Lineární diskriminační funkce. Perceptronový algoritmus.
|
|
- Emilie Miluše Kašparová
- před 9 lety
- Počet zobrazení:
Transkript
1 Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12
2 Binární klasifikace Diskriminační : příklady Druhy diskriminační P. Pošík c 2012 Artificial Intelligence 2 / 12
3 Úloha binární klasifikace (dichotomie) Binární klasifikace Diskriminační : příklady Druhy diskriminační Mějme trénovací sadu dat (x 1, y 1 ),...,(x m, y m ): každý objekt x je popsán vektorem reálných příznaků (x 1, x 2,..., x D ) každý objekt x je označen správným štítkem y {+1, 1} Diskriminační je, která umožňuje rozlišit, do které třídy objekt patří. Binární klasifikace objektů x (klasifikace do 2 tříd, dichotomie): Stačí 1 Pravidlo: f(x i ) > 0 y i = +1 f(x i ) < 0 y i = 1 neboli y i = sign( f(x)) P. Pošík c 2012 Artificial Intelligence 3 / 12
4 Diskriminační : příklady Binární klasifikace Diskriminační : příklady Druhy diskriminační f(x) x P. Pošík c 2012 Artificial Intelligence 4 / 12
5 Diskriminační : příklady Binární klasifikace Diskriminační : příklady Druhy diskriminační f(x) x P. Pošík c 2012 Artificial Intelligence 4 / 12
6 Druhy Binární klasifikace Diskriminační : příklady Druhy diskriminační Diskriminační může mít podobu: jakékoli matematické (lineární, kvadratická, polynomiální,... ), matematického modelu v jiné formě (uvnitř neuronové sítě, v rámci support vector machine,... ), atd. Lineární: f(x) = w 1 x 1 + w 2 x w D x D + w 0 (1) Vektorově: f(x) = w T x+w 0 x = (x 1, x 2,..., x D ) T w = (w 1, w 2,..., w D ) T Vektorově (homogenní souřadnice): f(x) = w T x x = (x 1, x 2,..., x D, 1) T w = (w 1, w 2,..., w D, w 0 ) T P. Pošík c 2012 Artificial Intelligence 5 / 12
7 Binární klasifikace Diskriminační : příklady Druhy diskriminační 1. Jak získat predikce, když známe model? 2. Jak získat model, když známe trénovací data? P. Pošík c 2012 Artificial Intelligence 6 / 12
8 Binární klasifikace Diskriminační : příklady Druhy diskriminační 1. Jak získat predikce, když známe model? 2. Jak získat model, když známe trénovací data? 1. Jak učit lineární diskr. funkci z trénovacích dat? Perceptronový algoritmus Optimální rozdělující nadplocha 2. Když lineární nestačí... Rozšíření báze Support vector machine AdaBoost P. Pošík c 2012 Artificial Intelligence 6 / 12
9 Perceptron Demo: perceptron Vlastnosti perceptronového algoritmu Nadplocha nalezená perceptronem Příště: P. Pošík c 2012 Artificial Intelligence 7 / 12
10 Perceptronový algoritmus Perceptron Demo: perceptron Vlastnosti perceptronového algoritmu Nadplocha nalezená perceptronem Příště: Perceptron [Ros62]: jednoduchý model neuronu lineární klasifikátor (klasifikátor s lineární diskriminační funkcí) perceptronový algoritmus je jeden z mnoha algoritmů učení lineární diskr. (další jsou např. lineární diskr. analýza, Fisherova diskr. analýza, SVM s lineárním jádrem,... ) Algoritmus 1: Perceptronový algoritmus Vstup: Lineárně separabilní množina ohodnocených trénovacích bodů: {x i, y i }, x i R D+1 (homogenní souřadnice), y i {+1, 1} Výstup: Váhový vektor w takový, že w T x i > 0 iff y i = +1 a w T x i < 0 iff y i = 1 1 begin 2 Inicializuj váhový vektor, např. w = 0. 3 Invertuj body ve 2. třídě: x i = x i pro všechna i, kde y i = 1. 4 Najdi špatně zaklasifikovaný trénovací vektor, tj. najdi j, pro které w T x j 0, např. nejhůře zaklasifikovaný vektor: x j = arg min xi (w T x i ). 5 if neexistuje špatně zaklasifikovaný bod then 6 Vektor w je řešením. Konec. 7 else 8 Uprav váhový vektor: w = w+x j Pokračuj krokem 4. [Ros62] Frank Rosenblatt. Principles of Neurodynamics: Perceptron and the Theory of Brain Mechanisms. Spartan Books, Washington, D.C., P. Pošík c 2012 Artificial Intelligence 8 / 12
11 Demo: perceptron Perceptron Demo: perceptron Vlastnosti perceptronového algoritmu Nadplocha nalezená perceptronem Příště: Iteration P. Pošík c 2012 Artificial Intelligence 9 / 12
12 Vlastnosti perceptronového algoritmu Perceptron Demo: perceptron Vlastnosti perceptronového algoritmu Nadplocha nalezená perceptronem Příště: Věta o konvergenci perceptronu [Nov62]: Perceptronový algoritmus nalezne lineární nadplochu oddělující dvě třídy bodů za předpokladu, že taková nadplocha existuje. Věta o zacyklení perceptronu: Pokud oddělující nadplocha neexistuje, algoritmus nemusí konvergovat (a bude iterovat donekonečna). Možná řešení: Pocket algorithm - sledovat chybu, jakou perceptron v každé iteraci dělá, a udržovat váhy s nejmenší dosud nalezenou chybou v oddělené paměti. K učení lineárního klasifikátoru použít algoritmus, který najde alespoň přibližné řešení, pokud třídy lineárně separovatelné nejsou. [Nov62] Albert B. J. Novikoff. On convergence proofs for perceptrons. In Proceedings of the Symposium on Mathematical Theory of Automata, volume 12, Brooklyn, New York, P. Pošík c 2012 Artificial Intelligence 10 / 12
13 Nadplocha nalezená perceptronem Perceptron Demo: perceptron Vlastnosti perceptronového algoritmu Nadplocha nalezená perceptronem Příště: Perceptronový algoritmus pro lineárně separabilní data najde rozdělující nadplochu, pokud existuje pokud existuje jedna nadplocha, existuje jich nekonečně mnoho najde jakoukoliv rozdělující nadplochu! Která z nekonečného množství rozdělujících nadploch je optimální? P. Pošík c 2012 Artificial Intelligence 11 / 12
14 Příště: Perceptron Demo: perceptron Vlastnosti perceptronového algoritmu Nadplocha nalezená perceptronem Příště: Optimální rozdělující nadplocha Co když lineární hranice nestačí? Rozšíření báze Kernel trik Adaboost Dotazy? P. Pošík c 2012 Artificial Intelligence 12 / 12
Optimální rozdělující nadplocha 4. Support vector machine. Adaboost.
Optimální rozdělující nadplocha. Support vector machine. Adaboost. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Opakování Lineární diskriminační
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
Úloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
Lineární klasifikátory
Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,
Rosenblattův perceptron
Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného
Strojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
Vytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 8 1/26 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
Neuronové sítě Učení bipolárního perceptronu
Neuronové sítě Učení bipolárního perceptronu Základní pojmy bipolární perceptron vstupy a výstupy jsou ± Učení: vycházíme z kladných a záporných vzorů a učíme váhy w, w,..., w n ( n ) y = sign w k x k,
Výpočetní teorie učení. PAC učení. VC dimenze.
Výpočetní teorie učení. PAC učení. VC dimenze. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics COLT 2 Koncept...........................................................................................................
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce
Support Vector Machines (jemný úvod)
Support Vector Machines (jemný úvod) Osnova Support Vector Classifier (SVC) Support Vector Machine (SVM) jádrový trik (kernel trick) klasifikace s měkkou hranicí (soft-margin classification) hledání optimálních
Trénování sítě pomocí učení s učitelem
Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup
Preceptron přednáška ze dne
Preceptron 2 Pavel Křížek Přemysl Šůcha 6. přednáška ze dne 3.4.2001 Obsah 1 Lineární diskriminační funkce 2 1.1 Zobecněná lineární diskriminační funkce............ 2 1.2 Učení klasifikátoru........................
Klasifikace a rozpoznávání. Lineární klasifikátory
Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber
Fakulta informačních technologií VUT Brno. Předmět: Srovnání klasifikátorů Autor : Jakub Mahdal Login: xmahda03 Datum:
Fakulta informačních technologií VUT Brno Předmět: Projekt: SRE Srovnání klasifikátorů Autor : Jakub Mahdal Login: xmahda03 Datum: 9.12.2006 Zadání Vyberte si jakékoliv 2 klasifikátory, např. GMM vs. neuronová
Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská
Neuronové sítě-delta učení Filip Habr České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská 30. března 2009 Obsah prezentace Obsah prezentace Delta učení 1 Teorie k delta učení 2
Vojtěch Franc. Biometrie ZS Poděkování Janu Šochmanovi za slajdy vysvětlující AdaBoost
Rozpoznávání tváří I Vojtěch Franc Centrum strojového vnímání, ČVUT FEL Praha Biometrie ZS 2013 Poděkování Janu Šochmanovi za slajdy vysvětlující AdaBoost Úlohy rozpoznávání tváří: Detekce Cíl: lokalizovat
Umělé neuronové sítě
Umělé neuronové sítě 17. 3. 2018 5-1 Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce 5-2 Neuronové aktivační
1. Data mining. Strojové učení. Základní úlohy.
1... Základní úlohy. Učení s učitelem a bez učitele. Petr Pošík Katedra kybernetiky ČVUT FEL P. Pošík c 2010 Aplikace umělé inteligence 1 / 36 Obsah P. Pošík c 2010 Aplikace umělé inteligence 2 / 36 Co
3. Vícevrstvé dopředné sítě
3. Vícevrstvé dopředné sítě! Jsou tvořeny jednou nebo více vrstvami neuronů (perceptronů). Výstup jedné vrstvy je přitom připojen na vstup následující vrstvy a signál se v pracovní fázi sítě šíří pouze
NG C Implementace plně rekurentní
NG C Implementace plně rekurentní neuronové sítě v systému Mathematica Zdeněk Buk, Miroslav Šnorek {bukz1 snorek}@fel.cvut.cz Neural Computing Group Department of Computer Science and Engineering, Faculty
5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015
Umělé neuronové sítě 5. 4. 205 _ 5- Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce _ 5-2 Neuronové aktivační
Přednáška 13 Redukce dimenzionality
Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /
Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence
APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY
Neuronové sítě (11. přednáška)
Neuronové sítě (11. přednáška) Machine Learning Naučit stroje se učit O co jde? Máme model výpočtu (t.j. výpočetní postup jednoznačně daný vstupy a nějakými parametry), chceme najít vhodné nastavení parametrů,
Časová a prostorová složitost algoritmů
.. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová
Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44
Asociativní paměti Asociativní sítě (paměti) Cíl učení Asociace známého vstupního vzoru s daným výstupním vzorem Okoĺı známého vstupního vzoru x by se mělo také zobrazit na výstup y odpovídající x správný
Strojové učení se zaměřením na vliv vstupních dat
Strojové učení se zaměřením na vliv vstupních dat Irina Perfilieva, Petr Hurtík, Marek Vajgl Centre of excellence IT4Innovations Division of the University of Ostrava Institute for Research and Applications
Vojtěch Franc Centrum strojového vnímání, Katedra kybernetiky, FEL ČVUT v Praze Eyedea Recognition s.r.o MLMU 29.4.2015
Příklady použití metod strojového učení v rozpoznávání tváří Vojtěch Franc Centrum strojového vnímání, Katedra kybernetiky, FEL ČVUT v Praze Eyedea Recognition s.r.o MLMU 29.4.2015 Stavební bloky systému
Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013
Ambasadoři přírodovědných a technických oborů Ing. Michal Řepka Březen - duben 2013 Umělé neuronové sítě Proč právě Neuronové sítě? K čemu je to dobré? Používá se to někde v praxi? Úvod Umělé neuronové
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
Úvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
Dnes budeme učit agenty, jak zlepšit svůj
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Úvodem Dnes budeme učit agenty, jak zlepšit svůj výkon při ř řešení š í budoucích úloh na základě pozorování
Umělá inteligence a rozpoznávání
Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 11. 2. Úvod, historie a vývoj UI, základní problémové oblasti a typy úloh, aplikace UI, příklady inteligentních
Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc
Neuronové sítě a možnosti jejich využití Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc 1. Biologický neuron Osnova 2. Neuronové sítě Umělý neuron
Václav Matoušek KIV. Umělá inteligence a rozpoznávání. Václav Matoušek / KIV
Umělá inteligence a rozpoznávání Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 16. 2. (3h) 2. 3. (4h) 17. 3. (5h) 14. 4. (3h) Úvod, historie a vývoj UI, základní
Klasifikační metody pro genetická data: regularizace a robustnost
Odd medicínské informatiky a biostatistiky Ústav informatiky AV ČR, vvi Práce vznikla za finanční podpory Nadačního fondu Neuron na podporu vědy Klasifikační metody pro genetická data Regularizovaná klasifikační
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 23 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 23 biologové často potřebují najít často se opakující sekvence DNA tyto sekvence bývají relativně krátké,
Obr. 1 Biologický neuron
5.4 Neuronové sítě Lidský mozek je složen asi z 10 10 nervových buněk (neuronů) které jsou mezi sebou navzájem propojeny ještě řádově vyšším počtem vazeb [Novák a kol.,1992]. Začněme tedy nejdříve jedním
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 26. března 2013 Motivační problémy Silniční sít reprezentovaná grafem. Najdi nejkratší/nejrychlejší cestu z místa A do místa
Genetické programování
Genetické programování Vyvinuto v USA v 90. letech J. Kozou Typické problémy: Predikce, klasifikace, aproximace, tvorba programů Vlastnosti Soupeří s neuronovými sítěmi apod. Potřebuje značně velké populace
4. Učení bez učitele. Shlukování. K-means, EM. Hierarchické shlukování. Kompetitivní učení. Kohonenovy mapy.
GoBack 4. Učení bez učitele. Shlukování., EM. Hierarchické.. Kohonenovy mapy. Petr Pošík Katedra kybernetiky ČVUT FEL P. Pošík c 29 Aplikace umělé inteligence 1 / 53 Obsah P. Pošík c 29 Aplikace umělé
logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Paralelní a distribuované výpočty (B4B36PDV)
Paralelní a distribuované výpočty (B4B36PDV) Branislav Bošanský, Michal Jakob bosansky@fel.cvut.cz Artificial Intelligence Center Department of Computer Science Faculty of Electrical Engineering Czech
Pravidlové systémy. Klasifikační pravidla. Asociační pravidla.
Pravidlové systémy. Klasifikační pravidla. Asociační pravidla. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Klasifikační pravidla 2 Agenda............................................................................................................
LDA, logistická regrese
Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Strojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
Rozpoznávání v obraze
Rozpoznávání v obraze AdaBoost a detekce objektů IKR, 2013 Roman Juránek www.fit.vutbr.cz/~ijuranek/personal Detekce objektů Úloha - v daném obraze nalézt objekty určitých tříd
Neuronové sítě v DPZ
Univerzita J. E. Purkyně v Ústí nad Labem Fakulta životního prostředí Neuronové sítě v DPZ Seminární práce z předmětu Dálkový průzkum Země Vypracovali: Jan Lantora Rok: 2006 Zuzana Vašková Neuronové sítě
8-9. Pravděpodobnostní rozhodování a predikce. Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze
KYBERNETIKA A UMĚLÁ INTELIGENCE 8-9. Pravděpodobnostní rozhodování a predikce laboratory Gerstner Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze Rozhodování za neurčitosti
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných
PŘEDNÁŠKA KURZU MPOV
PŘEDNÁŠKA KURZU MPOV Klasifikátory, strojové učení, automatické třídění P. Petyovský (email: petyovsky@feec.vutbr.cz) kancelář SD3.152, Technická 12, VUT v Brně rev. 2015.3 Motivace strojového učení Základní
4EK213 Lineární modely. 4. Simplexová metoda - závěr
4EK213 Lineární modely 4. Simplexová metoda - závěr 4. Simplexová metoda - závěr Konečnost simplexové metody Degenerace Modifikace pravidla pro volbu vstupující proměnné Blandovo pravidlo Kontrola výpočtu
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 21 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 21 Řešíme následující úlohu: differencovatelnou funkci f : R R známe jen v konečném počtu bodů x 0,
Klasifikace a rozpoznávání
Klasifikace a rozpoznávání Prezentace přednášek Ústav počítačové grafiky a multimédií Téma přednášky Boosting Michal Hradiš UPGM FIT Brno University of Technology Obsah: Co je to boosting? Algoritmus AdaBoost
Jsou inspirovány poznatky o neuronech a nervových sítích živých organizmů a jejich schopnostmi:
Neuronové sítě V prezentaci jsou použity podklady z řady zdrojů (Marcel Jiřina, Dan Novák, Jean- Christophe Prévotet, Petr Berka, Jana Tučková a další) Neuronové sítě Jsou inspirovány poznatky o neuronech
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška
Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012
Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012 Opakování rovnice přímky Úloha: Určete rovnici přímky procházející body A[a, f(a)] a B[b, f(b)], kde f je funkce spojitá
Neuronové sítě AIL002. Iveta Mrázová 1 František Mráz 2. Neuronové sítě. 1 Katedra softwarového inženýrství. 2 Kabinet software a výuky informatiky
Neuronové sítě AIL002 Iveta Mrázová 1 František Mráz 2 1 Katedra softwarového inženýrství 2 Kabinet software a výuky informatiky Do LATEXu přepsal: Tomáš Caithaml Učení s učitelem Rozpoznávání Použití:
Statistická teorie učení
Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální
logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 7 1/27 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
KLASIFIKACE DOKUMENTŮ PODLE TÉMATU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND
Martin NESLÁDEK. 14. listopadu 2017
Martin NESLÁDEK Faculty of mechanical engineering, CTU in Prague 14. listopadu 2017 1 / 22 Poznámky k úlohám řešeným MKP Na přesnost simulace pomocí MKP a prostorové rozlišení výsledků má vliv především:
Klasifikace předmětů a jevů
Klasifikace předmětů a jevů 1. Úvod Rozpoznávání neboli klasifikace je základní znak lidské činnosti. Rozpoznávání (klasifikace) předmětů a jevů spočívá v jejich zařazování do jednotlivých tříd. Třídou
Selekce a extrakce příznaků 2
Selekce a extrakce příznaků. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Selekce a extrakce příznaků Proč?..............................................................................................................
Sada 1 - Základy programování
S třední škola stavební Jihlava Sada 1 - Základy programování 17. Řadící algoritmy Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2
KLASIFIKÁTOR MODULACÍ S VYUŽITÍM UMĚLÉ NEURONOVÉ SÍTĚ
KLASIFIKÁTOR MODULACÍ S VYUŽITÍM UMĚLÉ NEURONOVÉ SÍTĚ Marie Richterová 1, David Juráček 2 1 Univerzita obrany, Katedra KIS, 2 PČR MŘ Brno Abstrakt Článek se zabývá rozpoznáváním analogových a diskrétních
Vytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2011, Cvičení 9 1/16 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
Faster Gradient Descent Methods
Faster Gradient Descent Methods Rychlejší gradientní spádové metody Ing. Lukáš Pospíšil, Ing. Martin Menšík Katedra aplikované matematiky, VŠB - Technická univerzita Ostrava 24.1.2012 Ing. Lukáš Pospíšil,
Numerické metody a programování. Lekce 4
Numerické metody a programování Lekce 4 Linarní algebra soustava lineárních algebraických rovnic a 11 a 12 x 2 a 1, N x N = b 1 a 21 a 22 x 2 a 2, N x N = b 2 a M,1 a M,2 x 2 a M,N x N = b M zkráceně A
Algoritmy a struktury neuropočítačů ASN P3
Algoritmy a struktury neuropočítačů ASN P3 SOM algoritmus s učitelem i bez učitele U-matice Vektorová kvantizace Samoorganizující se mapy ( Self-Organizing Maps ) PROČ? Základní myšlenka: analogie s činností
FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
FIT ČVUT MI-LOM Lineární optimalizace a metody Dualita Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Michal Černý, 2011 FIT ČVUT, MI-LOM, M. Černý, 2011: Dualita 2/5 Dualita Evropský
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 31. března 2015 Motivační problémy Silniční sít reprezentovaná grafem. Ohodnocené hrany - délky silnic. Najdi nejkratší/nejrychlejší
3. Aritmetika nad F p a F 2
3. Aritmetika nad F p a F 2 m Dr.-Ing. Martin Novotný Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze c Martin Novotný, 2011 MI-BHW Bezpečnost a technické
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Následující text je součástí učebních textů předmětu Bi0034 Analýza a klasifikace dat a je určen
11. Klasifikace V této kapitole se seznámíme s účelem, principy a jednotlivými metodami klasifikace dat, jež tvoří samostatnou rozsáhlou oblast analýzy dat. Klasifikace umožňuje určit, do které skupiny
Jsou inspirovány poznatky o neuronech a nervových sítích živých organizmů a jejich schopnostmi:
Neuronové sítě V prezentaci jsou použity podklady zřady zdrojů (Marcel Jiřina, Dan Novák, Jean- Christophe Prévotet, Petr Berka, Jana Tučková a další) Neuronové sítě Jsou inspirovány poznatky o neuronech
Neuronové sítě. Vlasta Radová Západočeská univerzita v Plzni katedra kybernetiky
Neuronové sítě Vlasta Radová Západočeská univerzita v Plzni katedra kybernetiky Motivace pro výzkum umělých neuronových sítí lidský mozek pracuje jiným způsobem než běžné číslicové počítače počítače přesně
19 Hilbertovy prostory
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem
Rekurentní rovnice, strukturální indukce
Rekurentní rovnice, strukturální indukce Jiří Velebil: A7B01MCS 26. září 2011: 1/20 Příklad (Parketáž triminy z minulé přednášky) P(n) = počet parket k vyparketování místnosti rozměru n 1 P(1) = 1. 2 P(n
ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ
ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz 5. LETNÍ ŠKOLA MATEMATICKÉ BIOLOGIE ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Summer Workshop of Applied Mechanics. Závislost míry tuhosti laminátové desky na orientaci vrstev a její maximalizace
Summer Workshop of Applied Mechanics June 22 Department of Mechanics Facult of Mechanical Engineering Czech Technical Universit in Prague Závislost mír tuhosti laminátové desk na orientaci vrstev a její
Newtonova metoda. 23. října 2012
Hledání kořenů rovnic jedné reálné proměnné Newtonova metoda Michal Čihák 23. října 2012 Newtonova metoda (metoda tečen) využívá myšlenku, že tečna v daném bodě grafu funkce nejlépe aproximuje graf funkce
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Princip rozšíření a operace s fuzzy čísly
Center for Machine Perception presents Princip rozšíření a operace s fuzzy čísly Mirko Navara Center for Machine Perception Faculty of Electrical Engineering Czech Technical University Praha, Czech Republic
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby
Algoritmy a struktury neuropočítačů ASN P4 Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby Vrstevnatá struktura - vícevrstvé NN (Multilayer NN, MLNN) vstupní vrstva (input layer)
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík,, CSc. NEURONOVÉ SÍTĚ otázky a odpovědi 1 AKD_predn4, slide 8: Hodnota výstupu závisí na znaménku funkce net i, tedy na tom, zda bude suma
Martin Flusser. November 1, 2016
ZPRO cvičení 4 Martin Flusser Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague November 1, 2016 Outline I 1 Outline 2 Cykly 3 Cykly cvičení 4 Rekurze 5 Rekurze
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz LITERATURA Holčík, J.: přednáškové prezentace Holčík, J.: Analýza a klasifikace signálů.
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia