KFC/STBI Strukturní bioinformatika
|
|
- Radek Esterka
- před 9 lety
- Počet zobrazení:
Transkript
1 KFC/STBI Strukturní bioinformatika 07_predikce vlastností a výzvy strukturní bioinformatiky Karel Berka
2 Co vše lze zjistit z 3D struktury?
3 Syllabus Výpočty vlastností ze struktur funkce (ProFunc, Gene3D) 3D motivy identifikace aktivního místa (QSiteFinder, Pocket Finder, SURFNET, ConSurf) analýza tunelů (CAVER, MOLE, MoleOnline) analýza mutability (Hotspot Wizard) Výzvy strukturní bioinformatiky analýza pohybů (Molmovdb, PMG) membránové proteiny (OPM) neuspořádanost (DISPRED) RNA (mfold)
4 Funkce
5 Definice funkce EC enzymatická klasifikace (čtyři úrovně popisu) Oxidoreduktázy (EC 1) substrát je oxidován jde o donor buď vodíku, nebo elektronů jaký substrát typ akceptoru jen pro enzymy 1 enzym více funkcí (lze) methylenetetrahydrofolate dehydrogenase/cyclohydrolase (EC a ) GO - Gene Ontology Anotace genomů Biologický proces obecný (cell growth) specifický (glykolýza) Molekulární funkce obecný (enzym) specifický (hexokináza) Buněčná kompartmentace kde je gen aktivní katalytická doména NADPH vazebná doména
6 Hledání funkce - ProFunc
7 Gene3D anotace genomů pomocí informace z CATH
8 Hledání funkce - střípky Hledání v sekvencích pod 40% identity bývá funkce zachována málo jsou vyjímky (CYP) Fold matching porovnávání struktury proti databázi (CATH, SCOP) pomocí strukturního alignmentu (DALI, FATCAT) 3D motivy residuí podobně jako v PDBe, (TESS, PDBSiteScan) Aktivní místa geometrické podobnosti (SURFNET) fyzikální vlastnosti (SURF S UP!, SiteEngine) ale stejný substrát může mít mnoho míst ATP
9 Hledání funkce střípky II Fylogenetická analýza hledání konzervovaných residuí multiple alignmentem a zobrazení konzervovanosti na struktuře (ConSurf) DNA binding Helix-turn-helix motiv (HTHquery) Ligandy porovnávání pozic se známými pozicemi v krystalech v PDB (MSDsite) Anotace tunelů
10 3D motivy hledání podobností
11 3D MOTIF - POPIS A VYUŽITÍ 1. 3D MOTIF, podobně jako 1D MOTIF, popisuje konzervovaný rys určitého uspořádání nebo prostředí. 2. Tyto strukturní rysy společné určité funkci a struktuře lze popsat statisticky 3. Lze nalézt tento strukturní rys ve struktuře Použití 3D MOTIF k rozeznání celé strukturní třídy (fold recognition = threading)
12 3D Motifs Sekvenční motiv je popis relativně konzervovaného lokálního sekvenčního rysu, který lze korelovat s funkcí analogicky Strukturní motiv je popis relativně konzervovaného strukturního rysu, který lze korelovat s funkcí
13 Příklad: Aspartátové proteázy Třída enzymů které štěpí polypeptidickou (hlavní řetězec) vazbu Sekvenční analýza ukazuje, že tyto enzymy sdílí společný sekvenční rys - Asp,Thr,Gly aminokyseliny v aktivním místě Kromě tohoto sekvenčního znaku sdílejí tyto proteázy množství fyzikálně chemických vlastností, které jim umožňují plnit stejnou funkci (záporný náboj v aktivním místě, uspořádání aktivního místa, apod.)
14 3D MOTIFS definice V 1D případě provedeme alignment sekvencí a vytvoříme pravděpodobnostní model pro danou aminokyselinu v daném místě Analogicky lze totéž provést pro strukturu. Určíme, jaká aminokyselina se vyskytuje v daném strukturním kontextu Aminokyseliny nemusí být nejvhodnější úroveň popisu (sekundární struktura může být lepší, je konzervovanější)
15 Možné deskriptory Typ atomu (C,N,O,H,S...) Typ funkční skupiny (OH,CH3,NH,C=O..) Typ aminokyseliny (Val,Tyr,Gly..) nabitá, polární, nepolární, aromatická... Typ sekundární struktury nebo obecně geometrického parametru Fyzikální parametry (mobilita, elektronegativita, náboj, hydrofobicita)
16 Sada struktur má více negativního náboje v místě kolem pozice x1,y1,z1, ale méně kladného náboje v okolí x2,y2,z2 nebo Příklad 3D motivů Sada struktur má výrazný nedostatek hydrofobních aminokyselin v této oblasti (x3,y3,z3) ale je bohatá na polární aminokyseliny, významně Ser v oblasti x4,y4,z4
17 Korespondence bodů Nutno definovat korespondující body v prostoru v dané sadě 1 bod radiální průměr 2 body cylindrický průměr 3 body průměr dvou hemisfér 4 body není nutné průměrovat
18 Radiální průměr příklad
19 Test významnosti Nutno otestovat, zda nejde o náhodnou podobnost např. Mann-Whitney-Rank sumární test Neparametrický test dvou distribucí je-li jejich průměr rozdílný. -rozsah velikostí všech pozorovaných hodnot -výpočet průměru menšího vzorku -porovnání tohoto průměru se všemi distribucemi a určení signifikantnosti shody Použitelnost je zaručena, je li testovací soubor větší než 8
20 Hledání aktivního místa
21 Aktivní místo tvar a velikost velké (protein-protein, ev. protein-dna) PPI-PRED malé (záhyby, ligandy) na povrchu, ev. hluboko a spojené kanály SURFNET, PocketFinder, Q-SiteFinder fyz chem vlastnosti hydrofobic patches nabité povrchy konzervace residuí evolution trace method ConSurf kombinace metod meta searches
22 Hledání kapes SAS a SES solvent accessible surface solvent excluded surface hledání kapes Pocket-Finder na základě geometrie receptoru na řezu na 7 lininích v mřížce uzavřené body kavity částečně uzavřené kapsy (pockets) popisuje je jen, když je počet bodů vedle sebe > threshold QSiteFinder na gridu místa s výhodnými interakčními energiemi k probe představující generický ligand (methan)
23 Hledání cesty do aktivního místa tunely, kanály a póry
24 Hledání tunelů Caver Dijkstrův algoritmus na vyhledání optimální cesty na gridu nověji na Voronoi mesh Petrek, M. et al - CAVER: a new tool to explore routes from protein clefts, pockets and cavities, BMC Bioinformatics 2006, 7:316 Beneš, P. et al. - CAVER 2.1 software, 2010.
25 Hledání tunelů MOLE Atoms maps => Voronoi diagram Petrek M., Kosinova P., Koca J., Otyepka M.: MOLE: A Voronoi Diagram-Based Explorer of Molecular Channels, Pores, and Tunnels. Structure (2007) 15,
26 Hledání mutability Hotspot Wizard hledání aktivních míst pro případné enzymové inženýrství metaserver
27 Analýza pohybů
28 Časová škála biochemických pochodů
29 Analýza pohybů MolMovDB Flexibility and Geometric Analysis PMG Protein Movie Generator
30 Výzvy membránové proteiny protein-protein interakce disorder NA
31 Membránové proteiny Buněčná membrána lipidická dvojvrstva + proteiny Buněčná stěna rigidní vrstva vně buněčné membrány chránící buňku Vnější membrána další membrána mitochondrie, chloroplasty, Gram-negativní bakterie Membrane core hydrofobní část membrány Membrane interface polární oblasti u povrchu membrány Rovina x Osa membrány Membránové proteiny Topologie počet TM sekundárních struktur lokalizace N-terminálního konce (IN x OUT) re-entrant loops (neprojdou skrz membránu) Positive inside rule Arg a Lys jsou až 4x častější v cytosolu oproti periplasmě Lily-pad effect interakce s jádrem membrány častější aromatické residua Tyr, Trp
32 Membránové proteiny málo proteinů v PDB skutečně v membráně (300 v MPDB.org) (doména EM), většinou solubilizované (10000 v PDB) extrémně zajímavé jako receptory pro léčiva (GPCRs) predikce membránových částí ze sekvence (TMpred) predikce struktury málokdy (Swiss-Model-7TM)
33 Zanoření v membránách OPM server protein = rigid body optimalizace v anisotropickém implicitním modelu membrány fotosystém II
34 Hledání protein-protein interakcí bouřlivě se rozvíjející oblast hledání léčiv blokujících interakce založená hlavně na evolučních analýzách sekvencí a porovnávání dat ze známých komplexů a dalších experimentů na pomezí systémové biologie STRING DB interakce mezi proteiny
35 Disorder neviditelný nejsou k němu strukturní data odhady teplotní B-faktor v Xray, NMR ensemble, DISOPRED intristically disordered proteins nepotřebují strukturu k tomu, aby fungovali často regulační funkce molecular recognition (promiskuitní) molecular assembly (virální kapsidy) protein modification entropic chain activities (pružiny, entropické hodinky)
36 Nukleové kyseliny aneb na co se v mezičase nedostalo
37 RNA world RNA/DNA hypotéza prvotního RNA světa Rfam collection of RNA families multiple sequence alignments, consensus secondary structures and covariance models (CMs) RNA hairpin DNA šroubovice
38 Terminologie RNA struktura
39 dotplot
40 Způsoby RNA predikce Naivní (stemloop) Zuker algoritmus s pseudoknoty s suboptimálními řešeními
41 Naivní (STEMLOOP) 1. Calculates score over a window 2. Finds stems over a threshold score 3. Minimum/maximum loopsize 4. Sort by position or score + Shows all stems not just lowest energy - Energetics are very crude - No bulges or bubbles - Complex optimization problem
42 RNA energetika RNA je dynamická, hodně struktur s podobnou energií citlivé na podmínky (sůl, teplota, proteiny) pseudoknots biologická struktura nemusí být ta nejnižší, ale musí být jedna z hlavních hodně napoví fylogenetická analýza G = Gstack + Gbulge + Ghairpin + Ginternal+ Gmultibranch Gstack je energie párování a stakování ve stemech, vše ostatní je pro loopy Jen Gstack stabilizuje sekundární strukturu, ostatní ji destabilizují
43 RNA energetika stacking (kcal/mol) Tetraloops Exceptionally common 4 base long loops >60% of loops in rrna are AUUU CUUG GAAA GAGA GCAA GCGA GGAA GUGA GUAA UACG UCCG UUCG UUUA Clearly more stable but exact energy unknown Zuker gives -2 kcal/mol
44 Calculation proceeds from center towards edges Includes stacking, bulge,internal, and hairpin loop terms Start from center because the center line is location of hairpin loops Zuker algoritmus
45 mfold nearest neighbor energy rule: free energies are assigned to loops rather than to base pairs. These have also been called loop dependent energy rules. A secondary structure, S on an RNA sequence,r=r 1,r 2,r 3,...r n, is a set of base pairs. A base pair between nucleotides r i and r j (i<j) is denoted by i.j. A few constraints are imposed. Two base pairs, i.j and i'.j' are either identical, or else i i, and j j. Thus base triples are deliberately excluded from the definition of secondary structure. Sharp U-turns are prohibited. A U-turn, called a hairpin loop, must contain at least 3 bases. Pseudoknots are prohibited. That is, if i.j and i,j S, then, assuming i < i', either i < i' < j' < j or i < j < i' < j'.
46 EXAMPLE 1 The energy dot plot is an integral part of the folding prediction. Consider the folding of a short RNA sequence: AAGGGGUUGG UCGCCUCGAC UAAGCGGCUU GGAAUUCC The energy dot plot for the ``Example 1'' sequence. Surrounding annotation, which would not be legible at this scale, has been removed. The yellow dots indicate base pairs in foldings within 0.3 kcal/mole of the optimal folding free energy of -9.8 kcal/mole
47 The 2 predicted foldings for the ``Example 1'' sequence. (a)the optimal folding with G = -9.8kcal/mole. (b)(b) The suboptimal fold ( G = -9.5kcal/mole) found (c)after refolding with `W'=0.
48 mfold RNA secondary structure with suboptimal folding Display results as mountains, domes, circles, squiggles Zuker s web site (includes server) Calculate energies for specified structure (efn server) ssdna structure prediction
49 Eterna predikce stabilní 2D struktury RNA
KFC/STBI Structural Bioinformatics
KFC/STBI Structural Bioinformatics Functions, Patterns, Properties and Challenges Karel Berka What we can get from 3D structure? Syllabus Výpočty vlastností ze struktur funkce (ProFunc, Gene3D) 3D motivy
Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled
Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Definice bioinformatiky (Molecular) bio informatics: bioinformatics is conceptualising biology
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
Využití strojového učení k identifikaci protein-ligand aktivních míst
Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita
Struktura biomakromolekul
Struktura biomakromolekul ejvýznamnější biomolekuly proteiny nukleové kyseliny polysacharidy lipidy... měli bychom znát stavební kameny života Proteiny Aminokyseliny tvořeny aminokyselinami L-α-aminokyselinami
Bioinformatika pro PrfUK 2003
Bioinformatika pro PrfUK 2003 Jiří Vondrášek Ústav organické chemie a biochemie vondrasek@uochb.cas.cz Jan Pačes Ústav molekulární genetiky hpaces@img.cas.cz http://bio.img.cas.cz/prfuk2003 What is Bioinformatics?---The
MOLEKULOVÉ MODELOVÁNÍ - STRUKTURA. Monika Pěntáková Katedra Farmaceutické chemie
MOLEKULOVÉ MODELOVÁNÍ - STRUKTURA Monika Pěntáková Katedra Farmaceutické chemie Chemická struktura a geometrie KONFORMACE = můžeme změnit pouhým otočením kolem kovalentní vazby KONFIGURACE = při změně
Genomické databáze. Shlukování proteinových sekvencí. Ivana Rudolfová. školitel: doc. Ing. Jaroslav Zendulka, CSc.
Genomické databáze Shlukování proteinových sekvencí Ivana Rudolfová školitel: doc. Ing. Jaroslav Zendulka, CSc. Obsah Proteiny Zdroje dat Predikce struktury proteinů Cíle disertační práce Vstupní data
Hemoglobin a jemu podobní... Studijní materiál. Jan Komárek
Hemoglobin a jemu podobní... Studijní materiál Jan Komárek Bioinformatika Bioinformatika je vědní disciplína, která se zabývá metodami pro shromážďování, analýzu a vizualizaci rozsáhlých souborů biologických
P ro te i n o vé d a ta b á ze
Proteinové databáze Osnova Základní stavební jednotky proteinů Hierarchie proteinové struktury Stanovení proteinové struktury Důležitost proteinové struktury Proteinové strukturní databáze Proteinové klasifikační
Bioinformatika. Jiří Vondrášek Ústav organické chemie a biochemie Jan Pačes Ústav molekulární genetiky
Bioinformatika pro PrfUK 2006 Jiří Vondrášek Ústav organické chemie a biochemie vondrasek@uochb.cas.cz Jan Pačes Ústav molekulární genetiky hpaces@img.cas.cz http://bio.img.cas.cz/prfuk2006 syllabus Úterý,
KFC/STBI Strukturní bioinformatika
KFC/STBI Strukturní bioinformatika 06_predikce struktury Karel Berka 1 Predikce minule jsme se snažili najít způsob, jak spolu budou interagovat malé molekuly a proteiny. Ale co dělat, když strukturu proteinu
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a
Základy genomiky. I. Úvod do bioinformatiky. Jan Hejátko
Základy genomiky I. Úvod do bioinformatiky Jan Hejátko Masarykova univerzita, Oddělení funkční genomiky a proteomiky Laboratoř molekulární fyziologie rostlin Základy genomiky I. Zdrojová literatura ke
Biologie buňky. systém schopný udržovat se a rozmnožovat
Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický
Studijní materiály pro bioinformatickou část ViBuChu. úloha II. Jan Komárek, Gabriel Demo
Studijní materiály pro bioinformatickou část ViBuChu úloha II Jan Komárek, Gabriel Demo Adenin Struktura DNA Thymin 5 konec 3 konec DNA tvořena dvěmi řetězci orientovanými antiparalelně (liší se orientací
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 23 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 23 biologové často potřebují najít často se opakující sekvence DNA tyto sekvence bývají relativně krátké,
02 Nevazebné interakce
02 Nevazebné interakce Nevazebné interakce Druh chemické vazby Určují 3D konfiguraci makromolekul, účastní se mnoha biologických procesů, zodpovědné za uspořádání molekul v krystalu Síla nevazebných interakcí
Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:
WORKBOOK Subject: Teacher: Student: Mathematics.... School year:../ Conic section The conic sections are the nondegenerate curves generated by the intersections of a plane with one or two nappes of a cone.
(molekulární) biologie buňky
(molekulární) biologie buňky Buňka základní principy Molecules of life Centrální dogma membrány Metody GI a MB Interakce Struktura a funkce buňky - principy proteiny, nukleové kyseliny struktura, funkce
KFC/STBI Strukturní bioinformatika
KFC/STBI Strukturní bioinformatika 05_docking Karel Berka 1 Docking minule jsme probrali databáze makromolekul i malých molekul Dnes se podíváme, jak to spojit tj. jak zjišťovat, která látka se bude vázat
Služby pro predikci struktury proteinů. Josef Pihera
Služby pro predikci struktury proteinů Josef Pihera Struktura proteinů Primární sekvence aminokyselin Sekundární stáčení a spojování vodíkovými vazbami Supersekundární struktura přechod, opakovaná geometrická
Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová
Počítačová chemie výpočetně náročné simulace chemických a biomolekulárních systémů Zora Střelcová Národní centrum pro výzkum biomolekul, Masarykova univerzita, Kotlářská 2, 611 37 Brno, Česká Republika
analýzy dat v oboru Matematická biologie
INSTITUT BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Komplexní přístup k výuce analýzy dat v oboru Matematická biologie Tomáš Pavlík, Daniel Schwarz, Jiří Jarkovský,
Vazebné interakce protein s DNA
Vazebné interakce protein s DNA Vazebné možnosti vn jší vazba atmosféra + iont kolem nabité DNA vazba ve žlábku van der Waalsovský kontakt s lé ivem ve žlábku interkalace vmeze ení planárního aromat.
Úvod do molekulové dynamiky simulace proteinů. Eva Fadrná evaf@chemi.muni.cz
Úvod do molekulové dynamiky simulace proteinů Eva Fadrná evaf@chemi.muni.cz Molekulová mechanika = metoda silového pole = force field Energie vypočtená řešením Schrodingerovy rovnice Energie vypočtená
Má tajemný clusterin u dětí v septickém stavu aktivitu chaperonu? J. Žurek, P.Košut, M. Fedora
Má tajemný clusterin u dětí v septickém stavu aktivitu chaperonu? J. Žurek, P.Košut, M. Fedora Klinika dětské anesteziologie a resuscitace, Lékařská fakulta MU, Fakultní nemocnice Brno DNA transkripce
Bioinformatika a výpočetní biologie. KFC/BIN VII. Fylogenetická analýza
ioinformatika a výpočetní biologie KF/IN VII. Fylogenetická analýza RNr. Karel erka, Ph.. Univerzita Palackého v Olomouci Fylogeneze Vznik a vývoj jednotlivých linií organismů Vývoj člověka phylogenetic
BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ
BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za
GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA
GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA What is an FTP client and how to use it? FTP (File transport protocol) - A protocol used to transfer your printing data files to the MAFRAPRINT
2. Entity, Architecture, Process
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Praktika návrhu číslicových obvodů Dr.-Ing. Martin Novotný Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze Miloš
Dynamic programming. Optimal binary search tree
The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamic programming Optimal binary search tree Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The complexity
Struktura biomakromolekul
Struktura biomakromolekul ejvýznamnější biomakromolekuly l proteiny l nukleové kyseliny l polysacharidy l lipidy... měli bychom znát stavební kameny života Biomolekuly l proteiny l A DA, RA l lipidy l
Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a
Chemická reaktivita NK.
Chemické vlastnosti, struktura a interakce nukleových kyselin Bi7015 Chemická reaktivita NK. Hydrolýza NK, redukce, oxidace, nukleofily, elektrofily, alkylační činidla. Mutageny, karcinogeny, protinádorově
Transportation Problem
Transportation Problem ١ C H A P T E R 7 Transportation Problem The transportation problem seeks to minimize the total shipping costs of transporting goods from m origins (each with a supply s i ) to n
Markovovy modely v Bioinformatice
Markovovy modely v Bioinformatice Outline Markovovy modely obecně Profilové HMM Další použití HMM v Bioinformatice Analýza biologických sekvencí Biologické sekvence: DNA,RNA,protein prim.str. Sekvenování
Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)
RNAi Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) Místo silné pigmentace se objevily rostliny variegované a dokonce bílé Jorgensen pojmenoval tento fenomén
Struktura bílkovin očima elektronové mikroskopie
Struktura bílkovin očima elektronové mikroskopie Roman Kouřil Katedra Biofyziky (http://biofyzika.upol.cz) Centrum regionu Haná pro biotechnologický a zemědělský výzkum Přírodovědecká fakulta, Univerzita
Nekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii
Chemická vazba Něco málo opakování Něco málo opakování Co je to atom? Něco málo opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího
Nekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty
Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová
Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Předmět: KBB/BB1P; KBB/BUBIO
Předmět: KBB/BB1P; KBB/BUBIO Chemické složení buňky Cíl přednášky: seznámit posluchače se složením buňky po chemické stránce Klíčová slova: biogenní prvky, chemické vazby a interakce, uhlíkaté sloučeniny,
Metody používané v MB. analýza proteinů, nukleových kyselin
Metody používané v MB analýza proteinů, nukleových kyselin Nukleové kyseliny analýza a manipulace Elektroforéza (délka fragmentů, čistota, kvantifikace) Restrikční štěpení (manipulace s DNA, identifikace
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 5. Metody určování struktury proteinů Ivo Frébort 3D struktury Smysl určování 3D struktur Pochopení funkce proteinů, mechanismu enzymových reakcí, design nových
Eva Benešová. Dýchací řetězec
Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ
Configuration vs. Conformation. Configuration: Covalent bonds must be broken. Two kinds of isomers to consider
Stereochemistry onfiguration vs. onformation onfiguration: ovalent bonds must be broken onformation: hanges do NT require breaking of covalent bonds onfiguration Two kinds of isomers to consider is/trans:
Mezimolekulové interakce
Mezimolekulové interakce Interakce molekul reaktivně vzniká či zaniká kovalentní vazba překryv elektronových oblaků, mění se vlastnosti nereaktivně vznikají molekulové komplexy slabá, nekovalentní, nechemická,
Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.
Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický
Metody používané v MB. analýza proteinů, nukleových kyselin
Metody používané v MB analýza proteinů, nukleových kyselin Nukleové kyseliny analýza a manipulace Elektroforéza (délka fragmentů, čistota, kvantifikace) Restrikční štěpení (manipulace s DNA, identifikace
OPVK CZ.1.07/2.2.00/
OPVK CZ.1.07/2.2.00/28.0184 Základní principy vývoje nových léčiv OCH/ZPVNL Mgr. Radim Nencka, Ph.D. ZS 2012/2013 První kroky k objevu léčiva Nobelova cena za chemii 2013 Martin Karplus Michael Levitt
LOGBOOK. Blahopřejeme, našli jste to! Nezapomeňte. Prosím vyvarujte se downtrade
název cache GC kód Blahopřejeme, našli jste to! LOGBOOK Prosím vyvarujte se downtrade Downtrade (z GeoWiki) Je to jednání, kterého byste se při výměnách předmětů v keších měli vyvarovat! Jedná se o snížení
jedné aminokyseliny v molekule jednoho z polypeptidů hemoglobinu
Translace a genetický kód Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny jedné aminokyseliny v molekule jednoho
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Bílkoviny a rostlinná buňka
Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin
Chemická vazba. John Dalton Amadeo Avogadro
Chemická vazba John Dalton 1766-1844 Amadeo Avogadro 1776-1856 Výpočet molekuly 2, metoda valenční vazby Walter eitler 1904-1981 Fritz W. London 1900-1954 Teorie molekulových orbitalů Friedrich und 1896-1997
Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled
Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci KFC/BIN - Podmínky Seminární práce: http://rosalind.info/ - alespoň 10 vyřešených problémů
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Figure 4-3 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-4 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-5 Molecular
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost
Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Registrační číslo: CZ.1.07/1. 5.00/34.0084 Šablona: II/2 Inovace a zkvalitnění výuky cizích jazyků na středních
Genetika zvířat - MENDELU
Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je
5. Lipidy a biomembrány
5. Lipidy a biomembrány Obtížnost A Co je chybného na často slýchaném konstatování: Biologická membrána je tvořena dvojvrstvou fosfolipidů.? Jmenujte alespoň tři skupiny látek, které se podílejí na výstavbě
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Majeská Čudejková 3. Proteosyntéza Centrální dogma molekulární biologie Rozluštění genetického kódu in vitro Marshall Nirenberg a Heinrich Matthaei zjistili,
Opakování
Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony
Aplikovaná bioinformatika
Aplikovaná bioinformatika Číslo aktivity: 2.V Název klíčové aktivity: Na realizaci se podílí: Implementace nových předmětů do daného studijního programu doc. RNDr. Michaela Wimmerová, Ph.D., Mgr. Josef
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce
DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 11 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 30.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Princip genové exprese, intenzita překladu
Národní centrum pro výzkum biomolekul & MetaCentrum
Masarykova Univerzita Národní centrum pro výzkum biomolekul Národní centrum pro výzkum biomolekul & Petr Kulhánek kulhanek@chemi.muni.cz Národní centrum pro výzkum biomolekul, Masarykova Univerzita Přírodovědecká
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
Blok 2 Sekundární struktura proteinů
Blok 2 Sekundární struktura proteinů C3211 Aplikovaná bioinformatika Přednášející: Josef Houser Struktura proteinů ADSQTSSNRAGEFSIPPNTDFRAIFFANAAE QQHIKLFIGDSQEPAAYHKLTTRDGPREATL NSGNGKIRFEVSVNGKPSATDARLAPINGKK
Tématické okruhy pro státní závěrečné zkoušky
Tématické okruhy pro státní závěrečné zkoušky Obor Povinný okruh Volitelný okruh (jeden ze dvou) Forenzní biologická Biochemie, pathobiochemie a Toxikologie a bioterorismus analýza genové inženýrství Kriminalistické
3. Stavba hmoty Nadmolekulární uspořádání
mezimolekulové interakce supramolekulární chemie sebeskladba molekulární zařízení Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti mezimolekulové interakce (nekovalentní) seskupování
ÚVOD DO MATEMATICKÉ BIOLOGIE I.
ÚVOD DO MATEMATICKÉ BIOLOGIE I. setkání třetí prof. Ing. Jiří Holčík, CSc. UKB, pav.a29, RECETOX, dv.č.112 holcik@iba.muni.cz POJĎME SI HRÁT SE SLOVY MATEMATIKA INFORMATIKA BIOLOGIE MEDICÍNA? BIOMEDICÍNA??
Zelené potraviny v nových obalech Green foods in a new packaging
Energy News1 1 Zelené potraviny v nových obalech Green foods in a new packaging Již v minulém roce jsme Vás informovali, že dojde k přebalení všech tří zelených potravin do nových papírových obalů, které
Molekulární krystal vazebné poměry. Bohumil Kratochvíl
Molekulární krystal vazebné poměry Bohumil Kratochvíl Předmět: Chemie a fyzika pevných léčiv, 2017 Složení farmaceutických substancí - API Z celkového portfolia API tvoří asi 90 % organické sloučeniny,
Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi
Evoluční algoritmy Použítí evoluční principů, založených na metodách optimalizace funkcí a umělé inteligenci, pro hledání řešení nějaké úlohy. Populace množina jedinců, potenciálních řešení Fitness function
Chemie nukleotidů a nukleových kyselin. Centrální dogma molekulární biologie (existují vyjímky)
Chemie nukleotidů a nukleových kyselin Centrální dogma molekulární biologie (existují vyjímky) NH 2 N N báze O N N -O P O - O H 2 C H H O H H cukr OH OH nukleosid nukleotid Nukleosidy vznikají buď syntézou
Compression of a Dictionary
Compression of a Dictionary Jan Lánský, Michal Žemlička zizelevak@matfyz.cz michal.zemlicka@mff.cuni.cz Dept. of Software Engineering Faculty of Mathematics and Physics Charles University Synopsis Introduction
9. Lipidy a biologické membrány
Struktura a funkce biomakromolekul KBC/BPOL 9. Lipidy a biologické membrány Ivo Frébort Buněčné membrány Jádro buňky Golgiho aparát Funkce buněčných membrán Bariéry vůči toxickým látkám Pomáhají akumulovat
PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY
PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY 1 VÝZNAM MEMBRÁNOVÝCH RECEPTORŮ V MEDICÍNĚ Příklad: Membránové receptory: adrenergní receptory (receptory pro adrenalin a noradrenalin) Funkce: zprostředkování
BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:
BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,
COSY + - podmínky měření a zpracování dat ztráta rozlišení ve spektru. inphase dublet, disperzní. antiphase dublet, absorpční
y x COSY 90 y chem. posuv J vazba 90 x : : inphase dublet, disperzní inphase dublet, disperzní antiphase dublet, absorpční antiphase dublet, absorpční diagonální pík krospík + - - + podmínky měření a zpracování
PAINTING SCHEMES CATALOGUE 2012
Evektor-Aerotechnik a.s., Letecká č.p. 84, 686 04 Kunovice, Czech Republic Phone: +40 57 57 Fax: +40 57 57 90 E-mail: sales@evektor.cz Web site: www.evektoraircraft.com PAINTING SCHEMES CATALOGUE 0 Painting
Teorie chemické vazby a molekulární geometrie Molekulární geometrie VSEPR
Geometrie molekul Lewisovy vzorce poskytují informaci o tom které atomy jsou spojeny vazbou a o jakou vazbu se jedná (topologie molekuly). Geometrické uspořádání molekuly je charakterizováno: Délkou vazeb
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,
BIOCHEMIE. František Vácha.
BIOCHEMIE František Vácha http://www.prf.jcu.cz/~vacha/ Doporučená literatura: D.L. Nelson, M.M. Cox Lehninger Principles of Biochemistry D.J. Voet, J.G. Voet, C.W. Pratt Principles of Biochemistry L.
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Odborný článek Garant: Prof. RNDr. Michal Otyepka, Ph.D. Vede
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 6. Struktura nukleových kyselin Ivo Frébort Struktura nukleových kyselin Primární struktura: sekvence nukleotidů Sekundární struktura: vzájemná poloha nukleotidů
SYNTETICKÉ OLIGONUKLEOTIDY
Oddělení funkční genomiky a proteomiky Přírodovědecká fakulta Masarykovy university SYNTETICKÉ OLIGONUKLEOTIDY Hana Konečná CENTRÁLNÍ LABORATOŘ Masarykovy Univerzity v Brně ODDĚLENÍ FUNKČNÍ GENOMIKY A
MODELOVÁNÍ A MĚŘENÍ DEFORMACE V TAHOKOVU
. 5. 9. 007, Podbanské MODELOVÁNÍ A MĚŘENÍ DEFORMACE V TAHOKOVU Zbyšek Nový, Michal Duchek, Ján Džugan, Václav Mentl, Josef Voldřich, Bohuslav Tikal, Bohuslav Mašek 4 COMTES FHT s.r.o., Lobezská E98, 00
Typy molekul, látek a jejich vazeb v organismech
Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,
Přírodní polymery proteiny
Přírodní polymery proteiny Funkční úloha bílkovin 1. Funkce dynamická transport kontrola metabolismu interakce (komunikace, kontrakce) katalýza chemických přeměn 2. Funkce strukturální architektura orgánů
Centrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Přehled pedagogické činnosti - doc. RNDr. Tomáš Obšil, Ph.D.
Přehled pedagogické činnosti - doc. RNDr. Tomáš Obšil, Ph.D. Pedagogická činnost Akademický rok 2003/2004 Přednáška: Biofyzikální chemie (C260P43) volitelná pro všechny obory rozsah: 2/1, Zk, letní semestr
VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ
FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů