Zjišťování vlhkosti v potěrech a jiných stavebních hmotách Metody měření a měřicí přístroje
|
|
- Jaroslava Bártová
- před 10 lety
- Počet zobrazení:
Transkript
1 Zjišťování vlhkosti v potěrech a jiných stavebních hmotách Metody měření a měřicí přístroje Stanovení vlhkosti stavebních hmot nabývá stále většího významu. Těsné termíny při výstavbě nových staveb, často bez potřebných fáz vysušování, používání izolace, odpovídající nejnovějším předpisům o úspoře energie, pozůstávající z úplné tepelné izolace a vzduchotěsných oken a dveří, jakož i způsob větrání obyvatel, které není na tyto nové poměry přizpůsobené, vyžadují častá měření vlhkosti během výstavby objektů, jakož i při posuzování případných škod po ukončení výstavby. Pro nás jako výrobce přístrojů na měření vlhkosti je to dostatečný důvod pro poskytutí principiálního popisu a vysvětlení různých metod měření a vhodných přístrojů pro zjišťování obsahu vlhkosti v stavebních hmotách. Gravimetrická (vysušovací) metoda měření Způsob měření s využitím gravimetrické (vysušovací) metody zpočívá v tom, že se odebere vzorek měřeného materiálu, který se následně zváží, suší během delší doby (až do 24 hodin) až po dosažení konstantní hmotnosti a pak se opět zváží. Ze zjištěného rozdílu hmotnosti se vypočítá původní obsah vlhkosti podle následujícího vztahu: (mokrá hmotnost - suchá hmotnost) 100 suchá hmotnost Na tomto místě je nutno upozornit, že za vědecky správné výsledky měření lze považovat pouze výsledky v hmotnostních procentech, tedy ve vztahu v suché hmotnosti. Teoreticky velmi přesný způsob měření má ale svůj praktický nedostatek, protože vzledem na svůj destrukční účinek je použitelný pouze omezeně a že při odběru vzorků, jejich transportu a při posuzování výsledku měření vlhkosti se můžou do výsledku vloudit skryté zdroje chyb. Při získávání vzorků pro měření se často odebírají vzorky, osahující jak povrchovou, tak vnitřní vlhkost a proto v žádném případě nemůžou poskytnout hodnověrnou odpověď na důležitou otázku případných rozdílů v obsahu vlhkosti mezi vnější a vnitřní oblastí materiálu. Nevyhnutný odběr vzorků ve vrstvách je při gravimetrické metodě proveditelný jen ztěží, potřebné měření maximální vlhkosti v tzv. spodní vrstvě potěru (podle VOB) nelze realizovat, protože z důvodů s tím spojené rozsáhlé destrukce se nedá provést. V této souvislosti nutno rovněž poznamenat, že zkreslující vliv zahřátí materiálu při odběru vzorku je o to větší, čím je objem odebíraného vzorku menší. 1
2 K ještě většímu zkreslení při zjišťování skutečného obsahu vlhkosti dochází v praxi při rovněž používaném odběru odvrtaného prachu, který se získává pomocí normálních příklepových vrtaček. Zkreslující vliv v důsledku zahřátí materiálu a jeho bezprostřední vysušení při odběru vzorku je v tomto případě natolik velký, že ke smysluplnosti a účelnosti takového postupu není co dodat. Dalším výrazným zdrojem chyb je transport a skladování odebratého vzorku pro měření. Vzorek by se měl pečlivě zabalit do vzduchotěsného plastového sáčku a pod. a co nejrychleji následně vysušit. V praxi lze často pozorovat roztřídění vzorků do větších transportních nádob s dlouhou dobou čekání do provedení vysušování. Důsledkem jsou pak příliš nízké hodnoty výsledku měření vlhkosti, protože během transportu a skladování dojde k nežádoucímu vysušení materiálu odebratých vzorků. Zásada, která by se při použití gravimetrické metody zjišťování vlhkosti měla rovněž zohlednit, je skutečnost, že při potřebném vysušování vzorku vysokou teplotou se neodstraní pouze volná voda, ale i jiné látky, obsažené ve vzorku, např. minerální tuky a oleje a krystalická voda, které se při vysušování odpaří a tím se výsledek měření zkreslí. Kromě toho se musí zohlednit i rozdílné teploty sušení, např. při hmotách s obsahem sádry max. 40 C a při cementových potěrech max. 103 C. Dalším nezanedbatelným faktorem je dlouhý čas mezi odběrem vzorku a zjišťováním výsledků, který při sušení představuje přibližně 12 až 48 hodin. Při souhrnném posouzení gravimetrické metody měření je proto důležité uvést, že tato metoda při dodržení technických a laboratorních podmínek a při příslušně pečlivém postupu může poskytnout přesné výsledky, při použití v praxi však trpí v důsledku početných manipulačních a technických zdrojů chyb a navíc z důvodu nutného znehodnocení materiálu při odběru vzorků má pouze omezené využití. Z těchto důvodů není tato metoda vhodná především pro řemeslníky a používá se převážně na speciální laboratorní vyšetření. Metoda měření CM I při získávání vzorku pro měření pomocí tzv. metody měření CM je nejdřív potřebné odebrat vzorek vyšetřovaného materiálu. Vzorek se pak musí rozmělnit na jednotlivé kousky, které musí mít průměr menší než 2 mm. Takto připravený materiál pro měření se pak musí odvážit a spolu s kapslemi s karbidem a ocelovými kuličkami nasypat do ocelové láhve, která se pevně uzavře. Intenzivní protřepání láhve způsobí rozbití ampule s karbidem vloženými ocelovými kuličkami a v důsledku spuštění chemické reakce se uvnitř láhve vytvoří tlak, který lze odečíst pomocí připojeného manometru a z kterého pak lze zjistit obsah vlhkosti vzorku materiálu, nacházejícího se v láhvi. 2
3 Pečlivě provedené měření metodou CM předpokládá, že vzorka materiálu se neodebere z již většinou suché povrchové oblasti, ale ze spodní vrstvy potěru. Kromě toho se musí zohlednit poměrně vysoká časová náročnost každého měření, které trvá přibližně 30 až 45 minut, což by mohlo uživatele přístroje svést k omezení počtu měření na absolutní minimum. Právě u velkých ploch by tato skutečnost mohla vést k úplně špatných závěrům. Na stanovení vlhkosti materiálu jsou podle druhu materiálu potřebné vyhodnocovací tabulky, udávající tzv. procenta CM. Zde je nutno si uvědomit, že hodnoty procent CM nejsou identické s hmotnostními procenty, protože se zohledňuje pouze absolutně volná voda, ne však voda, vázaná v materiálu. Označení procenta CM je proto vědecky nepřesné, protože nejsou jasně definovatelná. Také v praxi často pozorované chyby při výběru místa odběru vzorku a při navážce měřeného materiálu, použití nesprávných nebo málo kuliček nebo špatně těsnicí láhev vedou k nesprávným hodnotám měření, které celé měření dělají napadnutelným. Metoda měření CM se v praxi využívá často, ale již z teoretického pohledu určitě nedosahuje přenosti měření, kterou za optimálních podmínek lze dosáhnout s použitím gravimetrické metody. Nedostatky a možné zkreslující vlivy jsou prakticky identické jako při gravimetrické metodě (nežádoucí znehodnocení materiálu např. u sádrových stěn a potěrů, vzorky z vrstev jsou dostupné jen ztěží, zkreslující vliv v důsledku rozmělnění měřeného materiálu, atd.). Jelikož u téměř všech potěrů se dnes používají různé přísady a např. u anhydridových potěrů se používá množství anhydridových surovin, nelze tím zaviněné dodatečné chyby měření vyloučit. Metoda měření odporu V praxi často používaná metoda měření vlhkosti dřeva a stavebních materiálů na zjišťování přítomnosti vlhkosti v materiálu je tzv. metoda měření odporu. Vychází ze skutečnosti, že elektrický odpor téměř všech pevných látek se mění podle přítomné vlhkosti. Při nízké vlhkosti materiálu se elektrický odpor zvyšuje, s narůstající vlhkostí materiálu klesá. Přístroje na měření vlhkosti, pracující na principu měření odporu, ve skutečnosti tedy měří elektrický odpor určitého materiálu a tento zobrazují buď přímo nebo po přepočtu v procentech vlhkosti (t. j. v hmotnostních procentech). 3
4 Jelikož popsaná změna elektrického odporu je ve spodním rozsahu vlhkosti značná, ale ve vyšším rozsahu vlhkosti (např. u dřeva u hodnot vlhkosti nad 60 %) hodnota odporu silně klesá, má pro postup měření vlhkosti metodou měření odporu nutně své následky; všechny hodnoty měření v nižším rozsahu vlhkosti lze zjišťovat s dobrou přesností, kdežto hodnoty měření od určité horní meze, která je závislá od materiálu a proto pevně nedefinovatelná, jsou podstatně nepřesnější. Uvedená závislost od materiálu je způsobena tím, že popsaná změna elektrického odporu nazávisí pouze od vlhkosti materiálu, ale i od přidružených vedlejších faktorů jako teploty materiálu, chemického složení materiálu a (v menší míře) hustoty materiálu. Na zohlednění rozličných vlivů podle příslušného druhu stavební hmoty nebo dřeva jsou moderní přístroje na měření vlhkosti, pracující na principu metody měření odporu, vybaveny různými nastaveními podle druhu materiálu a kompenzací teploty. Popřední výrobci měřicích přístrojů pro oblast nejpoužívanějších stavebních hmot s přístroji obvykle nabízejí přepočtové tabulky, které uživateli umožňují převod odečtených hodnot (ze stupnice nebo digitálních hodnot) na procenta vlhkosti (= hmotnostní procenta) podle druhu materiálu. Velmi nízkou výpovědní hodnotu nabízejí verze přístrojů, vybavené pouze barevnou škálou, indikací světelnými diodami apod. a které nezohledňují velmi rozdílnou vodivost jednotlivých stavebních hmot. Vůči gravimetrické metodě nebo metodě měření CM, má metoda měření odporu řadu předností, které jsou pro praktické využití důležité a rozhodující pro to, že různí uživatelé upřednostňují tento druh přístrojů: poškození materiálu, spojené s prováděním měření je zanedbatelné a proto v každém místě měření lze provést prakticky libovolný počet jednotlivých měření, uživatel zjistí výsledek měření hned, což umožňuje provádět libovolný počet srovnávacích měření podle místních daností a obzvlášť na kritických místech. Velice závažnou předností, která často sehrává rozhodující roli zejména v oblasti znaleckého posuzování v stavebnictví a při zpracování dřeva je skutečnost, že pomocí metody měření odporu volbou příslušných konstrukčně uzpůsobených elektrod je možné provádění měření ve vrstvách, takže uživatel si tak v místě měření může vytvořit obraz o distribuci vlhkosti od povrchu až po nejhlubší vrstvy materiálu (např. v spodní vrstvě potěru podle VOB), resp. v zóně jádra. 4
5 Nesporně problematickým aspektem při použití metody měření odporu je skutečnost, že ne u každé stavební hmoty lze stejně přesně zjistit vliv různého chemického složení a hustoty materiálu, takže ne pro každou stavební hmotu jsou k dispozici přesné korekční tabulky. I zde si ale uživatel může prostřednictvím srovnávacích měření v rámci stejného materiálu vytvořit výstižný obraz o rozdílných poměrech vlhkosti a má samozřejmě možnost zjištěné výsledky měření v jednotlivých případech zkontrolovat pomocí alternativní metody měření. U zasolených stavebních hmot se v důsledku elektrické vodivosti solí zaznamenávají zvýšené hodnoty, které nesouhlasí se skutečnou vlhkostí. V takovém případě by se měření mělo prověřit srovnávacím měřením gravimetrickou metodou s analýzou solí. Měření kapacity Enormní význam v posledních letech získala další metoda měření, umožňující nedestruktivní měření vlhkosti, čímž je z hlediska používání těměř ideální. Tato tzv. kapacitivní metoda měření vychází z principu měření elektrického pole. Elektrické pole se vytváří mezi aktivním prvkem, vyrobeným např. ve tvaru koule a posuzovanou hmotou podkladu. Zaznamenává se změna elektrického pole materiálem a vlhkostí, která se zobrazí na měřicím přístroji. Měření je relativní, t. j. zobrazuje se rozdíl mezi suchou a vlhkou stavební hmotou. Zpětné zjištění absolutní vlhkosti nebo vlhkosti v procentech CM je při normálním průběhu vysušování možný pomocí tabulky. Hloubka měření závisí od objemové hmotnosti (hustoty) měřené stavební hmoty. Za příznivých podmínek to platí pro velmi lehké stavební hmoty, když hloubka měření nepřekročí cm; se stoupající specifickou hmotností (např. u betonu) se ale snižuje pouze na 2-3 cm. Ideálním měřicím přístrojem na měření vlhkosti v potěrech, betonu, atd. je přístroj, který umožňuje jak měření elektrického odporu, tak i měření kapacity pomocí tzv. aktivní elektrody. Obr. 2 znázorňuje takovou aktivní elektrodu na nedestruktivní měření vlhkosti, jejíž koule se pouze přikládá k povrchu. Měření kapacity se sice vyznačuje větším rozptylem hodnot než měření elektrického odporu, má však velkou výhodu v tom, že tyto měření lze pro orientaci provádět na mnoha místech, čím lze získat takřka dvourozměrný profil vlhkosti a tím velmi rychle lokalizovat kritická místa. 5
6 Měření pomocí absorpčních izoterm Stále větší význam zejména ve Skandinávii a Velké Británii získává nyní výrazně rozšířené měření vlhkosti vzduchu ve vyvrtaném otvoru na zjišťování vlhkosti stavebních hmot pomocí absorpčních izoterm. Při této metodě se do vyvrtaného otvoru zavádí tenký snímač vlhkosti vzduchu. Po příslušném čase se ve vyvrtaném otvoru změří vlhkost a pomocí absorpčních izoterm příslušné stavební hmoty se přepočte. Doplňující zjišťování hodnot měření pro stavebnickou a znaleckou praxi Vedle zjišťování čisté vlhkosti materiálu je ve stavebnické a znalecké praxi potřebné zjišťování různých doplňujících hodnot měřením např. teploty vzduchu, vlhkosti vzduchu a povrchové teploty materiálu. Zjišťování těchto hodnot měření umožňuje m. j. vyhledání tepelných mostů (úniků tepla, chyb izolace) a výpočet podmínek rosného bodu v různých klimatických a vlhkostních poměrech. Na zjišťování těchto jednotlivých hodnot měření je k dispozici celá řada speciálních měřicích přístrojů. Ideálním pro použití v celém rozsahu stavebnictví je jak z hlediska nákladů, tak i z technického hlediska kombinovaný univerzální měřicí přístroj, který umožňuje jak zjišťování vlhkosti materiálu metodou měření odporu a metodou měření kapacity, tak i zjišťování uvedených doplňujících hodnot měření. Zvláštním aspektem při vystavování stavebnětechnického posudku je, že v jednotlivých případech nepostačuje provedení jednotlivých nebo náhodilých měření, ale že na zjištění určitého stavu věcí jsou nutná nepřetržitá měření včetně registrace a vyhodnocení hodnot měření. Zde se musí rovněž zohlednit, že na znalosti a požadavky na znalce se musí pohlížet jinak než na znalosti řemeslníka, pracujícího na stavbě v podmínkách staveniště. Především se ale musí zohlednit, že k posouzení stavu pokládky nebo zpracování nepatří pouze určitá metoda měření, ale také osobní zkušenost spolu s diferencovanými znalostmi o zacházení s používaným měřicím přístrojem. Společnost GANN Měřicí a regulační technika spol. s r. o. nabízí širokou paletou měřicích přístrojů na bázi výše uvedených postupů měření, které lze pomocí odpovídajícího příslušenství přizpůsobit speciálním požadavkům uživatele. Při výběru pro vás vhodného měřicího přístroje včetně příslušenství vám proto rádi poradíme. GANN Mess- und Regeltechnik GmbH, Schillerstrasse 63, D Gerlingen Telefon: +49 / 7156 / , fax: +49 / 7156 / , 6
Jak postupovat při měření vlhkosti podkladu na místě pokládky podlahoviny? Možnosti měření vlhkosti a přístrojové vybavení.
Jak postupovat při měření vlhkosti podkladu na místě pokládky podlahoviny? Možnosti měření vlhkosti a přístrojové vybavení. Tento článek se věnuje různým způsobům měření vlhkosti podkladů, specifikuje
VLHKOST A NASÁKAVOST STAVEBNÍCH MATERIÁLŮ. Stavební hmoty I Cvičení 7
VLHKOST A NASÁKAVOST STAVEBNÍCH MATERIÁLŮ Stavební hmoty I Cvičení 7 STANOVENÍ VLHKOSTI STAVEBNÍCH MATERIÁLŮ PROTOKOL Č.7 Stanovení vlhkosti stavebních materiálů a výrobků sušením při zvýšené teplotě dle
Stavební hmoty. Ing. Jana Boháčová. F203/1 Tel. 59 732 1968 janabohacova.wz.cz http://fast10.vsb.cz/206
Stavební hmoty Ing. Jana Boháčová jana.bohacova@vsb.cz F203/1 Tel. 59 732 1968 janabohacova.wz.cz http://fast10.vsb.cz/206 Stavební hmoty jsou suroviny a průmyslově vyráběné výrobky organického a anorganického
Ověřovací nástroj PENB MANUÁL
Ověřovací nástroj PENB MANUÁL Průkaz energetické náročnosti budovy má umožnit majiteli a uživateli jednoduché a jasné porovnání kvality budov z pohledu spotřeb energií Ověřovací nástroj kvality zpracování
Aparát pro laboratorní měření faktoru difuzního odporu stavebních materiálů metodou misek
Funkční vzorek K124FVZ002 2012 Aparát pro laboratorní měření faktoru difuzního odporu stavebních materiálů metodou misek Ing. Kamil Staněk, Ph.D. Fakulta stavební ČVUT v Praze Katedra konstrukcí pozemních
Obr. 19.: Směry zkoušení vlastností dřeva.
8 ZKOUŠENÍ DŘEVA Zkoušky přírodního (rostlého) dřeva se provádí na rozměrově přesně určených vzorcích bez suků, smolnatosti, dřeně a jiných vad. Z výsledků těchto zkoušek usuzujeme na vlastnosti dřeva
Návod k obsluze HYDROMETTE BL COMPACT B. Janser spol. s r. o. Verze 1.64 GANN MESS- UND REGELTECHNIK GMBH. Chodovská 3/228 141 00 Praha 4
Návod k obsluze Verze 1.64 HYDROETTE BL COPACT B Kompletní program pro zařizovače interiérů, pokládače podlah a obchod s podlahovinami Janser spol. s r. o. Stroje, nářadí, pracovn í oděvy Chodovská 3/228
Rozvoj tepla v betonových konstrukcích
Úvod do problematiky K novinkám v požární odolnosti nosných konstrukcí Praha, 11. září 2012 Ing. Radek Štefan prof. Ing. Jaroslav Procházka, CSc. Znalost rozložení teploty v betonové konstrukci nebo její
2010 Brno. Hydrotermická úprava dřeva - cvičení vnější parametry sušení
2010 Brno 06 - cvičení vnější parametry sušení strana 2 Proč určujeme parametry prostředí? správné řízení sušícího procesu odvislné na správném řízení naplánovaného sušícího procesu podle naměřených hodnot
Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost
Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.
Posudek k určení vzniku kondenzátu na izolačním zasklení oken
Posudek k určení vzniku kondenzátu na izolačním zasklení oken Firma StaniOn s.r.o. Kamenec 1685 Bystřice pod Hostýnem Zkušební technik: Stanislav Ondroušek Telefon: 773690977 EMail: stanion@stanion.cz
PRŮZKUMY A MONITOROVÁNÍ KONSTRUKCÍ STANOVENÍ VLHKOSTI A JEJÍ MONITOROVÁNÍ
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Kloknerův Ústav ČVUT Seminář ČKAIT, 22. 5. 2019 Y A MONITOROVÁNÍ KONSTRUKCÍ STANOVENÍ I A JEJÍ MONITOROVÁNÍ Ing. Lukáš Balík, PhD. Množství vody (l) v pohledovém m
FAST SIL + Tenkovrstvá silikonová omítka POUŽITÍ: FAST SIL + VLASTNOSTI: TECHNICKÝ LIST
FAST SIL + POUŽITÍ: je vysoce kvalitní silikonová omítka určená pro ruční zhotovení tenkovrstvých šlechtěných omítek pro vnitřní i vnější použití. Může být použita na každém minerálním podkladu, který
Metodika stanovení kyselinové neutralizační kapacity v pevných odpadech
Metodika stanovení kyselinové neutralizační kapacity v pevných odpadech 1 Princip Principem zkoušky je stanovení vodného výluhu při různých přídavcích kyseliny dusičné nebo hydroxidu sodného a následné
LEE: Stanovení viskozity glycerolu pomocí dvou metod v kosmetickém produktu
LEE: Stanovení viskozity glycerolu pomocí dvou metod v kosmetickém produktu Jsi chemikem ve farmaceutické společnosti, mezi jejíž činnosti, mimo jiné, patří analýza glycerolu pro kosmetické produkty. Dnešní
Automatické testování netěsností vzduchem. Přístroje JWF na testování netěsností, série 400
Automatické testování netěsností vzduchem Přístroje JWF na testování netěsností, série 400 Nejmodernější technologie testování netěsností: Přístroje JWF pro testování netěsností, série 400 Pro každý postup
Ceník platný od 01/2013 Jednotková cena v EUR bez DPH*
EVOLUTION Série EVO 5 MERLIN - Vlhkoměr na měření vlhkosti dřeva řady EVOLUTION 520,- 0,175 1,075 [g/cm³] hustota absolutně suché 8 mm (5 mm min. tloušťka) Vlhkoměr a teploměr, 21 předprogramovaných skupin
Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1
Číslo projektu Číslo materiálu Název školy CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_15_OC_1.01 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Tématický celek Ing. Zdenka
iglidur N54 Biopolymer iglidur N54 Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití
iglidur Biopolymer iglidur Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití 575 Biopolymer. Z 54% je založen na obnovitelných zdrojích. I přesto tento nový
Vlhkost. Voda - skupenství led voda vodní pára. ve stavebních konstrukcích - vše ve vzduchu (uvnitř budov) - vodní pára
Vlhkost Voda - skupenství led voda vodní pára ve stavebních konstrukcích - vše ve vzduchu (uvnitř budov) - vodní pára Vlhkost ve stavebních konstrukcích nežádoucí účinky... zdroje: srážková v. zemní v.
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM transport vodní páry TRANSPORT VODNÍ PÁRY PORÉZNÍM PROSTŘEDÍM: Ve vzduchu obsažená vodní pára samovolně difunduje do míst s nižším parciálním tlakem až
Legislativní požadavky na měření teploty ve zmrazených potravinách
PRACOVNÍ POMŮCKA DO PRAKTICKÝCH CVIČENÍ Inovace K1 MĚŘENÍ TEPLOTY VE ZMRAZENÝCH POTRAVINÁCH H2THR Předmět Technologie a hygiena ryb a ostatních vodních živočichů a výrobků z nich, mrazíren a mrazírenských
Podklad musí být hladký, čistý a bez nerovností. Izolaci nelze aplikovat, pokud jsou na ploše výstupky, otřepy, hřebíky, šrouby, kamínky atd.
λ Izolace vakuová má využití v místech, kde není dostatek prostoru pro vložení klasické tepelné izolace. Je vhodná i do skladeb podlah s podlahovým vytápěním. Používá se ve stavebnictví (v nezatížených
SR 450 Rychletuhnoucí potěr cementový. Rychleschnoucí potěr na bázi cementu s kompenzací smrštění pro vnitřní podlahy
SR 450 Rychletuhnoucí potěr cementový Číslo výrobku Popis výrobku Rychleschnoucí potěr na bázi cementu s kompenzací smrštění pro vnitřní podlahy Složení SR 450 je suchá směs, sestávající ze speciálních
TECHNOLOGICKÝ POSTUP
TECHNOLOGICKÝ POSTUP K ZAJIŠTĚNÍ VHODNÝCH PODMÍNEK PRO ZRÁNÍ A VYSYCHÁNÍ ANHYDRITOVÉHO POTĚRU PŘED POKLÁDKOU PODLAHOVÝCH KRYTIN První 2 4 dny po pokládce anhydritového potěru Na čerstvý litý potěr po tuto
VYUŽITÍ MULTIFUNKČNÍHO KALIBRÁTORU PRO ZKRÁCENOU ZKOUŠKU PŘEPOČÍTÁVAČE MNOŽSTVÍ PLYNU
VYUŽITÍ MULTIFUNKČNÍHO KALIBRÁTORU PRO ZKRÁCENOU ZKOUŠKU PŘEPOČÍTÁVAČE MNOŽSTVÍ PLYNU potrubí průtokoměr průtok teplota tlak Přepočítávač množství plynu 4. ročník mezinárodní konference 10. a 11. listopadu
Školení DEKSOFT Tepelná technika 1D
Školení DEKSOFT Tepelná technika 1D Program školení 1. Blok Požadavky na stavební konstrukce Okrajové podmínky Nové funkce Úvodní obrazovka Zásobník materiálů Uživatelské skupiny Vlastní katalogy Zásady
KONTINUÁLNÍ MĚŘENÍ VLHKOSTI BIOMASY
KONTINUÁLNÍ MĚŘENÍ VLHKOSTI BIOMASY Pavel Janásek Existují přístroje a zařízení, které umožňují poměrně spolehlivě měřit vlhkost různých materiálů. Na druhou stranu kontinuální měření vlhkosti v biomase
Tepelně vlhkostní posouzení
Tepelně vlhkostní posouzení komínů výpočtové metody Přednáška č. 9 Základní výpočtové teploty Teplota v okolí komína 1 Teplota okolí komína 2 Teplota okolí komína 3 Teplota okolí komína 4 Teplota okolí
Pracovní postup Cemix: Omítky se stěnovým vytápěním
Pracovní postup Cemix: Omítky se stěnovým vytápěním Pracovní postup Cemix: Omítky se stěnovým vytápěním Obsah 1 Použití... 3 2 Varianty vytápění stěn... 3 3 Tepelně technické podmínky... 3 4 Skladba systému...
Venkovní využití stavebních desek. Důležité informace a technické postupy
Venkovní využití stavebních desek Důležité informace a technické postupy CZ Produkty a systémy wedi zaručují vysokou úroveň kvality, díky čemuž už získaly řadu certifikátů v různých zemích Evropy. 2 Obsah
Technologie sušení velmi vlhkých materiálů se zpětným využitím tepla vloženého do procesu sušení
Technologie sušení velmi vlhkých materiálů se zpětným využitím tepla vloženého do procesu sušení Ing. Stanislav Kraml, TENZA, a.s., Svatopetrská 7, Brno Ing. Zdeněk Frömel, TENZA, a.s., Svatopetrská 7,
CW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2011/2012 8.5 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření
VÍŘIVÉ PROUDY DZM 2013 1
VÍŘIVÉ PROUDY DZM 2013 1 2 VÍŘIVÉ PROUDY ÚVOD Vířivé proudy tvoří druhou skupinu v metodách, které využívají ke zjišťování vad materiálu a výrobků působení elektromagnetického pole. Na rozdíl od metody
Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití
Biopolymer Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití 575 Biopolymer. Z 54% je založen na obnovitelných zdrojích. I přesto tento nový materiál splňuje
www.bosch-professional.cz
Opravdu Bosch! Aby vrtání nebylo sázka do loterie Bosch D-tect 150 a 150 SV Professional pro spolehlivou lokalizaci kovů, elektrického vedení, dřeva a plastových trubek. Modré elektrické nářadí: pro řemeslo
FDA kompatibilní iglidur A180
FDA kompatibilní Produktová řada Je v souladu s předpisy FDA (Food and Drug Administration) Pro přímý kontakt s potravinami a léčivy Pro vlhká prostředí 411 FDA univerzální. je materiál s FDA certifikací
M O B I L N Í O D V L H Č O V A Č E
M O B I L N Í O D V L H Č O V A Č E M O B I L N Í O D V L H Č O V A Č E C D T Mějte vlhkost pod kontrolou, ať jste kdekoliv Mobilní odvlhčovače CDT od dánské společnosti Dantherm nabízejí rychlou a snadnou
Návod na obsluhu přístroje na měření vlhkosti podkladu. VI-D4 Professional
Návod na obsluhu přístroje na měření vlhkosti podkladu VI-D4 Professional Popis přístroje Měřicí přístroj VI-D4 byl dimenzován pro měření vlhkosti podkladů, jako jsou beton, potěr, omítka apod. Největší
č.. 6: Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018
Pedologické praktikum - téma č.. 6: Práce v pedologické laboratoři - půdní fyzika Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Půdní
Posudek k určení vzniku kondenzátu na izolačním zasklení oken
Posudek k určení vzniku kondenzátu na izolačním zasklení oken Firma StaniOn s.r.o. Kamenec 1685 Bystřice pod Hostýnem Zkušební technik: Stanislav Ondroušek Telefon: 773690977 EMail: stanion@stanion.cz
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM transport vodní páry Transport vodní páry porézním prostředím: Tepelná vodivost vzduchu: = 0,0262 W m -1 K -1 Tepelná vodivost izolantů: = cca 0,04 W
Nízká cena při vysokých množstvích
Nízká cena při vysokých množstvích iglidur Vhodné i pro statické zatížení Bezúdržbový provoz Cenově výhodné Odolný vůči nečistotám Odolnost proti vibracím 225 iglidur Nízká cena při vysokých množstvích.
Návod k obsluze. Regulátor prostorové teploty 230/5 (2) A~ spřepínacím kontaktem 0396..
Návod k obsluze Regulátor prostorové teploty 230/5 (2) A~ spřepínacím kontaktem 0396.. Obsah Návod k obsluze Regulátor prostorové teploty 230/5 (2) A~ spřepínacím kontaktem 2 Instalace regulátoru prostorové
Ecophon Akusto Wall C
Ecophon Akusto Wall C Systém Ecophon Akusto Wall C je stěnový zvukový absorbér, který je vhodné kombinovat s akustickými podhledy. Vyznačuje se skrytým nosným rastrem a sraženými hranami tvořící úzké drážky
Ukázka knihy z internetového knihkupectví www.kosmas.cz
Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 0 0 8 8 Copyright U k á z k
Systém podlahového vytápění. Euroflex extra ODOLNÝ SYSTÉM PRO SAMONIVELAČNÍ STĚRKU
Systém podlahového vytápění Euroflex extra ODOLNÝ SYSTÉM PRO SAMONIVELAČNÍ STĚRKU systém Euroflex extra VELMI ODOLNÝ A UNIVERZÁLNÍ SYSTÉM Velký kontakt trubky s deskou, typický pro systémové desky, je
Ing. Petr Knap Carl Zeiss spol. s r.o., Praha
METROTOMOGRAFIE JAKO NOVÝ NÁSTROJ ZAJIŠŤOVÁNÍ JAKOSTI VE VÝROBĚ Ing. Petr Knap Carl Zeiss spol. s r.o., Praha ÚVOD Společnost Carl Zeiss Industrielle Messtechnik GmbH již dlouhou dobu sleduje vývoj v poměrně
Pracovně pedagogický koncept
Pracovně pedagogický koncept Škola ZespółSzkółChemicznychWłocławek (PL) Druh studia Střední odborné vzdělání Obor studia Pracovník ochrany prostředí/technik v oblasti ochrany prostředí Oblast činnosti
OMÍTKOVÉ SYSTÉMY PROFI
OMÍTKOVÉ SYSTÉMY PROFI Profi omítky pro dokonalý vzhled Vaší stavby Omítkové směsi nejvyšší kvality Odborné poradenství a servis Spolehlivá systémová řešení Pro novostavby i renovace Omítky dle typu Vápenosádrové
VYSOCE VÝKONNÉ VENTILÁTORY
VYSOCE VÝKONNÉ VENTILÁTORY Vysoce výkonné ventilátory Mobilní siláci pro oblast staveb a sanity Kvalita se systémem VYSOCE VÝKONNÉ VENTILÁTORY Mobilní siláci pro oblast staveb a sanity s kuličkovými ložisky
Nedestruktivní metody 210DPSM
Nedestruktivní metody 210DPSM Jan Zatloukal Diagnostické nedestruktivní metody proces stanovení určitých charakteristik materiálu či prvku bez jeho destrukce pomocí metod založených na principu interakce
SOFTWAROVÁ PODPORA PŘI NAVRHOVÁNÍ STAVEB Ing. Jiří Teslík
SOFTWAROVÁ PODPORA PŘI NAVRHOVÁNÍ STAVEB Ing. Jiří Teslík Tvorba vzdělávacího programu Dřevěné konstrukce a dřevostavby CZ.1.07/3.2.07/04.0082 OBSAH 1. ÚVOD 2. SOFTWAROVÁ PODPORA V POZEMNÍM STAVITELSTVÍ
Třída přesnosti proudu. Principy senzorů
Kombinovaný senzor pro vnitřní použití 12, 17,5 a 25 kv, 1250 A a 3200 A KEVCD Nejvyšší napětí pro zařízení kv 12.25 Jmenovitý trvalý tepelný proud A 1250.3200 Jmenovitý transformační převod proudu, K
BH059 Tepelná technika budov
BH059 Tepelná technika budov Ing. Danuše Čuprová, CSc. Ing. Sylva Bantová, Ph.D. Výpočet součinitele prostupu okna Lineární a bodový činitel prostupu tepla Nejnižší vnitřní povrchová teplota konstrukce
Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 4
PŘEDNÁŠKA 4 PODMÍNKY PRO Vlastnosti charakterizující vnější formu textilií Hmotnost Obchodní hmotnost - je definována jako čistá hmotnost doplněná o obchodní přirážku Čistá hmotnost - je to hmotnost materiálu
ANTI-CONDENSA TERMOIZOLAČNÍ STĚRKA V PRÁŠKU
ANTI-CONDENSA TERMOIZOLAČNÍ STĚRKA V PRÁŠKU Pro řešení problémů kondenzace vlhkosti na stěnách, hluku a vlivů teplotních změn 9 kg VNITŘNÍ - VNĚJŠÍ MIN. TLOUŠŤKA 5 mm, termoizolace v proporci k tloušťce
ZPRÁVA Z PRŮZKUMU ZDIVA Z POHLEDU VLHKOSTI A SALINITY
ZPRÁVA Z PRŮZKUMU ZDIVA Z POHLEDU VLHKOSTI A SALINITY Posuzovaný objekt: Bytový dům Adresa: Široká č.p.87, Chrudim Zákazník: Ing. Patrik Boguaj Číslo zprávy: JS 1512 OBSAH 1. Popis objektu 2. Vlastní měření
FERMACELL Vapor Bezpečné řešení difúzně otevřených konstrukcí
FERMACELL Vapor Bezpečné řešení difúzně otevřených konstrukcí Úspora času a nákladů: Parobrzdná deska FERMACELL Vapor bezpečné řešení difúzně otevřených konstrukcí Neprůvzdušnost (vzduchotěsnost) pláště
Malta je podobný materiál jako beton, liší se však velikostí horní frakce plniva (zpravidla max. 4 mm).
Malta je podobný materiál jako beton, liší se však velikostí horní frakce plniva (zpravidla max. 4 mm). Malta je tvořena plnivem, pojivem a vodou a přísadami. Malta tvrdne hydraulicky, teplem, vysycháním
Bez PTFE a silikonu iglidur C. Suchý provoz Pokud požadujete dobrou otěruvzdornost Bezúdržbovost
Bez PTFE a silikonu iglidur Suchý provoz Pokud požadujete dobrou otěruvzdornost Bezúdržbovost HENNLIH s.r.o. Tel. 416 711 338 Fax 416 711 999 lin-tech@hennlich.cz www.hennlich.cz 613 iglidur Bez PTFE a
Technický list StoLevell In Mineral
Minerální lepící a armovací malta Charakteristika Použití Vlastnosti interiér jako lepící a armovací stěrka pro StoTherm In Comfort pro vyrovnání hrubé stěny a vytvoření podkladu vhodného pro lepení minerální
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných
Kruhové tlumiče hluku. Tlumiče hluku určené pro instalaci do vzduchotechnického potrubí. ITS122-01, revize 1.1, Greif-akustika, s.r.o.
Kruhové tlumiče hluku GD Tlumiče hluku určené pro instalaci do vzduchotechnického potrubí ITS122-01, revize 1.1, Greif-akustika, s.r.o. 1. Účel a použití: Kruhové tlumiče hluku řady GD jsou určeny pro
Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření hladiny 2 P-10b-hl ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Hladinoměry Principy, vlastnosti, použití Jedním ze základních
SILNIČNÍ A GEOTECHNICKÁ LABORATOŘ
Inovace studijního oboru Geotechnika reg. č. CZ.1.07/2.2.00/28.0009 SILNIČNÍ A GEOTECHNICKÁ LABORATOŘ podklady do cvičení PŮDNÍ OBJEMOVÝ DENZITOMETR Ing. Marek Mohyla Místnost: C 315 Telefon: 597 321 362
ODOLNOST KAMENIVA. ČSN EN 1367-1 Zkoušení odolnosti kameniva vůči teplotě a zvětrávání Část 1: Stanovení odolnosti proti zmrazování a rozmrazování
ODOLNOST KAMENIVA Odolnost proti zmrazování a rozmrazování ČSN EN 1367-1 Zkoušení odolnosti kameniva vůči teplotě a zvětrávání Část 1: Stanovení odolnosti proti zmrazování a rozmrazování - chování kameniva
Stavební fyzika N E P R O D Y Š N O S T 4/2012
Obsah: 1. Základní informace 2. Důležitost neprodyšnosti/větruvzdornosti 3. Výhody CLT z hlediska neprodyšnosti 4. Technické aspekty neprodyšnosti 5. Provedení a detailní napojení 6. Shrnutí 7. Příloha
Technický list StoLevell Basic
Minerální lepicí a armovací hmota / podkladní omítka Charakteristika Použití do exteriéru a interiéru na všechny minerální podklady na lepení tepelně izolačních desek na minerální podklady pro vytvoření
ETAPY PRŮZKUMU STAVEBNÍHO OBJEKTU ZNEČIŠTĚNÉHO ORGANOCHLOROVANÝMI PESTICIDY
ETAPY PRŮZKUMU STAVEBNÍHO OBJEKTU ZNEČIŠTĚNÉHO ORGANOCHLOROVANÝMI PESTICIDY Petr Kohout Forsapi s.r.o. Václav Durďák, Jiří Hendrych, Jiří Kroužek, Martin Kubal, Daniel Randula Vysoká škola chemicko-technologická
Psí pisoár s odpadkovým košem 2) - 1 400 99
TECHNICKÝ LIST PSÍ PISOÁR PSÍ PISOÁR Psí pisoár Solitair, Psí pisoár s odpadkovým košem betonový prvek (Psí pisoár) je vyráběn z prostého betonu na bázi cementu a plniva (kameniva) modifikované ekologicky
25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory
25 A Vypracoval : Zdeněk Žák Pyrometrie Bezdotykové měření Pyrometrie (obrázky viz. sešit) Bezdotykové měření teplot je měření povrchové teploty těles na základě elektromagnetického záření mezi tělesem
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, , Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu:
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu: VY_32_INOVACE_11_PŘÍPRAVA DŘEVA 2_T1 Číslo projektu: CZ 1.07/1.5.00/34.1077
Závěsné kondenzační kotle
Závěsné kondenzační kotle VU, VUW ecotec plus Výhody kondenzační techniky Snižování spotřeby energie při vytápění a ohřevu teplé užitkové vody se v současné době stává stále důležitější. Nejen stoupající
Komínové systémy Schiedel Technické oddělení Schiedel
Komínové systémy Schiedel 2016 Technické oddělení Schiedel Komínové systémy, materiály a technologie Systémy s keramickou vložkou Třívrstvé nerezové systémy Jednovrstvé systémy pro obnovu komínů Komínové
Návod k montáži Senzor vlhkosti oleje LDH100 706104/01 08/2013
Návod k montáži Senzor vlhkosti oleje LDH100 706104/01 08/2013 Obsah 1 Poznámka na úvod 3 1.1 Použité symboly 3 2 Bezpečnostní pokyny 3 3 Použití z hlediska určení 4 3.1 Oblast nasazení 4 4 Funkce 5 4.1
Katedra materiálového inženýrství a chemie IZOLAČNÍ MATERIÁLY, 123IZMA
Katedra materiálového inženýrství a chemie IZOLAČNÍ MATERIÁLY, 123IZMA o Anotace a cíl předmětu: návrh stavebních konstrukcí - kromě statické funkce důležité zohlednit nároky na vnitřní pohodu uživatelů
Navrhování betonových konstrukcí na účinky požáru. Ing. Jaroslav Langer, PhD Prof. Ing. Jaroslav Procházka, CSc.
Navrhování betonových konstrukcí na účinky požáru Ing. Jaroslav Langer, PhD Prof. Ing. Jaroslav Procházka, CSc. Beton z požárního hlediska Ohnivzdorný materiál: - nehořlavý -tepelně izolační Skupenství:
WiFi: název: InternetDEK heslo: netdekwifi. Školení DEKSOFT Tepelná technika
WiFi: název: InternetDEK heslo: netdekwifi Školení DEKSOFT Tepelná technika Program školení 1. Blok Legislativa Normy a požadavky Představení aplikací pro tepelnou techniku Představení dostupných studijních
FOTOVOLTAICKÉ SYSTÉMY S VÝCHODO-ZÁPADNÍ ORIENTACÍ A POUZE JEDNÍM MPP TRACKEREM
FOTOVOLTAICKÉ SYSTÉMY S VÝCHODO-ZÁPADNÍ ORIENTACÍ A POUZE JEDNÍM MPP TRACKEREM V minulosti panovala určitá neochota instalovat fotovoltaické (FV) systémy orientované východo-západním směrem. Postupem času
SKUPENSKÉ PŘEMĚNY POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D11_Z_OPAK_T_Skupenske_premeny_T Člověk a příroda Fyzika Skupenské přeměny Opakování
TECHNOLOGICKÝ POSTUP PODLAHOVÉ VYTÁPĚNÍ
České vysoké učení technické v Praze fakulta stavební TECHNOLOGICKÝ POSTUP PODLAHOVÉ VYTÁPĚNÍ DANA HAJNOVÁ NIKOLA MOŠNEROVÁ DOMINIK SYROVÝ k 126 MGT 2012-2013 TECHNOLOGICKÝ POSTUP - PODLAHOVÉ VYTÁPĚNÍ
POROVNÁNÍ TEPELNĚ TECHNICKÝCH VLASTNOSTÍ MINERÁLNÍ VLNY A ICYNENE
POROVNÁNÍ TEPELNĚ TECHNICKÝCH VLASTNOSTÍ MINERÁLNÍ VLNY A ICYNENE Řešitel: Doc. Ing. Miloš Kalousek, Ph.D. soudní znalec v oboru stavebnictví, M-451/2004 Pod nemocnicí 3, 625 00 Brno Brno ČERVENEC 2009
A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení)
A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A8B268P A:Měření odporových teploměrů v ultratermostatu
EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek
EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření Jan Krystek 9. května 2019 CHYBY A NEJISTOTY MĚŘENÍ Každé měření je zatíženo určitou nepřesností způsobenou nejrůznějšími negativními vlivy,
cihly, broušené cihly, překlady cihly pro nízkoenergetické a pasívní domy
Kvalita z hlíny Inovace cihel... cihly, broušené cihly, překlady cihly pro nízkoenergetické a pasívní domy CÍTIT SE DOBŘE OD SKLEPA PO STŘECHU Cihla cihla od firmy GIMA přírodní stavební materiál pro zdravé
Pro vysoušení a odvlhčování.
Pro vysoušení a odvlhčování. REMS Secco 80 for Professionals Výkonný, vysoce účinný odvlhčovač vzduchu / stavební vysoušeč pro vysoušení prostorů, např. po škodách způsobených vodou z vodovodu, po záplavách,
Pro vysoušení a odvlhčování.
Pro vysoušení a odvlhčování. REMS Secco 80 for Professionals Výkonný, vysoce účinný odvlhčovač vzduchu / stavební vysoušeč pro vysoušení prostorů, např. po škodách způsobených vodou z vodovodu, po záplavách,
Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů
Univerzita obrany K-216 Laboratorní cvičení z předmětu HYDROMECHANIKA Měření součinitele tření potrubí Protokol obsahuje 14 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování:5.5.2011
Identifikace zkušebního postupu/metody 2
Pracoviště zkušební laboratoře:. Laboratoř stavební tepelné techniky K Cihelně 304, Zlín - Louky 2. Laboratoř akustiky K Cihelně 304, Zlín - Louky 3. Laboratoř otvorových výplní K Cihelně 304, Zlín - Louky
Nejnižší vnitřní povrchová teplota a teplotní faktor
Nejnižší vnitřní povrchová teplota a teplotní faktor Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2014 především s ohledem na změny v normách.
VISKOZITA A POVRCHOVÉ NAPĚTÍ
VISKOZITA A POVRCHOVÉ NAPĚTÍ TEORETICKÝ ÚVOD V proudící reálné tekutině se projevuje mezi elementy tekutiny vnitřní tření. Síly tření způsobí, že rychlejší vrstva tekutiny se snaží zrychlit vrstvu pomalejší
TEPELNĚIZOLAČNÍ DESKY MULTIPOR
TEPELNĚIZOLAČNÍ DESKY MULTIPOR Kalcium silikátová minerální deska Tvarová stálost Vynikající paropropustnost Nehořlavost Jednoduchá aplikace Venkovní i vnitřní izolace Specifikace Minerální, bezvláknitá
Elektrické odvlhčovače vzduchu/ stavební vysoušeče
Elektrické odvlhčovače vzduchu/ stavební vysoušeče REMS Secco 50 REMS Secco 80 for Professionals Výkonný, vysoce účinný odvlhčovač vzduchu / stavební vysoušeč pro vysoušení prostorů, např. po škodách způsobených
tato trubka vám zajistí klidný spánek www.rehau.cz
tato trubka vám zajistí klidný spánek raupiano PLUS - PRÉMIOVÁ PROTIHLUKOVÁ OCHRANA PRO VÁŠ DOMOV www.rehau.cz výrobek: RAUPIANO PLUS Prémiová protihluková ochrana pro velké objekty RAUPIANO PLUS je systém
PROJEKTOVÁ DOKUMENTACE
Sanace kaple Navštívení Panny Marie, Hostišová okr. Zlín ZADAVATEL ZHOTOVITEL Obecní úřad Hostišová 100 763 01 Mysločovice ING. JOSEF KOLÁŘ PRINS Havlíčkova 1289/24, 750 02 Přerov I - Město EVIDENČNÍ ÚŘAD:
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM - Základní materiálové parametry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM - Základní materiálové parametry Hustota vs. objemová hmotnost - V případě neporézních materiálů (kovy, ) je hustota rovná objemové hmotnosti - V případě
VÝPOČET TEPELNÝCH ZTRÁT
VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota
Technika hašení jemnou vodní mlhou
Technika hašení jemnou vodní mlhou Mnohem rychlejší a účinnější hašení Tato nová technika pomůže hasičům rychleji získat kontrolu nad ohněm za pomoci několika speciálních hasicích mlhových hřebů. Protože
NĚMECKÝ INSTITUT PRO STAVEBNICTVÍ Ústav veřejného práva. Všeobecné schválení pro použití na stavbách
NĚMECKÝ INSTITUT PRO STAVEBNICTVÍ Ústav veřejného práva 10829 Berlin, 20. dubna 2004 Kolonnenstr. 30 L tel.: 030 78730-261 fax: 030 78730-320 značka: II 14-1.33.47-659/1 Všeobecné schválení pro použití