA řepka, slunečnice, mák
Lis tová hno jiva n e j ž e n e... víc HYCOL do e kol o g ic ké p ro d u kce BIHOP-K+ HYCOL-BMgS HYCOL-NPK chmel, kukuřice, mák HYCOL-E OBILNINA řepka, slunečnice, mák zelenina, slunečnice pšenice, ječmen,
Sledujte v TV Receptáři padů
05/ Sledujte v TV Receptáři prima nápadn padů každou neděli kolem 12:00 hodiny na TV Prima Neděle 24.3. Neděle 31.3. Reportáž na začátku pořadu: Poruchy ve výživě rostlin Podpora z přírodyp rody Zelené
Kyslík. Kyslík. Rybářství 3. Kyslík. Kyslík. Koloběh kyslíku 27.11.2014. Chemismus vodního prostředí. Výskyty jednotlivých prvků a jejich koloběhy
Rybářství 3 Chemismus vodního prostředí Výskyty jednotlivých prvků a jejich koloběhy Kyslík Významný pro: dýchání hydrobiontů aerobní rozklad organické hmoty Do vody se dostává: difúzí při styku se vzduchem
Vliv selenu, zinku a kadmia na růstový vývoj česneku kuchyňského (Allium sativum L.)
Vliv selenu, zinku a kadmia na růstový vývoj česneku kuchyňského (Allium sativum L.) Botanická charakteristika: ČESNEK KUCHYŇSKÝ (ALLIUM SATIVUM L.) Pravlastí je Džungarsko (severní Čína) v Střední Asii,
Vápník. Deficience vápníku: - 0,4-1,5% DW. - cytoplasmatická koncentrace vápníku velmi nízká (0,1-0,2µM)
Vápník - 0,4-1,5% DW - cytoplasmatická koncentrace vápníku velmi nízká (0,1-0,2µM) - stavební, signální funkce, stabilizace membrán - vápnomilné x vápnostřežné druhy Deficience vápníku: - poškození meristemů,
Sloučeniny dusíku. N elementární N anorganicky vázaný. N organicky vázaný. resp. N-NH 3 dusitanový dusík N-NO. amoniakální dusík N-NH 4+
Sloučeniny dusíku Dusík patří mezi nejdůležitější biogenní prvky ve vodách Sloučeniny dusíku se uplatňují při všech biologických procesech probíhajících v povrchových, podzemních i odpadních vodách Dusík
Dusík. - nejdůležitější minerální živina (2-5% SH)
Dusík - nejdůležitější minerální živina (2-5% SH) - dostupnost dusíku ovlivňuje: - produkci biomasy a její distribuci - ontogenetický vývoj - hormonální rovnováhu (cytokininy, ABA) - rychlost fotosyntézy
extrakt ženšenu extrakt zeleného čaje multivitamin obsahující vyvážené množství 12 druhů vitamínů a 9 minerálů
Gerifit Doplněk stravy Energie plná zdraví na celý den! Kvalitní produkt z Dánska spojující: extrakt ženšenu extrakt zeleného čaje multivitamin obsahující vyvážené množství 12 druhů vitamínů a 9 minerálů
Biochemie, Makroživiny. Chemie, 1.KŠPA
Biochemie, Makroživiny Chemie, 1.KŠPA Biochemie Obor zabývající se procesy uvnitř organismů a procesy související s organismy O co se biochemici snaží Pochopit, jak funguje život Pochopit, jak fungují
Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách
Buňka Historie 1655 - Robert Hooke (1635 1703) - použil jednoduchý mikroskop k popisu pórů v řezu korku. Nazval je, podle podoby k buňkám včelích plástů, buňky. 18. - 19. St. - vznik buněčné biologie jako
Biologické odstraňování nutrientů
Biologické odstraňování nutrientů Martin Pivokonský 8. přednáška, kurz Znečišťování a ochrana vod Ústav pro životní prostředí PřF UK Ústav pro hydrodynamiku AV ČR, v. v. i. Tel.: 221 951 909 E-mail: pivo@ih.cas.cz