Projekt do předmětu ZPO
|
|
- Leoš Sedláček
- před 9 lety
- Počet zobrazení:
Transkript
1 Projekt do předmětu ZPO Sledování ruky pomocí aktivních kontur 13. května 2014 Autoři: Pavlík Vít, Žerdík Jan, Doležal Pavel,
2 1 Zadání Cílem projektu bylo implementovat sledování pohybu ruky v obraze s využitím aktivních kontur. Projekt je implementován jako konzolová aplikace v jazyce C++ s využitím knihovny OpenCV a jejího rozhraní HighGUI. 2 Detekce kůže v obraze Prvním krokem k úspěšné detekci jakékoli objektu v obraze pomocí aktivních kontur je získání prahovaného obrazu který popisuje jeho tvar. K tomuto účelu lze využít velké množství algoritmů které nejčastěji filtrují nastavený rozsah barev. V tomto případě bylo třeba nalézt ty části obrazu, které mohou mít barvu lidské kůže. Tento problém je obtížněji řešitelný než prostá detekce objektů výrazných barev jakými jsou například fixy nebo reflexní samolepky které se pro demonstrační účely často používají. Množina barev lidské kůže je závislá nejen na kvalitě kamery a osvětlení scény, ale logicky i na barvě pleti člověka. Pokud má výsledná aplikace fungovat pro většinu běžné populace, je třeba použít jiný než standardní barevný model. 2.1 Převod RGB do YCbCr Analýza dostupných řešení ukázala, že pro detekci kůže je vhodné převést vstupní obraz z kamery z barevného modelu RGB do složkového modelu YCbCr a definovat rozsah platných hodnot v něm. Model YCbCr byl mimo jiné používán pro přenos analogového televizního signálu. Složka Y nese informaci o jasu v obraze a bývá interpretována jako zelená barva, složky Cb a Cr určují její barevný posuv do modré a do červené. Nastavení velkého rozsahu jasové složky umožňuje nejen spolehlivější detekci kůže za rozdílných světelných podmínek, ale jako žádaný vedlejší efekt i toleranci vůči špatně nasvětleným lidem bílé a dobře nasvíceným lidem tmavé pleti. Obrázek 1: Převod barevného modelu z RGB do YCbCr a následné prahování To znamená že jasovou složku modelu YCbCr nelze pro detekci kůže použít. Základem úspěchu je vhodné nastavení akceptovatelných rozsahů složek Cb a Cr. Experimentováním s hodnotami jsme dospěli k rozsahům pro Y 2
3 pro Cb pro Cr Mírnou úpravou intervalů lze získat lehce lepší výsledky pro konktrétní kameru. Vetší míra exprimentování však vede téměř vždy k nepoužitelným výsledkům. Použité a zde uvedené hodnoty lze považovat za rozumný kompromis. 2.2 Prahování Prahovaný obraz je z modelu YCbCr získán pouze z příslušnosti pixelu do nastaveného intervalu. Zde vzniká problém, jakým způsobem se vypořádat s šumem a artefakty v obraze. Drobné artefakty lze efektivně odstranit mediánovým filtrem, větší jsou vyhlazeny pomocí Obrázek 2: Odstranění artefaktů v prahovaném obrazu gaussovského rozostření. Tím zároveň vznikne na okrajích objektu gradient který lze použít jako přesnější výpočet minimálních energií v samotném algoritmu snake. 3 Aktivní kontura a algoritmus snake Pod pojmem snake se rozumí parametrická křivka (splajn) tvořený množinou bodů které mají kromě svých souřadnic x a y definovánu hodnotu interní a externí enegie která jim umožňuje regulovat hladkost, pružnost, smrštitelnost a roztažnost křivky kterou tvoří. Základní vzorce pro aktivní kontury lze nalézt v slidech k předmětu ZPO [1] na stranách Interní energie Za interní energie považujeme síly, které udržují tvar křivky bez ohledu na hranice objektu který obepínají. V anglické literatuře se lze setkat s pojmy contour a curvature, případně tension a stiffness. Velikosti těchto energií jsou počítány ze vzáleností sousedních bodů kontury. Hladkost křivky je vyjádřena jako plocha vzniklá umocněním vzdálenosti mezi aktuálním a následujícím bodem na druhou. Pružnost jako absolutní hodnota rozdílu ploch mezi předchozí a následující dvojicí bodů. Princip výpočtu je znázorněn na obrázku 3. Nastevení koeficientů pro tyto síly určuje základní chování křivky v prostředí bez objektů. Pokud je vše správně nastaveno, bude se křivka zmenšovat směrem ke středu obrazu. 3
4 Obrázek 3: Interni energie vypočtené jako mocniny vzdáleností sousedních bodů 3.2 Externí energie Externí enegie jsou síly, které začínají působit v okamžiku, kdy smršt ující se křivka narazí na hranu detekovaného objektu. Přesné nastavení externích sil je potřeba k tomu, aby body nepropadávaly dovnitř objektu ale zároveň byly dostatečně silné na to, aby obepnuly i členité objekty. Popis parametrů externí síly ze slidů lze nalézt v [2] na straně 6. Obrázek 4: Snake sledující ruku ve videu z kamery. Základní varianta počítá se zastavením smršt ování na hranici objektu. Celková síla působící na daný bod je dána jako suma všech (interních i externích) sil. V okolí každého bodu pak hledáme místo s minimální energií. Přítomnost záporné externí energie v místě změny gradientu tak smršt ování zastaví. Pro úplné obepnutí libovolného objektu ale tato síla není dostačující. Jako příklad se často uvádí objekty tvaru písmene U. Proto je třeba definovat druhou externí energii označovanou jako flow nebo image která umožní ohnutí křivky dovnitř záhybů objektu. Spolehlivá implementace této síly není zcela snadný úkol, protože její činnost je prakticky v přímém rozporu s principem činnosti externích energií. Námi implementovaný snake je vybaven automatickým přidávání a odebírání bodů 4
5 křivky v případě potřeby. Množství bodů je upravováno podle konstant AUTOADAPT definovaných v souboru Snake.h. 4 Testování Chování implementovaného programu je velmi závislé na kvalitě kamery, typu pozadí a osvětlení snímané scény. Před prehováním obrazuje sice možné pomocí funkce capture.set() nastavit jas, kontrast, saturaci a další parametry, bohužel tato nastavení nemají vlik na automatické kompenzace obrazu prováděné samotnou kamerou. 4.1 Výběr vhodného pozadí Za obecně problematické lze označit jakékoli pozací obsahující objekty s lehkou příměsí červené barvy. To prakticky znemožňuje mít v pozadí scény jakýkoli dřevěný nábytek, podlahy, korkové nástěnky atp. Tento problém přisuzujeme definovanému intervalu složky Cr který je pro lidskou kůži velmi podobný jako pro uvedené objekty. Na základě této zkušenosti jsme předpokládali že je obdobný problém nastane u objektů s příměsí modré. Tento předpoklad se ale nepotvrdil. Pokud nebudeme uvažovat přepaly způsobené přesvícením kamery, pak modrá pozadí nezpůsobují problémy. Jako ideální pozadí se jeví jednolitá plocha zelené nebo šedé barvy. 4.2 Algoritmus snake Implementovaná verze algoritmu snake pracuje s dvojicí interních a dvojicí externích energií. Parametry algoritmu lze nastavit pomocí parametrů alfa, beta, gamma a delta na začátku zdrojového souboru Snake.cpp. Obecnou vlastností algoritmu snake je problematické obepínání vnitřních záhybů členitých objektů. Řešením by bylo použití varianty GVF snake (gradient vector flow) která před zpracováním každého snímku vytváří matici vektorů (počítá vektor pro každý bod v obraze). Bohužel i pro relativně nízké rozlišení jakým je bodů není reálné tento výpočet stihnout v reálném čase. Po nečekaně dlouhém testování jsme se rozhodli obětovat obepnutí vnitřnívh částí objektů výměnou za stabilitu. 4.3 Detekce otevřené a zavřené ruky Na základě tvaru křivky program odhaduje, zda je ruka v obraze otevřená či zavřená. Respektive zda jsou prsty roztažené či nikoli. Děje se tak na základě výpočtu poměru mezi výškou a šířkou kontury. Detekce tak není závislá na vzdálenosti ruky od kamery. Aktuální stav je vypisován do konzole. Závěr Cílem projektu byla implementace sledování ruky v obraze pomocí aktivní kontury. Přestože výsledný algoritmus je pomalejší než jsme čekali, je za dobrých světelných podmínek 5
6 schopen ruku bezpečně sledovat. Rychlost pohybu je ovšem nutné přizpůsobit prodlevě při zpracování, která se pohybuje vzhledem k výkonu stroje na kterém je program spuštěn kolem 0,5 s. Přes nemalou snahu se nám bohužel nepodařilo zajistit spolehlivé obepnutí vnitřních záhybů trasovaného objektu (mezer mezi prsty) aniž by nedošlo k výraznému snížení spolehlivosti sledování hlavně při zvětšování objektu. Literatura [1] Slidy č. 8 předmětu zpracování obrazu. [Online], Duben URL < ZPO-IT/lectures/zpo_08_hrany.pdf> [2] M. Kass, D. T., A. Witkin: [Online], URL < \&rep=rep1\&type=pdf> 6
Jasové transformace. Karel Horák. Rozvrh přednášky:
1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace
12 Metody snižování barevného prostoru
12 Metody snižování barevného prostoru Studijní cíl Tento blok je věnován základním metodám pro snižování barevného rozsahu pro rastrové obrázky. Postupně zde jsou vysvětleny důvody k použití těchto algoritmů
13 Barvy a úpravy rastrového
13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody
Zpracování obrazů. Honza Černocký, ÚPGM
Zpracování obrazů Honza Černocký, ÚPGM 1D signál 2 Obrázky 2D šedotónový obrázek (grayscale) Několikrát 2D barevné foto 3D lékařské zobrazování, vektorová grafika, point-clouds (hloubková mapa, Kinect)
Vyšší odborná škola a Střední škola,varnsdorf, příspěvková organizace. Šablona 15 VY 32 INOVACE 0101 0215
Vyšší odborná škola a Střední škola,varnsdorf, příspěvková organizace Šablona 15 VY 32 INOVACE 0101 0215 VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor
Operace s obrazem II
Operace s obrazem II Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova Matematická morfologie Segmentace obrazu Klasifikace objektů
Omezení barevného prostoru
Úpravy obrazu Omezení barevného prostoru Omezení počtu barev v obraze při zachování obrazového vjemu z obrazu Vytváření barevné palety v některých souborových formátech Různé filtry v grafických programech
Grafika na počítači. Bc. Veronika Tomsová
Grafika na počítači Bc. Veronika Tomsová Proces zpracování obrazu Proces zpracování obrazu 1. Snímání obrazu 2. Digitalizace obrazu převod spojitého signálu na matici čísel reprezentující obraz 3. Předzpracování
Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)
Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící
Zpracování digitalizovaného obrazu (ZDO) - Segmentace
Zpracování digitalizovaného obrazu (ZDO) - Segmentace úvod, prahování Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného obrazu
Defektoskopie. 1 Teoretický úvod. Cíl cvičení: Detekce měřicího stavu a lokalizace objektu
Defektoskopie Cíl cvičení: Detekce měřicího stavu a lokalizace objektu 1 Teoretický úvod Defektoskopie tvoří v počítačovém vidění oblast zpracování snímků, jejímž úkolem je lokalizovat výrobky a detekovat
ROZPOZNÁVÁNÍ AKUSTICKÉHO SIGNÁLU ŘEČI S PODPOROU VIZUÁLNÍ INFORMACE
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky a mezioborových inženýrských studií ROZPOZNÁVÁNÍ AKUSTICKÉHO SIGNÁLU ŘEČI S PODPOROU VIZUÁLNÍ INFORMACE AUTOREFERÁT DISERTAČNÍ PRÁCE 2005 JOSEF CHALOUPKA
Řídící karta PCI v. 2.2 LED Panely , revize 1.0
Popis řídící karty světelných panelů verze 2.2 Řídící karta PCI v. 2.2 LED Panely 17.9.21, revize 1. Vstupy Video signál analogový PAL / NTSC S-VIDEO konektor, CVS (kompozit) Obrazová data z PC z programu
LBP, HoG Ing. Marek Hrúz Ph.D. Plzeň Katedra kybernetiky 29. října 2015
LBP, HoG Ing. Marek Hrúz Ph.D. Plzeň Katedra kybernetiky 29. října 2015 1 LBP 1 LBP Tato metoda, publikovaná roku 1996, byla vyvinuta za účelem sestrojení jednoduchého a výpočetně rychlého nástroje pro
Osvědčené postupy pro zpracování tiskových dat s vynikající kvalitou tisku
Osvědčené postupy pro zpracování tiskových dat s vynikající kvalitou tisku Arnošt Nečas Marketing manager GRAFIE CZ Jan Štor Odborný konzultant GRAFIE CZ Agenda Základy digitálních obrazů Kvalita obrazu
Barvy a barevné modely. Počítačová grafika
Barvy a barevné modely Počítačová grafika Barvy Barva základní atribut pro definici obrazu u každého bodu, křivky či výplně se definuje barva v rastrové i vektorové grafice všechny barvy, se kterými počítač
Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011
Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe
scale n_width width center scale left center range right center range value weight_sum left right weight value weight value weight_sum weight pixel
Změna velikosti obrázku Převzorkování pomocí filtrů Ačkoliv jsou výše uvedené metody mnohdy dostačující pro běžné aplikace, občas je zapotřebí dosáhnout lepších výsledků. Pokud chceme obrázky zvětšovat
Úpravy rastrového obrazu
Přednáška 11 Úpravy rastrového obrazu Geometrické trasformace Pro geometrické transformace rastrového obrazu se používá mapování dopředné prochází se pixely původního rastru a určuje se barva a poloha
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských
Zpracování obrazu v FPGA. Leoš Maršálek ATEsystem s.r.o.
Zpracování obrazu v FPGA Leoš Maršálek ATEsystem s.r.o. Základní pojmy PROCESOROVÉ ČIPY Křemíkový čip zpracovávající obecné instrukce Různé architektury, pracují s různými paměti Výkon instrukcí je závislý
Měření průtoku kapaliny s využitím digitální kamery
Měření průtoku kapaliny s využitím digitální kamery Mareš, J., Vacek, M. Koudela, D. Vysoká škola chemicko-technologická Praha, Ústav počítačové a řídicí techniky, Technická 5, 166 28, Praha 6 e-mail:
Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech."
Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech." Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Na
D E T E K C E P O H Y B U V E V I D E U A J E J I C H I D E N T I F I K A C E
D E T E K C E P O H Y B U V E V I D E U A J E J I C H I D E N T I F I K A C E CÍLE LABORATORNÍ ÚLOHY 1. Seznámení se s metodami detekce pohybu z videa. 2. Vyzkoušení si detekce pohybu v obraze kamery ÚKOL
Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d.
Úloha 1 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Červená c. Modrá d. Zelená Úloha 2 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0
2D grafika. Jak pracuje grafik s 2D daty Fotografie Statické záběry Záběry s pohybem kamery PC animace. Počítačová grafika, 2D grafika 2
2D grafika Jak pracuje grafik s 2D daty Fotografie Statické záběry Záběry s pohybem kamery PC animace Počítačová grafika, 2D grafika 2 2D grafika PC pracuje s daným počtem pixelů s 3 (4) kanály barev (RGB
Obrazové snímače a televizní kamery
Obrazové snímače a televizní kamery Prof. Ing. Václav Říčný, CSc. Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Snímače obrazových signálů akumulační a neakumulační. Monolitické
Obrazové snímače a televizní kamery
Obrazové snímače a televizní kamery Prof. Ing. Václav Říčný, CSc. Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Snímače obrazových signálů akumulační a neakumulační. Monolitické
HDR obraz (High Dynamic Range)
HDR obraz (High Dynamic Range) 2010-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 24 Velká dynamika obrazu světlé partie (krátká expozice) tmavé partie (dlouhá
SIFT: Scale Invariant Feature Transform Automatické nalezení korespondencí mezi dvojicí obrázků
SIFT: Scale Invariant Feature Transform Automatické nalezení korespondencí mezi dvojicí obrázků lukas.mach@gmail.com Přílohy (videa, zdrojáky, ) ke stažení na: http://mach.matfyz.cz/sift Korespondence
ÚROVNĚ, KŘIVKY, ČERNOBÍLÁ FOTOGRAFIE
ÚROVNĚ, KŘIVKY, ČERNOBÍLÁ FOTOGRAFIE U057 Zoner Photo Studio editace fotografie 2 LS 2014 Ing. Martin Seko JAK NA ČERNOBÍLOU FOTOGRAFII DESATURACE Úrovně, křivky, černobílá fotografie 3 DESATURACE Úrovně,
Základní nastavení. Petr Novák (novace@labe.felk.cvut.cz) 13.12.2010
Základní nastavení Petr Novák (novace@labe.felk.cvut.cz) 13.12.2010 Všechny testy / moduly používají určité základní nastavení. Toto základní nastavení se vyvolá stiskem tlačítka Globální / základní konfigurace
Meo S-H: software pro kompletní diagnostiku intenzity a vlnoplochy
Centrum Digitální Optiky Meo S-H: software pro kompletní diagnostiku intenzity a vlnoplochy Výzkumná zpráva projektu Identifikační čí slo výstupu: TE01020229DV003 Pracovní balíček: Zpracování dat S-H senzoru
Kde se používá počítačová grafika
POČÍTAČOVÁ GRAFIKA Kde se používá počítačová grafika Tiskoviny Reklama Média, televize, film Multimédia Internetové stránky 3D grafika Virtuální realita CAD / CAM projektování Hry Základní pojmy Rastrová
VY_32_INOVACE_INF4_12. Počítačová grafika. Úvod
VY_32_INOVACE_INF4_12 Počítačová grafika Úvod Základní rozdělení grafických formátů Rastrová grafika (bitmapová) Vektorová grafika Základním prvkem je bod (pixel). Vhodná pro zpracování digitální fotografie.
PROJEKT 3 2D TRAJEKTORIE KAMERY SEMESTRÁLNÍ PRÁCE DO PŘEDMĚTU MAPV
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
Interní norma č. 22-102-01/01 Průměr a chlupatost příze
Předmluva Text vnitřní normy byl vypracován v rámci Výzkumného centra Textil LN00B090 a schválen oponentním řízením dne 7.12.2004. Předmět normy Tato norma stanoví postup měření průměru příze a celkové
Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č.2487/2011
Využití v biomedicíně III Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Zpracování přirozeného obrazu Za přirozený obraz považujeme snímek
Počítačové zpracování obrazu Projekt Učíme se navzájem
Počítačové zpracování obrazu Projekt Učíme se navzájem Tomáš Pokorný, Vojtěch Přikryl Jaroška 15. ledna 2010 Tomáš Pokorný email: xtompok@gmail.com Jaroška 1 Obsah Abstrakt! 4 Začátky! 5 M&M 5 Původní
Analýza a zpracování digitálního obrazu
Analýza a zpracování digitálního obrazu Úlohy strojového vidění lze přibližně rozdělit do sekvence čtyř funkčních bloků: Předzpracování veškerých obrazových dat pomocí filtrací (tj. transformací obrazové
Zpracování digitalizovaného obrazu (ZDO) - Segmentace II
Zpracování digitalizovaného obrazu (ZDO) - Segmentace II Další metody segmentace Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného
7. Analýza pohybu a stupňů volnosti robotické paže
7. Analýza pohybu a stupňů volnosti robotické paže Úkoly měření a výpočtu ) Změřte EMG signál, vytvořte obálku EMG signálu. ) Určete výpočtem nutný počet stupňů volnosti kinematického řetězce myoelektrické
OBRAZOVÁ ANALÝZA. Speciální technika a měření v oděvní výrobě
OBRAZOVÁ ANALÝZA Speciální technika a měření v oděvní výrobě Prostředky pro snímání obrazu Speciální technika a měření v oděvní výrobě 2 Princip zpracování obrazu matice polovodičových součástek, buňky
Počítače a grafika. Ing. Radek Poliščuk, Ph.D. Přednáška č.7. z předmětu
Ústav automatizace a informatiky Fakulta strojního inženýrství Vysoké učení technické v Brně Přednáška č.7. z předmětu Počítače a grafika Ing. Radek Poliščuk, Ph.D. 1/14 Obsahy přednášek Přednáška 7 Zpracování
III/ 2 Inovace a zkvalitnění výuky prostřednictvím ICT
Metodický list k didaktickému materiálu Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Jazyk Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací
zdroj světla). Z metod transformace obrázku uvedeme warping a morfing, které se
Kapitola 3 Úpravy obrazu V následující kapitole se seznámíme se základními typy úpravy obrazu. První z nich je transformace barev pro výstupní zařízení, dále práce s barvami a expozicí pomocí histogramu
Inteligentní analýza obrazu. Ing. Robert Šimčík
Inteligentní analýza obrazu Ing. Robert Šimčík Jaký je přínos video analýzy? 2 Typické CCTV pracoviště? Příliš mnoho kamer! Pomoc! 3 Proč použít video analýzu? Analýza tisíců video záznamů Redukce zátěže
Fergusnova kubika, která je definována pomocí bodu P1, vektoru P1P2, bodu P3 a vektoru P3P4
Která barva nepatří do základních barev prostoru RGB? a. Černá b. Zelená c. Modrá d. Červená Úloha 2 Jakým minimálním počtem bodů je jednoznačně určena interpolační křivka 5. řádu? a. 6 b. 3 c. 5 d. 7
Osvětlení StRojoVého Vidění
Osvětlení strojového vidění Osvětlení strojového vidění Konzistentní, účinné, rovnoměrné osvětlení je klíčovým prvkem aplikací strojového vidění. Čím lépe se podaří danou scénu připravit z hlediska použitého
Reprezentace bodu, zobrazení
Reprezentace bodu, zobrazení Ing. Jan Buriánek VOŠ a SŠSE P9 Jan.Burianek@gmail.com Obsah Témata Základní dělení grafických elementů Rastrový vs. vektorový obraz Rozlišení Interpolace Aliasing, moiré Zdroje
2010 Josef Pelikán, CGG MFF UK Praha
Filtrace obrazu 21 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ 1 / 32 Histogram obrázku tabulka četností jednotlivých jasových (barevných) hodnot spojitý případ hustota pravděpodobnosti
Křivky a plochy technické praxe
Kapitola 7 Křivky a plochy technické praxe V technické praxi se setkáváme s tím, že potřebujeme křivky a plochy, které se dají libovolně upravovat a zároveň je jejich matematické vyjádření jednoduché.
ÚVOD DO PROBLEMATIKY PIV
ÚVOD DO PROBLEMATIKY PIV Jiří Nožička, Jan Novotný ČVUT v Praze, Fakulta strojní, Ú 207.1, Technická 4, 166 07, Praha 6, ČR 1. Základní princip PIV Particle image velocity PIV je měřící technologie, která
Dokumentace programu piskvorek
Dokumentace programu piskvorek Zápočtového programu z Programování II PRM045 Ondřej Vostal 20. září 2011, Letní semestr, 2010/2011 1 Stručné zadání Napsat textovou hru piškvorky se soupeřem s umělou inteligencí.
K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR
K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR Vlastimil Kratochvíl * Příspěvek obsahuje popis vlastností některých postupů, využitelných pro transformaci souřadnic mezi geodetickými systémy
Ctislav Fiala: Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb
16 Optimální hodnoty svázaných energií stropních konstrukcí (Graf. 6) zde je rozdíl materiálových konstant, tedy svázaných energií v 1 kg materiálu vložek nejmarkantnější, u polystyrénu je téměř 40krát
Přednáška kurzu MPOV. Barevné modely
Přednáška kurzu MPOV Barevné modely Ing. P. Petyovský (email: petyovsky@feec.vutbr.cz), kancelář E512, tel. 1194, Integrovaný objekt - 1/11 - Barvy v počítačové grafice Barevné modely Aditivní modely RGB,
Text úlohy. Kolik je automaticky generovaných barev ve standardní paletě 3-3-2?
Úloha 1 Kolik je automaticky generovaných barev ve standardní paletě 3-3-2? a. 256 b. 128 c. 216 d. cca 16,7 milionu Úloha 2 Jaká je výhoda adaptivní palety oproti standardní? a. Menší velikost adaptivní
Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010
Ing. Jan Buriánek (ČVUT FIT) Reprezentace bodu a zobrazení BI-MGA, 2010, Přednáška 2 1/33 Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické
Spektrální charakteristiky
Spektrální charakteristiky Cíl cvičení: Měření spektrálních charakteristik filtrů a zdrojů osvětlení 1 Teoretický úvod Interakcí elektromagnetického vlnění s libovolnou látkou vzniká optický jev, který
Světlo. Podstata světla. Elektromagnetické záření Korpuskulární charakter. Rychlost světla. Vlnová délka. Vlnění, foton. c = 1 079 252 848,8 km/h
Světlo Světlo Podstata světla Elektromagnetické záření Korpuskulární charakter Vlnění, foton Rychlost světla c = 1 079 252 848,8 km/h Vlnová délka Elektromagnetické spektrum Rádiové vlny Mikrovlny Infračervené
Full High Definition LCD projektor pro pokročilé domácí kino PT-AE1000
Full High Definition LCD projektor pro pokročilé domácí kino PT-AE1000 Parametry PT-AE1000 Označení PT-AE1000 Zobrazovač LCD panely C2Fine úhlopříčky 0.74 (širokoúhlý filmový formát 16:9) Rozlišení 1920
PRACOVNÍ NÁVRH VYHLÁŠKA. ze dne o způsobu stanovení pokrytí signálem televizního vysílání
PRACOVNÍ NÁVRH VYHLÁŠKA ze dne 2008 o způsobu stanovení pokrytí signálem televizního vysílání Český telekomunikační úřad stanoví podle 150 odst. 5 zákona č. 127/2005 Sb., o elektronických komunikacích
Výpočet umělého osvětlení dle ČSN EN Wils , Copyright (c) , ASTRA 92 a.s., Zlín. Prostor 1. garáž
Stránka Výpočet umělého osvětlení dle ČSN EN 2464 Wils 6.3.3.4, Copyright (c) 200206, ASTRA 92 a.s., Zlín Zpracovatelská firma Zpracovatel Soubor Datum a čas Jiří Ostatnický Jiří Ostatnický. garáž 7.4.207
Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová
Digitální fotografie Mgr. Milana Soukupová Gymnázium Česká Třebová Téma sady didaktických materiálů Digitální fotografie I. Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu
Skenery (princip, parametry, typy)
Skenery (princip, parametry, typy) Semestrální práce z předmětu Kartografická polygrafie a reprografie Pavla Šmejkalová Rostislav Šprinc Rok vyhotovení 2009 Úvod Princip Obecně Postup skenování Části skenerů
Rekonstrukce křivek a ploch metodou postupné evoluce
Rekonstrukce křivek a ploch metodou postupné evoluce Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz Přehled Evoluce křivek princip evoluce použití evoluce křivky ve
Náhodné signály. Honza Černocký, ÚPGM
Náhodné signály Honza Černocký, ÚPGM Signály ve škole a v reálném světě Deterministické Rovnice Obrázek Algoritmus Kus kódu } Můžeme vypočítat Málo informace! Náhodné Nevíme přesně Pokaždé jiné Především
Komprese dat Obsah. Komprese videa. Radim Farana. Podklady pro výuku. Komprese videa a zvuku. Komprese MPEG. Komprese MP3.
Komprese dat Radim Farana Podklady pro výuku Obsah Komprese videa a zvuku. Komprese MPEG. Komprese MP3. Komprese videa Velký objem přenášených dat Typický televizní signál - běžná evropská norma pracuje
Kalibrační proces ve 3D
Kalibrační proces ve 3D FCC průmyslové systémy společnost byla založena v roce 1995 jako součást holdingu FCC dodávky komponent pro průmyslovou automatizaci integrace systémů kontroly výroby, strojového
VOLBA BAREVNÝCH SEPARACÍ
VOLBA BAREVNÝCH SEPARACÍ SOURAL Ivo Fakulta chemická, Ústav fyzikální a spotřební chemie Vysoké učení technické v Brně, Purkyňova 118, 612 00 Brno E-mail : Pavouk.P@centrum.cz K tomu aby byly pochopitelné
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.
Automatické zaostřování světlometu
Automatické zaostřování světlometu Ing. Ondřej Šmirg,Ing. Michal Kohoutek Ústav telekomunikací, Purkyňova 118, 612 00 Brno Email: xsmirg00@stud.feec.vutbr.cz Článek se zabývá zpracováním obrazu a tvorbou
ZÁKLADNÍ TERMINOLOGIE V COLOR MANAGEMENTU
ZÁKLADNÍ TERMINOLOGIE V COLOR MANAGEMENTU V Colormanagementu se neustále operuje s několika termíny: a) barevný gamut, b) barevné prostory CMYK a RGB, c) nezávislý barevný prostor, d) ICC profil S těmito
Pružinový algoritmus a algoritmus úpravy hustoty pulsů ve 2D. Iva Bartůňková 3.ročník 2004/05
Pružinový algoritmus a algoritmus úpravy hustoty pulsů ve 2D Iva Bartůňková 3.ročník 2004/05 Půltónování a rozptylování Procesy, převádějící obrázek se spojitými odstíny na jeho reprezentaci omezenou paletou
II. Úlohy na vložené cykly a podprogramy
II. Úlohy na vložené cykly a podprogramy Společné zadání pro příklady 1. - 10. začíná jednou ze dvou možností popisu vstupních dat. Je dána posloupnost (neboli řada) N reálných (resp. celočíselných) hodnot.
Rekurzivní sledování paprsku
Rekurzivní sledování paprsku 1996-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 21 Model dírkové kamery 2 / 21 Zpětné sledování paprsku L D A B C 3 / 21 Skládání
11 Zobrazování objektů 3D grafiky
11 Zobrazování objektů 3D grafiky Studijní cíl Tento blok je věnován základním algoritmům zobrazení 3D grafiky. Postupně budou probrány základní metody projekce kolmé promítání, rovnoběžné promítání a
Kristýna Bémová. 13. prosince 2007
Křivky v počítačové grafice Kristýna Bémová Univerzita Karlova v Praze 13. prosince 2007 Kristýna Bémová (MFF UK) Křivky v počítačové grafice 13. prosince 2007 1 / 36 Pojmy - křivky a jejich parametrické
L1942S POMĚR STRAN 4:3, ANALOGOVÝ VSTUP
L1942S POMĚR STRAN 4:3, ANALOGOVÝ VSTUP Monitory řady L42 s klasickým poměrem stran 4:3, jsou ideálními zobrazovacími jednotkami pro použití v kanceláři, osloví však i uživatele, kteří používají své počítače
David Buchtela. Monitory 20.10.2009. Monitory. David Buchtela. enýrství lská univerzita v Praze
1 20.10.2009 Monitory Monitory David Buchtela Katedra informačního inženýrstv enýrství Provozně ekonomická fakulta, Česká zemědělsk lská univerzita v Praze Kamýcká 129, Praha 6 - Suchdol 2 Monitory Monitor
Rozvoj tepla v betonových konstrukcích
Úvod do problematiky K novinkám v požární odolnosti nosných konstrukcí Praha, 11. září 2012 Ing. Radek Štefan prof. Ing. Jaroslav Procházka, CSc. Znalost rozložení teploty v betonové konstrukci nebo její
Úloha 1. Text úlohy. Vyberte jednu z nabízených možností: NEPRAVDA. PRAVDA Úloha 2. Text úlohy
Úloha 1 Úloha 2 Otázka se týká předchozího kódu. Určete pravdivost následujícího tvrzení: "Pro každý bod vytvoří úsečku mezi ním a středem panelu." Úloha 3 Otázka se týká předchozího kódu. Určete pravdivost
Moderní metody rozpoznávání a zpracování obrazových informací 15
Moderní metody rozpoznávání a zpracování obrazových informací 15 Hodnocení transparentních materiálů pomocí vizualizační techniky Vlastimil Hotař, Ondřej Matúšek Katedra sklářských strojů a robotiky Fakulta
Úvod do mobilní robotiky AIL028
md at robotika.cz http://robotika.cz/guide/umor07/cs 20. prosince 2007 1 2 3D model světa ProMIS Cvičení hledání domečku Model štěrbinové kamery Idealizovaný jednoduchý model kamery Paprsek světla vychází
BPC2E_C09 Model komunikačního systému v Matlabu
BPCE_C9 Model komunikačního systému v Matlabu Cílem cvičení je vyzkoušet si sestavit skripty v Matlabu pro model jednoduchého komunikačního systému pro přenos obrázků. Úloha A. Sestavte model komunikačního
2.17 Webová grafika. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Hort. Vyrobeno pro SOŠ a SOU Kuřim, s.r.o.
2. 2.17 Webová grafika Grafický návrh webové stránky se skládá z několika kroků: koncepce stránky, návrh navigace, příprava obrázků a jejich optimalizace. GIMP samozřejmě nabízí také nástroje pro práci
Š E D O T Ó N O V Á A B A R E V N Á K A L I B R A C E
Š E D O T Ó N O V Á A B A R E V N Á K A L I B R A C E Z O B R A Z O V A C Í C H Z A Ř Í Z E NÍ CÍLE LABORATORNÍ ÚLOHY 1. Seznámení se s metodami šedotónové a barevné kalibrace fotoaparátů, kamer, snímků
Analýza obrazu II. Jan Macháček Ústav skla a keramiky VŠCHT Praha
Analýza obrazu II Jan Macháček Ústav skla a keramiky VŠCHT Praha +4- - 44-45 Reference další doporučená literatura Microscopical Examination and Interpretation of Portland Cement and Clinker, Donald H.
SEMESTRÁLNÍ PROJEKT Y38PRO
SEMESTRÁLNÍ PROJEKT Y38PRO Závěrečná zpráva Jiří Pomije Cíl projektu Propojení regulátoru s PC a vytvoření knihovny funkcí pro práci s regulátorem TLK43. Regulátor TLK43 je mikroprocesorový regulátor s
Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty
Kontaktní prvky Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty Základní myšlenka Modelování posunu po smykové ploše, diskontinuitě či na rozhraní konstrukce a okolního
Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN
Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0940
VY_32_INOVACE_INF.10. Grafika v IT
VY_32_INOVACE_INF.10 Grafika v IT Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 GRAFIKA Grafika ve smyslu umělecké grafiky
Circular Harmonics. Tomáš Zámečník
Circular Harmonics Tomáš Zámečník Úvod Circular Harmonics Reprezentace křivky, která je: podmonožinou RxR uzavřená funkcí úhlu na intervalu Dále budeme hovořit pouze o takovýchto křivkách/funkcích
Ukázkové snímky pořízené bleskem NIKON CORPORATION. V této příručce jsou představeny různé metody použití blesku SB-N7 a ukázkové snímky
Ukázkové snímky pořízené bleskem V této příručce jsou představeny různé metody použití blesku SB-N7 a ukázkové snímky NIKON CORPORATION 2012 Nikon Corporation TT2L01(1L) 8MSA581L-01 Cz Obsah Zvolte typ
Photoshop - tutoriály
H OŘÍCÍ TEXT Photoshop - tutoriály 1) Vytvořte Nový soubor. Velikost dokumentu jsem volil 500 x 200 obrazových bodů, rozlišení 72 dpi. Barva pozadí je předpokládaně bílá, což je pro náš případ vyhovující.
Projektová dokumentace ANUI
Projektová dokumentace NUI MULTI CONTROL s.r.o., Mírová 97/4, 703 00 Ostrava-Vítkovice, tel/fax: 596 614 436, mobil: +40-777-316190 http://www.multicontrol.cz/ e-mail: info@multicontrol.cz ROZŠÍŘENĚ MĚŘENÍ