Dobývání dat a strojové učení
|
|
- Dominika Marešová
- před 6 lety
- Počet zobrazení:
Transkript
1 Dobývání dat a strojové učení
2 Dobývání znalostí z databází (Knowledge discovery in databases) Non-trivial process of identifying valid, novel, potentially useful and ultimately understandable patterns from data. (Fayyad a kol., 1996) Analysis of observational data sets to find unsuspected relationships and summarize data in novel ways that are both understandable and useful to the data owner. (Hand, Manilla, Smyth, 2001)
3 Dobývání znalostí z databází metodika CRISP-DM Porozumění problematice Porozumění datům Příprava dat Využití výsledků DATA Modelování Vyhodnocení výsledků dobývání dat (data mining)
4 Strojové učení (Machine Learning) The field of machine learning is concerned with the question of how to construct computer programs that automatically improve with experience. (Mitchell, 1997) Things learn when they change their behavior in a way that makes them perform better in a future. (Witten, Frank, 1999)
5 Strojové učení a dobývání dat učení se dovednostem analytické učení se konceptům empirické učení se konceptům statistické metody analýzy dat databázové techniky
6 Metody učení učení zapamatováním (rote learning neboli biflování) učení se z instrukcí (learning from instruction, learning by being told) učení se z analogie (learning by analogy, instancebased learning, lazy learning) učení na základě vysvětlení (explanation-based learning) učení se z příkladů (learning from examples) učení se z pozorování a objevováním (learning from observation and discovery)
7 Informace o správnosti učení příklady zařazené do tříd (učení s učitelem - supervised learning) odměny za správné chování a tresty za chování nesprávné (reinforcement learning) nepřímé náznaky odvozené s chování učitele (apprenticeship learning) žádné (učení bez učitele - unsupervised learning)
8 Další členění reprezentace příkladů atributy: kategoriální (binární, nominální, ordinální) a numerické barva_vlasu(cerna) & vyska(180) & vousy(ano) & vzdelani(vs) relace otec(jan_lucembursky, karel_iv) režim učení dávkový inkrementální
9 Úloha empirického učení z dat Analyzovaná data (1/3) DD TR xx xx : : xx n 1 n 1 xx xx : : xx n 2 n x x x x : : x x 1 m 1 m 2 m 2 m n m n m y y y : 1 2 n Klasifikační úloha: hledáme znalosti (reprezentované rozhodovací funkcí f) f: x y, která pro hodnoty vstupních atributů x nějakého objektu odvodí hodnotu cílového atributu ŷ = f (x).
10 Úloha empirického učení z dat (2/3) V průběhu klasifikace jednoho objektu se můžeme dopustit chyby Q f (o i, ŷ i ): 2 Q ( o i, y ) = (y - y ) Q (, y ) = f i i i f o i i 1 pro y y 0 pro y = y Pro celou trénovací množinu D TR pak můžeme vyčíslit souhrnnou chybu Err(f,D TR ), např. jako Err(f,D = 1 TR ) Q f ( o i, y i ) n n i=1 i i i i
11 Úloha empirického učení z dat (3/3) Cílem učení je nalézt takové znalosti f*, které by minimalizovaly tuto chybu Err(f *,D TR ) min f Err(f,D TR )
12 Ilustrační příklad údaje o osobách - klientech banky, kterým banka půjčuje na základě informací o jejich příjmech a výši konta
13 Empirické učení se konceptům objekty, patřící do téže třídy mají podobné charakteristiky (učení na základě podobnosti) z konečného počtu příkladů odvozujeme obecné znalosti (induktivnost)
14 Metody strojového učení tvorba rozhodovacích stromů tvorba rozhodovacích pravidel tvorba asociačních pravidel neuronové sítě genetické algoritmy bayesovské sítě učení založené na analogii
15 prohledávání Strojové učení jako hledáme strukturu i parametry modelu aproximace hledáme parametry modelu
16 Uspořádání modelů MGM -Nejobecnější model (jeden shluk pro všechno) M1 obecnější než M2 M2 je speciálnější než M1 B( n) n B( n) n 1 1 k n k B( k), MSM - Nejspeciálnější model(y) (co příklad to shluk) 5 B(0) 1
17 Způsoby prohledávání Směr shora dolů zdola nahoru Strategie slepé heuristické náhodné Šíře jednoduché paralelní
18 Aproximace na základě konečného počtu bodů [x i,y i ] se snažíme určit parametry předpokládané rozhodovací funkce y=f(x) Metoda nejmenších čtverců: hledání minima souhrnné chyby min i (y i - f(x i )) 2 se převádí na řešení rovnice d dq i y f ( i x i ) 2 0
19 Aproximace (2/2) Analytické řešení (známe typ funkce) řešení soustavy rovnic pro parametry funkce regrese Numerické řešení (neznáme typ funkce) gradientní metody Err(q) = Err q 0, Err q 1,..., Err q Q Modifikace znalostí q = [q 0, q 1,..., q Q ] pak probíhá jako q j q j + q j kde Δq j - η Err q j
20 Rozhodovací stromy (prohledávání) směr shora dolů (TDIDT) jednoduché heuristické ID3, C4.5 (Quinlan), CART (Breiman a kol.) paralelní heuristické Option trees (Buntine), Random forrest (Breiman) náhodné paralelní použití genetického programování směr zdola nahoru jen jako doplněk v rámci prořezávání
21 Rozhodovací pravidla (pokrývání množin jako prohledávání) směr shora dolů paralelní heuristické IF Příjem(nízký) THEN IF Příjem(nízký) AND Konto(nízké) THEN CN2 (Clark, Niblett), CN4 (Bruha) směr zdola nahoru jednoduché heuristické Find-S (Mitchell) paralelní heuristické AQ (Michalski) náhodné paralelní GA-CN4 (Králík, Bruha)
22 Asociační pravidla (generování jako prohledávání shora dolů) do šířky Apriori (Agrawal), LISp-Miner (Rauch) kombinace... 4a 4n 5a 5n 1n 2n 1n 2s 1n 2v 1n 3m 1n 3z... do hloubky kombinace 1n 1n 2n 1n 2n 3m 1n 2n 3m 4a 1n 2n 3m 4a 5a 1n 2n 3m 4a 5n 1n 2n 3m 4n 1n 2n 3m 4n 5a 1n 2n 3m 4n 5n 1n 2n 3m 5a 1n 2n 3m 5n heuristicky KAD (Ivánek, Stejskal) kombinace 5a 1n 3m 3z 4a 4n 1v 1n 4a 4n 5a 1v 5a 2v
23 Vícevrstvý perceptron (aproximace) Backpropagation algoritmus 1. inicializuj váhy sítě malými náhodnými čísly 2. dokud není splněno kritérium pro zastavení 2.1 pro každý příklad [x, y] z trénovacích dat spočítej výstup out u pro každý neuron u pro každý neuron v ve výstupní vrstvě spočítej chybu error v = out v (1 - out v ) (y v - out v ) pro každý neuron s ve skryté vrstvě spočítej chybu error s = out s (1 - out s ) v výstup (w s,v error v ) pro každou vazbu vedoucí z neuronu j do neuronu k modifikuj váhu vazby w j,k = w j,k + w j,k, kde w j,k = error k x j,k
24 Genetické algoritmy (paralelní náhodné prohledávání) Genetický algoritmus 1. náhodně vytvoř populaci P(0) velikosti N a urči hodnoty funkce fit 2. dokud není splněna podmínka pro zastavení 2.1. vyber z P(t) jedince kteří se přímo přenesou do P(t+1) vyber z P(t) dvojice jedinců určených k reprodukci aplikuj na každou dvojici křížení a zařaď potomky do P(t+1) vyber z P(t) jedince určené k mutaci aplikuj na každého jedince mutaci a zařaď do P(t+1) 2.4. spočítej pro každého jedince v P(t+1) hodnotu funkce fit 2.5. přiřaď t:= t vrať jedince s nejvyšší hodnotu fit
25 Bayesovské metody Naivní bayesovský klasifikátor (aproximace) P( H E1,..., E K ) k K 1 P( E k H ) P( E) P( H ) Bayesovská síť (prohledávání, aproximace) P( u n 1,..., un) P( ui rodiče( ui)) ii 1
26 Učení založené na instancích volba instancí pro uložení do databáze žádné prohledávání IB1 (Aha) jednoduché heuristické shora dolů IB2, IB3 (Aha) shlukování (a hledání centroidů) jednoduché heuristické prohledávání shora dolů (divisivní) zdola nahoru (aglomerativní) aproximace K-NN
27 10 nej. algoritmy C4.5 rozhodovací stromy K-Means shlukování SVM neuronové sítě Apriori asociační pravidla EM pravděpodobnostní PageRank web AdaBoost kombinování modelů knn instance Naive Bayes pravděpodobnostní CART rozhodovací stromy
28 neexistuje nejlepší algoritmus, který bude dosahovat nejvyšší správnosti klasifikace pro libovolnou úlohu (no free lunch) Závěr potřebujeme další informace porozumění úloze porozumění datům Porozumění problematice Využití výsledků DATA Porozumění datům Příprava dat Modelování Vyhodnocení výsledků
29 Učení a adaptace
30 Adaptivní inteligentní systémy schopnost přizpůsobit se změnám prostředí, schopnost přizpůsobit se novým podmínkám využívání, schopnost přizpůsobit se nové aplikaci. [IST Projekt EUNITE]
31 Dávkové učení data Dávkové učení model
32 Inkrementální učení starý model nový příklad Inkrementální učení nový model
33 Integrování znalostí na úrovni usuzování učení 1 Bagging Boosting data učení 2... učení n kombinace Stacking (Bauer, Kohavi, 1999), (Diettrich, 2000)
34 Integrování znalostí na úrovni reprezentace (1/2) starý model starý model z Integrace znalostí nový model
35 Integrace/Revize znalostí starý model nová data Integrace/ Revize znalostí nový model Integrace znalostí starý model je doplněn (dávkově inkrementální postup) Revize znalostí starý model je změněn
36 Učení a zapomínání učení zapomínání u + u u POS POT NEG z + z z z + u + s učitelem FLORA (Widmer, Kubát, 1996) STAGGER (Schlimmer, Granger, 1986) bez učitele COBWEB (Fisher, 1987)
37 Koncepty závislé na kontextu Kontext situace, ve které získáváme data relevantní atributy, které nejsou v současnosti dostupné atributy, které samy o sobě nepřispívají ke klasifikaci ale které zlepšují výsledky klasifikace v kombinaci s jinými atributy (Matwin, Kubát, 1996)
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
VíceZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
VíceEvoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi
Evoluční algoritmy Použítí evoluční principů, založených na metodách optimalizace funkcí a umělé inteligenci, pro hledání řešení nějaké úlohy. Populace množina jedinců, potenciálních řešení Fitness function
VíceStrojové uení. typy učení: Metody učení: učení se znalostem (knowledge acquisition) učení se dovednostem (skill refinement).
Strojové uení typy učení: učení se znalostem (knowledge acquisition) učení se dovednostem (skill refinement). volba reprezentace u ení u ení znalosti rozhodování objekt popis rozhodování rozhodnutí objektu
VíceDobývání znalostí z databází
Dobývání znalostí z databází (Knowledge Discovery in Databases, Data Mining,..., Knowledge Destilery,...) Non-trivial process of identifying valid, novel, potentially useful and ultimately understandable
Víceznalostí z databází- mnohostranná interpretace dat
Dobývání znalostí z databází- mnohostranná interpretace dat Petr Berka VŠE Praha berka@vse vse.cz Dobývání znalostí z databází Non-trivial process of identifying valid, novel, potentially useful and ultimately
VíceDobývání a vizualizace znalostí. Olga Štěpánková et al.
Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu Dobývání znalostí - popis a metodika procesu CRISP a objasnění základních pojmů Nástroje pro modelování klasifikovaných dat a jejich
VíceZískávání dat z databází 1 DMINA 2010
Získávání dat z databází 1 DMINA 2010 Získávání dat z databází Motto Kde je moudrost? Ztracena ve znalostech. Kde jsou znalosti? Ztraceny v informacích. Kde jsou informace? Ztraceny v datech. Kde jsou
VíceRozhodovací pravidla
Rozhodovací pravidla Úloha klasifikace příkladů do tříd. pravidlo Ant C, kde Ant je konjunkce hodnot atributů a C je cílový atribut A. Algoritmus pokrývání množin metoda separate and conquer (odděl a panuj)
VíceMetody založené na analogii
Metody založené na analogii V neznámé situaci lze použít to řešení, které se osvědčilo v situaci podobné případové usuzování (Case-Based Reasoning CBR) pravidlo nejbližšího souseda (nearest neighbour rule)
VíceDobývání a vizualizace znalostí
Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu 1. Dobývání znalostí - popis a metodika procesu a objasnění základních pojmů 2. Nástroje pro modelování klasifikovaných dat a jejich
VíceDobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
VíceDobývání a vizualizace znalostí
Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu 1. Dobývání znalostí - popis a metodika procesu a objasnění základních pojmů 2. Nástroje pro modelování klasifikovaných dat a jejich
VíceIng. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence
APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY
Více8. Strojové učení. Strojové učení. 16. prosince 2014. Václav Matoušek. 8-1 Úvod do znalostního inženýrství, ZS 2014/15
Strojové učení 16. prosince 2014 8-1 Klasifikace metod strojového učení podle vynaloženého úsilí na získání nových znalostí Učení zapamatováním (rote learning, biflování) Pouhé zaznamenání dat nebo znalostí.
Více5.5 Evoluční algoritmy
5.5 Evoluční algoritmy Jinou skupinou metod strojového učení, které vycházejí z biologických principů, jsou evoluční algoritmy. Zdrojem inspirace se tentokrát stal mechanismus evoluce, chápaný jako Darwinův
VíceKatedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
VíceProjekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
VíceVytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 8 1/26 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
VíceDOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ
DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ Úvod a oblasti aplikací Martin Plchút plchut@e-globals.net DEFINICE A POJMY Netriviální extrakce implicitních, ch, dříve d neznámých a potenciáln lně užitečných informací z
VíceStrojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
VíceUČENÍ BEZ UČITELE. Václav Hlaváč
UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení
Více8. Strojové učení Strojové učení
Strojové učení 5. prosince 2017 8-1 Strojové učení je podoblastí umělé inteligence, zabývající se algoritmy a technikami, které umožňují počítačovému systému 'učit se'. Učením v daném kontextu rozumíme
VíceAnalýza dat pomocí systému Weka, Rapid miner a Enterprise miner
Vysoká škola ekonomická v Praze Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner Dobývání znalostí z databází 4IZ450 XXXXXXXXXXX Přidělená data a jejich popis Data určená pro zpracování
VíceAdaptivní inteligentní systémy
Adaptivní inteligentní systémy Petr Berka Laboratoř inteligentních systémů VŠE, Praha berka@vse.cz Osnova! historické ohlédnutí! strojové učení, soft computing a adaptivita! adaptivita v metodách strojového
VíceAdaptivní inteligentní systémy
Adaptivní inteligentní systémy Petr Berka Laboratoř inteligentních systémů VŠE, Praha berka@vse.cz historické ohlédnutí Osnova strojové, soft computing a adaptivita adaptivita v metodách strojového inkrementální
VícePokročilé neparametrické metody. Klára Kubošová
Pokročilé neparametrické metody Klára Kubošová Pokročilé neparametrické metody Výuka 13 přednášek doplněných o praktické cvičení v SW Úvod do neparametrických metod + princip rozhodovacích stromů Klasifikační
VíceModerní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
Vícepřetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat
Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního
VíceGenetické programování
Genetické programování Vyvinuto v USA v 90. letech J. Kozou Typické problémy: Predikce, klasifikace, aproximace, tvorba programů Vlastnosti Soupeří s neuronovými sítěmi apod. Potřebuje značně velké populace
VíceMETODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1
METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ
VíceDobývání a vizualizace znalostí
Dobývání a vizualizace znalostí Olga Štěpánková, Lenka Vysloužilová, et al. https://cw.fel.cvut.cz/wiki/courses/a6m33dvz/start 1 Osnova přednášky Úvod: data, objem, reprezentace a základní terminologie
Více1. Data mining. Strojové učení. Základní úlohy.
1... Základní úlohy. Učení s učitelem a bez učitele. Petr Pošík Katedra kybernetiky ČVUT FEL P. Pošík c 2010 Aplikace umělé inteligence 1 / 36 Obsah P. Pošík c 2010 Aplikace umělé inteligence 2 / 36 Co
VíceDobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
VíceTrénování sítě pomocí učení s učitelem
Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup
VíceDobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Rozhodovací stromy Doc. RNDr. Iveta Mrázová, CSc.
VíceVyužití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
VíceLineární diskriminační funkce. Perceptronový algoritmus.
Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace
VíceUmělé neuronové sítě
Umělé neuronové sítě 17. 3. 2018 5-1 Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce 5-2 Neuronové aktivační
VíceBayesovská klasifikace
Bayesovská klasifikace založeno na Bayesově větě P(H E) = P(E H) P(H) P(E) použití pro klasifikaci: hypotéza s maximální aposteriorní pravděpodobností H MAP = H J právě když P(H J E) = max i P(E H i) P(H
VíceAlgoritmy a struktury neuropočítačů ASN - P11
Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova
VíceMATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém
VíceNeuronové sítě (11. přednáška)
Neuronové sítě (11. přednáška) Machine Learning Naučit stroje se učit O co jde? Máme model výpočtu (t.j. výpočetní postup jednoznačně daný vstupy a nějakými parametry), chceme najít vhodné nastavení parametrů,
VíceGRR. získávání znalostí v geografických datech Autoři. Knowledge Discovery Group Faculty of Informatics Masaryk Univerzity Brno, Czech Republic
GRR získávání znalostí v geografických datech Autoři Knowledge Discovery Group Faculty of Informatics Masaryk Univerzity Brno, Czech Republic GRR cílet 2 GRR - Popis systému - cíle systém pro dolování
VíceMiroslav Čepek. Fakulta Elektrotechnická, ČVUT. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování Dat Přednáška 12 Kombinování modelů Miroslav Čepek Pavel Kordík a Jan Černý (FIT) Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL)
VíceÚloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
VíceO kurzu MSTU Témata probíraná v MSTU
O kurzu MSTU Témata probíraná v MSTU 1.: Úvod do STU. Základní dělení, paradigmata. 2.: Základy statistiky. Charakteristiky, rozložení, testy. 3.: Modely: rozhodovací stromy. 4.: Modely: učení založené
VíceMATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ TEORIE ROZHODOVÁNÍ Metodický list č. 1 Název tématického celku: Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do
Více5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015
Umělé neuronové sítě 5. 4. 205 _ 5- Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce _ 5-2 Neuronové aktivační
VíceLineární klasifikátory
Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout
VíceÚvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
Více3. Vícevrstvé dopředné sítě
3. Vícevrstvé dopředné sítě! Jsou tvořeny jednou nebo více vrstvami neuronů (perceptronů). Výstup jedné vrstvy je přitom připojen na vstup následující vrstvy a signál se v pracovní fázi sítě šíří pouze
Více8. Systémy pro dobývání znalostí z databází
8. Systémy pro dobývání znalostí z databází Jako v jiných oblastech umělé inteligence, tak i v oblasti strojového učení se první programové systémy objevily v akademické sféře. Obvykle se jednalo o systémy,
VícePředzpracování dat. Lenka Vysloužilová
Předzpracování dat Lenka Vysloužilová 1 Metodika CRISP-DM (www.crisp-dm.org) Příprava dat Data Preparation příprava dat pro modelování selekce příznaků výběr relevantních příznaků čištění dat získávání
VíceUmělá inteligence a rozpoznávání
Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 11. 2. Úvod, historie a vývoj UI, základní problémové oblasti a typy úloh, aplikace UI, příklady inteligentních
VíceZpětnovazební učení Michaela Walterová Jednoocí slepým,
Zpětnovazební učení Michaela Walterová Jednoocí slepým, 17. 4. 2019 V minulých dílech jste viděli Tři paradigmata strojového učení: 1) Učení s učitelem (supervised learning) Trénovací data: vstup a požadovaný
VíceLISp-Miner: systém pro získávání znalostí z dat 1
LISp-Miner: systém pro získávání znalostí z dat 1 Petr Berka, Jan Rauch, Milan Šimůnek VŠE Praha Nám. W. Churchilla 4, Praha 3 e-mail: {berka,rauch,simunek}@vse.cz Abstrakt. Systém LISp-Miner je otevřený
VíceEmergence chování robotických agentů: neuroevoluce
Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové
VíceAlgoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
VícePřipomeň: Shluková analýza
Připomeň: Shluková analýza Data Návrh kategorií X Y= 1, 2,..., K resp. i jejich počet K = co je s čím blízké + jak moc Neposkytne pravidlo pro zařazování Připomeň: Klasifikace Data (X,Y) X... prediktory
VíceZáklady umělé inteligence
Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v
VíceDolování z textu. Martin Vítek
Dolování z textu Martin Vítek Proč dolovat z textu Obrovské množství materiálu v nestrukturované textové podobě knihy časopisy vědeckéčlánky sborníky konferencí internetové diskuse Proč dolovat z textu
VíceOptimální rozdělující nadplocha 4. Support vector machine. Adaboost.
Optimální rozdělující nadplocha. Support vector machine. Adaboost. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Opakování Lineární diskriminační
VíceKombinování klasifikátorů Ensamble based systems
Kombinování klasifikátorů Ensamble based systems Rozhodování z více hledisek V běžném životě se často snažíme získat názor více expertů, než přijmeme závažné rozhodnutí: Před operací se radíme s více lékaři
VíceVYUŽITÍ DATA MININGOVÝCH METOD PŘI ZPRACOVÁNÍ DAT Z DEMOGRAFICKÝCH ŠETŘENÍ
UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta Katedra demografie a geodemografie VYUŽITÍ DATA MININGOVÝCH METOD PŘI ZPRACOVÁNÍ DAT Z DEMOGRAFICKÝCH ŠETŘENÍ USING DATA MINING METHODS FOR DEMOGRAPHIC
VícePopis zobrazení pomocí fuzzy logiky
Popis zobrazení pomocí fuzzy logiky diplomová práce Ján Fröhlich KM, FJFI, ČVUT 23. dubna 2009 Ján Fröhlich ( KM, FJFI, ČVUT ) Popis zobrazení pomocí fuzzy logiky 23. dubna 2009 1 / 25 Obsah 1 Úvod Základy
VícePokročilé neparametrické metody. Klára Kubošová
Klára Kubošová Další typy stromů CHAID, PRIM, MARS CHAID - Chi-squared Automatic Interaction Detector G.V.Kass (1980) nebinární strom pro kategoriální proměnné. Jako kriteriální statistika pro větvení
VíceVytěžování znalostí z dat
Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 1/31 Vytěžování znalostí z dat Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical
VíceAlgoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby
Algoritmy a struktury neuropočítačů ASN P4 Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby Vrstevnatá struktura - vícevrstvé NN (Multilayer NN, MLNN) vstupní vrstva (input layer)
VíceÚvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
VíceKatedra kybernetiky, FEL, ČVUT v Praze.
Strojové učení a dolování dat přehled Jiří Kléma Katedra kybernetiky, FEL, ČVUT v Praze http://ida.felk.cvut.cz posnova přednášek Přednáška Učitel Obsah 1. J. Kléma Úvod do předmětu, učení s a bez učitele.
Více1. Znalostní systémy a znalostní inženýrství - úvod. Znalostní systémy. úvodní úvahy a předpoklady. 26. září 2017
Znalostní systémy úvodní úvahy a předpoklady 26. září 2017 1-1 Znalostní systém Definice ZS (Feigenbaum): Znalostní (původně expertní) systémy jsou počítačové programy simulující rozhodovací činnost experta
VíceUčící se klasifikátory obrazu v průmyslu
Učící se klasifikátory obrazu v průmyslu FCC průmyslové systémy s.r.o. FCC průmyslové systémy je technicko obchodní společností, působící v oblasti průmyslové automatizace. Tvoří ji dvě základní divize:
VíceAsociační i jiná. Pravidla. (Ch )
Asociační i jiná Pravidla (Ch. 14 +...) Učení bez učitele Nemáme cílovou třídu Y, G; máme N pozorování což jsou p-dimenzionální vektory se sdruženou pravděpodobností chceme odvozovat vlastnosti. Pro málo
VíceStátnice odborné č. 20
Státnice odborné č. 20 Shlukování dat Shlukování dat. Metoda k-středů, hierarchické (aglomerativní) shlukování, Kohonenova mapa SOM Shlukování dat Shluková analýza je snaha o seskupení objektů do skupin
VíceNěkteré potíže s klasifikačními modely v praxi. Nikola Kaspříková KMAT FIS VŠE v Praze
Některé potíže s klasifikačními modely v praxi Nikola Kaspříková KMAT FIS VŠE v Praze Literatura J. M. Chambers: Greater or Lesser Statistics: A Choice for Future Research. Statistics and Computation 3,
VíceFiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc
Neuronové sítě a možnosti jejich využití Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc 1. Biologický neuron Osnova 2. Neuronové sítě Umělý neuron
Více2. RBF neuronové sítě
2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně
VíceUNIVERZITA PARDUBICE KLASIFIKAČNÍ ÚLOHY PRO DATA MINING. Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky.
UNIVERZITA PARDUBICE Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky KLASIFIKAČNÍ ÚLOHY PRO DATA MINING Petra Jandová Bakalářská práce 2013 PROHLÁŠENÍ Prohlašuji, že jsem tuto
Více5.8 Induktivní logické programování
5.8 Induktivní logické programování Zatím jsme se pohybovali ve světě, kde příklady i hypotézy byly popsány hodnotami atributů 1. Existuje ale ještě jiný, složitější popis a sice popis pomocí predikátové
VíceAnalytické procedury v systému LISp-Miner
Dobývání znalostí z databází MI-KDD ZS 2011 Přednáška 8 Analytické procedury v systému LISp-Miner Část II. (c) 2011 Ing. M. Šimůnek, Ph.D. KIZI, Fakulta informatiky a statistiky, VŠE Praha Evropský sociální
VíceVáclav Matoušek KIV. Umělá inteligence a rozpoznávání. Václav Matoušek / KIV
Umělá inteligence a rozpoznávání Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 16. 2. (3h) 2. 3. (4h) 17. 3. (5h) 14. 4. (3h) Úvod, historie a vývoj UI, základní
VíceSegmentace bankovních zákazníků algoritmem k- means
Segmentace bankovních zákazníků algoritmem k- means LS 2014/2015 Michal Heřmanský xherm22 Obsah 1 Úvod... 3 1.1 CRISP- DM... 3 2 Porozumění problematice a datům... 4 3 Příprava dat... 5 4 Modelování...
VíceKritérium Orange Weka KEEL KNIME TANAGRA AlphaMiner RA, RS, RP, S, AP, DS, NS, BM, MNS, GA, + TXT, XLS, CSV, C45, ARF, + CSV, XLS, ARF, + BMP, PNG, +
4 Srovnání sad Následující kapitola shrnuje ohodnocení všech kritérií dle jednotlivých pohledů. Hodnocení vychází ze slovního popisu z předchozí kapitoly. První tři pohledy jsou pro přehlednost uspořádány
Více5.1 Rozhodovací stromy
5.1 Rozhodovací stromy 5.1.1 Základní algoritmus Způsob reprezentování znalostí v podobě rozhodovacích stromů je dobře znám z řady oblastí. Vzpomeňme jen nejrůznějších klíčů k určování různých živočichů
Vícelogistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
VíceVytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 7 1/27 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
VíceProjekt LISp-Miner. M. Šimůnek
Projekt LISp-Miner http://lispminer.vse.cz M. Šimůnek Obsah Systém LISp-Miner Vývoj systému v dlouhém období ETree-Miner Project LISp-Miner 2 Systém LISp-Miner Metoda GUHA (od roku 1966) předchozí implementace
Více3.1 Úvod do problematiky
3 Strojové učení rozhodovací stromy 3.1 Úvod do problematiky 3.1.1 Úvod a motivace Naše stroje jsou nedokonalé: potřebují údržbu selhávají (hroutí se),... Rádi bychom dostali varování předem. Konstruktér
VíceKatedra kybernetiky, FEL, ČVUT v Praze.
Symbolické metody učení z příkladů Jiří Kléma Katedra kybernetiky, FEL, ČVUT v Praze http://ida.felk.cvut.cz pplán přednášky Zaměření 1: učení z příkladů motivace, formulace problému, prediktivní a deskriptivní
VíceStrojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
VíceÚvod do expertních systémů
Úvod do expertních systémů Expertní systém Definice ES (Feigenbaum): expertní systémy jsou počítačové programy, simulující rozhodovací činnost experta při řešení složitých úloh a využívající vhodně zakódovaných,
VíceANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz LITERATURA Holčík, J.: přednáškové prezentace Holčík, J.: Analýza a klasifikace signálů.
VíceOkruhy ke státní závěrečné zkoušce z vedlejší specializace Informatika v řízení podniku
Okruhy ke státní závěrečné zkoušce z vedlejší specializace Informatika v řízení podniku Aplikace auditních postupů Vyberte si jeden typ auditu (útvaru, projektu, aplikace, procesu, ) a na něm demonstrujte
VíceNG C Implementace plně rekurentní
NG C Implementace plně rekurentní neuronové sítě v systému Mathematica Zdeněk Buk, Miroslav Šnorek {bukz1 snorek}@fel.cvut.cz Neural Computing Group Department of Computer Science and Engineering, Faculty
VíceVyužití strojového učení k identifikaci protein-ligand aktivních míst
Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita
Více8 Strojové uení a adaptace
8 Strojové uení a adaptace Dležitou vlastností živých organism je schopnost pizpsobovat se mnícím se podmínkám (adaptovat se), eventuáln se uit na základ vlastních zkušeností. Schopnost uit se bývá nkdy
VíceÚvod do dobývání. znalostí z databází
POROZUMĚNÍ 4iz260 Úvod do DZD Úvod do dobývání DOMÉNOVÉ OBLASTI znalostí z databází VYUŽITÍ VÝSLEDKŮ POROZUMĚNÍ DATŮM DATA VYHODNO- CENÍ VÝSLEDKŮ MODELOVÁNÍ (ANALYTICKÉ PROCEDURY) PŘÍPRAVA DAT Ukázka slidů
Více8-9. Pravděpodobnostní rozhodování a predikce. Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze
KYBERNETIKA A UMĚLÁ INTELIGENCE 8-9. Pravděpodobnostní rozhodování a predikce laboratory Gerstner Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze Rozhodování za neurčitosti
VíceVojtěch Franc. Biometrie ZS Poděkování Janu Šochmanovi za slajdy vysvětlující AdaBoost
Rozpoznávání tváří I Vojtěch Franc Centrum strojového vnímání, ČVUT FEL Praha Biometrie ZS 2013 Poděkování Janu Šochmanovi za slajdy vysvětlující AdaBoost Úlohy rozpoznávání tváří: Detekce Cíl: lokalizovat
Více