Zpracování digitalizovaného obrazu (ZDO) - Segmentace II
|
|
- Iva Navrátilová
- před 6 lety
- Počet zobrazení:
Transkript
1 Zpracování digitalizovaného obrazu (ZDO) - Segmentace II Další metody segmentace Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného obrazu (ZDO) - Segmentace II
2 Obsah: Segmentace na základě detekce hran Určení hranice s využitím znalosti její polohy Postupné dělení spojnic Aktivní kontury Segmentace analýzou oblastí Algoritmus Split&Merge Markov random field Srovnávání se vzorem Zpracování digitalizovaného obrazu (ZDO) - Segmentace II 1 / 17
3 Segmentace na základě detekce hran Hrany místa obrazu, kde dochází k určité nespojitosti, většinou v jasu, ale také v barvě, textuře, hloubce apod. Obraz hran vznikne aplikací některého hranového operátoru. Hranice je popis okraje segmentovaného objektu. Úkolem segmentace je v tomto případě spojení hran do řetězců, které lépe odpovídají průběhu hranic; Často je využita apriorní informace o tom, kde jsou hrany a jaký je jejich vztahy k ostatním částem obrazu; Pokud není apriorní informace k dispozici, musí segmentační metoda brát v úvahu lokální vlastnosti spolu s obecnými znalostmi specifickými pro danou aplikační oblast. Zpracování digitalizovaného obrazu (ZDO) - Segmentace II 2 / 17
4 Prahování obrazu hran obvykle jen velmi málo míst v obraze má nulovou hodnotu velikosti hrany. Důvodem je přítomnost šumu metoda prahování obrazu hran potlačí nevýrazné hrany malé velikosti a zachová pouze významné hrany (význam slov malé, významné souvisí s velikostí prahu) hodnotu prahu lze určovat např. metodami procentního prahování někdy se aplikuje následné zpracování výsledku např. vypuštění hran kratších než jistá hodnota Zpracování digitalizovaného obrazu (ZDO) - Segmentace II 3 / 17
5 Určení hranice s využitím znalosti její polohy Předpokládáme informaci o pravděpodobné poloze a tvaru hranice, získanou např. díky znalostem vyšší úrovně nebo jako výsledek segmentačních metod aplikovaných na obraz nižšího rozlišení; Jednou z možností je určovat polohu hranice jako polohu významných hranových buněk, které se nacházejí v bĺızkosti předpokládaného umístění hranice a které mají směr bĺızký předpokládanému směru hranice v daném místě; Podaří-li se najít dostatečný počet obrazových bodů, vyhovujících těmto podmínkám, je těmito body proložena vhodná aproximační křivka zpřesněná hranice Zpracování digitalizovaného obrazu (ZDO) - Segmentace II 4 / 17
6 Postupné dělení spojnic Využijeme pokud známe koncové body hranice a předpokládáme malý šum a malé zakřivení hranice; Možný přístup je postupné dělení spojnic již detekovaných sousedních elementů hranice a hledání dalšího hraničního elementu na normále vedené středem této spojnice; Hranový element, který je nejbĺıže spojnice dosud detekovaných bodů a má nadprahovou velikost hrany, je považován za nový element hranice a iterační proces se opakuje (demo) Zpracování digitalizovaného obrazu (ZDO) - Segmentace II 5 / 17
7 Aktivní kontury - Active Contour Model Model zpřesňuje hranici deformovatelnou otevřenou/uzavřenou spline funkcí (snake)... r.1987 Minimalizace energie je z části určena z energíı obrazu pod spline funkcí a z části z energie tvaru spline funkce (délka, hladkost,...) Použití segmentace je pro zašuměná data, častá je iterace s uživatelem (inicializace polohy popř. energie) nebo s jinou segmentační/detekční technikou Například. segmentace tváře osoby od pozadí tak, že je nalezne obklopující (uzavřená) spline funkce v místech největších hran po obvodě, inicializace s nejprve aplikovaným detektorem tváře. Zpracování digitalizovaného obrazu (ZDO) - Segmentace II 6 / 17
8 Aktivní kontury - Active Contour Model demo 1 1 Tim Cootes,University of Manchester Zpracování digitalizovaného obrazu (ZDO) - Segmentace II 7 / 17
9 Segmentace narůstáním oblastí - Region Growing Lze uplatnit v obrazech se šumem, kde se obtížně hledají hranice Významnou vlastností HOMOGENITA Rozdělení obrazu do maximálních souvislých oblastí tak, aby tyto oblasti byly z určitého hlediska homogenní. Kritérium homogenity založeno na jasových vlastnostech, komplexnějších způsobech popisu nebo dokonce na vytvářeném modelu segmentovaného obrazu většinou pro oblasti požadujeme splnění těchto podmínek: 1. H(R i ) = TRUE pro i = 1, 2,..., I 2. H(R i R j ) = FALSE pro i, j = 1, 2,..., I i j R i soused R j Kde: I... počet oblastí R i... jednotlivé oblasti H(R i )... dvouhodnotové vyjádření kritéria homogenity oblasti musí být (1) homogenní a (2) maximální Zpracování digitalizovaného obrazu (ZDO) - Segmentace II 8 / 17
10 Algoritmus spojování oblastí Nejpřirozenější metoda spojování oblastí vychází z počátečního rozložení, kdy každý obrazový element představuje samostatnou oblast, čímž při splnění (1) nesplní (2). Dále spojujeme vždy dvě sousední oblasti, pokud oblast vzniklá spojením těchto dvou oblastí bude vyhovovat kritériu homogenity. Výsledek spojování závisí na pořadí, v jakém jsou oblasti předkládány k spojování. Nejjednodušší metody vycházejí z počáteční segmentace obrazu na oblasti 2x2, 4x4 nebo 8x8. Popis homogenity většinou založen na statistických jasových vlastnostech (např. histogram jasu v oblasti). Popis oblasti je srovnáván pomocí statistických testů s popisem sousední oblasti. při shodě dojde ke spojení obou oblastí a vznikne nová oblast v okamžiku, kdy nelze spojit žádné dvě oblasti, proces končí Zpracování digitalizovaného obrazu (ZDO) - Segmentace II 9 / 17
11 Štěpení a spojování - Split and Merge Tato metoda zachovává dobré vlastnosti obou uvedených přístupů. Využívá pyramidální reprezentaci obrazu. Oblasti jsou čtvercové a odpovídají elementu dané úrovně pyramidální datové struktury. 1. Na počátku určíme nějaké počáteční rozložení obrazu. 2. Platí-li pro oblast R k-té úrovně pyramidální strukturyh(r) = FALSE (oblast není homogenní), rozděĺıme R na 4 oblasti (k + 1). úrovně. 3. Existují-li sousední oblasti R i a R j takové, že H(R i R j ) = TRUE, spojíme R i a R j do jedné oblasti. 4. Nelze-li žádnou oblast spojit ani rozdělit, Zpracování digitalizovaného obrazu (ZDO) - Segmentace algoritmus II končí (demo) 10 / 17
12 Markov random field (MRF) kontext = souvislost sousedních bodů, tj. význam bodu je závislý na významech bodů sousedních... Markovianita využití kontextu je velmi cenné pro analýzu obrazu - založeno na podmíněné pravděpodobnosti Problém přiřazení labelů každý pixel p je definován příznakovým vektorem f p (v základu jeho jas) a množina všech příznakových vektorů... f = { f p : p I} množina labelů L určuje segmentaci např. L = {objekt, pozadí} z hlediska Markovských modelů představuje label skrytou proměnnou každému pixelu p je přiřazen jeden label ω p konfigurace pole... ω = {ω p : p I} Zpracování digitalizovaného obrazu (ZDO) - Segmentace II 11 / 17
13 obrázek o rozměrech NxM L NM = Ω možných výsledků jak vybrat ten správný? Odhad maximální aposteriorní pravděpodobnosti (MAP): Cíl: definovat pravděpodobnostní míru (pravděpodobnost olabelování) pravděpodobnost konfigurace ω je určena jako P(ω f ) chceme najít ω maximalizující P(ω f ) ω MAP = arg max ω Ω P(ω f ) Bayesovo pravidlo: P(ω f ) = P(f ω)p(ω) P(f ) pro neměnná data f je P(f ) konstanta P(ω f ) P(f ω)p(ω) určení P(ω) a P(f ω) je úkolem MRF MRF převádí na úlohu optimalizace minimální energie (energie dat + energie spojitosti) náhodné pole může být definováno jako graf (nejčastěji metoda Graph-Cut) Zpracování digitalizovaného obrazu (ZDO) - Segmentace II 12 / 17
14 Zpracování digitalizovaného obrazu (ZDO) - Segmentace II 13 / 17
15 Segmentace srovnáváním se vzorem - Template Matching Úloha má za úkol nalézt známé objekty (vzory) v obraze. Objekty (vzory) mají většinou charakter obrazu. Další možnosti kromě hledání objektů srovnávání dvou snímků z různých míst (stereoskopie), určování relativního pohybu objektů Pokud by obraz byl bez šumu, úloha by byla velmi snadná, protože bychom v obraze nalezli přesnou kopii hledaného vzoru Jako míru souhlasu většinou používáme vzájemnou korelaci: C(u, v) = 1 (i,j) V (f (i + u, j + v) h(i, j))2 (1) Zpracování digitalizovaného obrazu (ZDO) - Segmentace II 14 / 17
16 Testujeme souhlas obrazu f se vzorem h umístěným v poloze (u, v). Pro každou polohu vzoru h v obraze f určíme hodnotu míry souhlasu vzoru C s danou částí obrazu Lokální maxima, která jsou větší než určený práh, reprezentují polohu v obraze Problémy nastanou, pokud se vzor v obraze vyskytuje natočený, s jinou velikostí nebo s geometrickým zkreslením. V takovém případě musíme testovat míru souhlasu pro všechna možná natočení, velikosti, geometrická zkreslení ap. pozn. Tento problém lze částečně řešit v případě, kdy je hledaný vzor složen z několika částí spojených pružnými spojkami. Pak testujeme nejprve jednotlivé (menší) části a pak teprve hledáme pružná spojení Zpracování digitalizovaného obrazu (ZDO) - Segmentace II 15 / 17
17 Segmentace srovnáváním se vzorem - Template Matching Metodu lze urychlit zrychleným prováděním testů v hrubším rozlišení a v místě lokálního maxima pak přesným doměřením polohy (u, v), pro kterou nastává největší hodnota míry souhlasu vzoru s částí obrazu. výpočet korelace ve frekvenčním spektru (viz demo doc matlab) Zpracování digitalizovaného obrazu (ZDO) - Segmentace II 16 / 17
18 Segmentace srovnáváním se vzorem - Key-Point Matching Srovnávání se vzorem probíhá výběrem shodných bodů nalezených v obraze i ve vzoru Použije se detektor významných bodů (detektor rohů: Harris, Moravec, aj. + deskriptory SIFT, SURF, KAZE) hledání platné transformace mezi vzorem a podoblastí analyzovaného obrazu (např. posun, rotace, afinní transformace, homografie) vhodnou metodou (např. RANSAC) Zpracování digitalizovaného obrazu (ZDO) - Segmentace II 17 / 17
Zpracování digitalizovaného obrazu (ZDO) - Segmentace
Zpracování digitalizovaného obrazu (ZDO) - Segmentace úvod, prahování Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného obrazu
Jasové transformace. Karel Horák. Rozvrh přednášky:
1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace
M E T O D Y R O Z P O Z NÁNÍ OB J E K T Ů V O B R A Z U
M E T O D Y R O Z P O Z NÁNÍ OB J E K T Ů V O B R A Z U CÍLE LABORTATORNÍ ÚLOHY 1. Seznámení se s metodami rozpoznání objektů v obraze 2. Vyzkoušení detekce objektů na snímcích z kamery a MRI snímku ÚKOL
LBP, HoG Ing. Marek Hrúz Ph.D. Plzeň Katedra kybernetiky 29. října 2015
LBP, HoG Ing. Marek Hrúz Ph.D. Plzeň Katedra kybernetiky 29. října 2015 1 LBP 1 LBP Tato metoda, publikovaná roku 1996, byla vyvinuta za účelem sestrojení jednoduchého a výpočetně rychlého nástroje pro
Operace s obrazem II
Operace s obrazem II Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova Matematická morfologie Segmentace obrazu Klasifikace objektů
Zpracování digitalizovaného obrazu (ZDO) - Analýza pohybu
Zpracování digitalizovaného obrazu (ZDO) - Analýza pohybu Úvod Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného obrazu (ZDO)
Zpracování digitalizovaného obrazu (ZDO) - Popisy III
Zpracování digitalizovaného obrazu (ZDO) - Popisy III Statistické popisy tvaru a vzhledu Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování
oddělení Inteligentní Datové Analýzy (IDA)
Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {
Roman Juránek. Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 30
Extrakce obrazových příznaků Roman Juránek Ústav počítačové grafiky a multimédíı Fakulta informačních technologíı Vysoké Učení technické v Brně Extrakce obrazových příznaků 1 / 30 Motivace Účelem extrakce
Lesson 02. Ing. Marek Hrúz Ph.D. Univ. of West Bohemia, Faculty of Applied Sciences, Dept. of Cybernetics. Lesson 02
Ing. Marek Hrúz Ph.D. Univ. of West Bohemia, Faculty of Applied Sciences, Dept. of Cybernetics 30. září 2016 Mean-shift Úvod Definice Modely Optimalizace Příklad - segmentace obrazu Kriteriální funkce
Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)
Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící
ROZPOZNÁVÁNÍ AKUSTICKÉHO SIGNÁLU ŘEČI S PODPOROU VIZUÁLNÍ INFORMACE
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky a mezioborových inženýrských studií ROZPOZNÁVÁNÍ AKUSTICKÉHO SIGNÁLU ŘEČI S PODPOROU VIZUÁLNÍ INFORMACE AUTOREFERÁT DISERTAČNÍ PRÁCE 2005 JOSEF CHALOUPKA
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských
MATEMATIKA V MEDICÍNĚ
MATEMATIKA V MEDICÍNĚ Tomáš Oberhuber Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Matematika pro život TOMÁŠ OBERHUBER (FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ MATEMATIKA
ROZ1 CVIČENÍ VI. Geometrická registrace (matching) obrazů
ROZ1 CVIČENÍ VI. Geometrická registrace (matching) obrazů REGISTRACI OBRAZU (IMAGE REGISTRATION) Více snímků téže scény Odpovídající pixely v těchto snímcích musí mít stejné souřadnice Pokud je nemají
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
Popis objektů. Karel Horák. Rozvrh přednášky:
1 / 41 Popis objektů Karel Horák Rozvrh přednášky: 1. Úvod.. Příznakový vektor. 3. Příznakový prostor. 4. Členění příznaků. 5. Identifikace oblastí. 6. Radiometrické deskriptory. 7. Fotometrické deskriptory.
kamerou. Dle optických parametrů objektivu mohou v získaném obraze nastat geometrická
Odstranění geometrických zkreslení obrazu Vstupní obraz pro naše úlohy získáváme pomocí optické soustavy tvořené objektivem a kamerou. Dle optických parametrů objektivu mohou v získaném obraze nastat geometrická
SEMESTRÁLNÍ PRÁCE X. Aproximace křivek Numerické vyhlazování
KATEDRA ANALYTICKÉ CHEMIE FAKULTY CHEMICKO TECHNOLOGICKÉ UNIVERSITA PARDUBICE - Licenční studium chemometrie LS96/1 SEMESTRÁLNÍ PRÁCE X. Aproximace křivek Numerické vyhlazování Praha, leden 1999 0 Úloha
9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy. Vyučující: Ing. Jan Pacina, Ph.D.
9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Lehký úvod Digitální modely terénu jsou dnes v geoinformačních systémech
Úloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Úlohy nad rastrovými daty Daniela
Numerické metody optimalizace - úvod
Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu
Analýza a zpracování digitálního obrazu
Analýza a zpracování digitálního obrazu Úlohy strojového vidění lze přibližně rozdělit do sekvence čtyř funkčních bloků: Předzpracování veškerých obrazových dat pomocí filtrací (tj. transformací obrazové
Matematická morfologie
/ 35 Matematická morfologie Karel Horák Rozvrh přednášky:. Úvod. 2. Dilatace. 3. Eroze. 4. Uzavření. 5. Otevření. 6. Skelet. 7. Tref či miň. 8. Ztenčování. 9. Zesilování..Golayova abeceda. 2 / 35 Matematická
ROVNICE NA ČASOVÝCH ŠKÁLÁCH A NÁHODNÉ PROCESY. Michal Friesl
Robust 14, Jetřichovice ROVNICE NA ČASOVÝCH ŠKÁLÁCH A NÁHODNÉ PROCESY Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Robust 14, Jetřichovice ÚVOD Úvod Analýzníkům
2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2
Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací
Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011
Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe
UČENÍ BEZ UČITELE. Václav Hlaváč
UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Rastrová reprezentace
Rastrová reprezentace Zaměřuje se na lokalitu jako na celek Používá se pro reprezentaci jevů, které plošně pokrývají celou oblast, případně se i spojitě mění. Používá se i pro rasterizované vektorové vrstvy,
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
Algoritmy pro shlukování prostorových dat
Algoritmy pro shlukování prostorových dat Marta Žambochová Katedra matematiky a informatiky Fakulta sociálně ekonomická Univerzita J. E. Purkyně v Ústí nad Labem ROBUST 21. 26. leden 2018 Rybník - Hostouň
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB
62 REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB BEZOUŠKA VLADISLAV Abstrakt: Text se zabývá jednoduchým řešením metody nejmenších čtverců v prostředí Matlab pro obecné víceparametrové aproximační funkce. Celý postup
Rekonstrukce křivek a ploch metodou postupné evoluce
Rekonstrukce křivek a ploch metodou postupné evoluce Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz Přehled Evoluce křivek princip evoluce použití evoluce křivky ve
NOVÉ METODY HODNOCENÍ OBRAZOVÉ KVALITY
NOVÉ METODY HODNOCENÍ OBRAZOVÉ KVALITY Stanislav Vítek, Petr Páta, Jiří Hozman Katedra radioelektroniky, ČVUT FEL Praha, Technická 2, 166 27 Praha 6 E-mail: svitek@feld.cvut.cz, pata@feld.cvut.cz, hozman@feld.cvut.cz
Aproximace funkcí. Numerické metody 6. května FJFI ČVUT v Praze
Aproximace funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Dělení Interpolace 1D Více dimenzí Minimalizace Důvody 1 Dělení Dělení - Získané data zadané data 2 Dělení - Získané data Obecně
Odhad stavu matematického modelu křižovatek
Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita
Pokročilé operace s obrazem
Získávání a analýza obrazové informace Pokročilé operace s obrazem Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 (BFÚ LF MU) Získávání
Realita versus data GIS
http://www.indiana.edu/ Realita versus data GIS Data v GIS Typy dat prostorová (poloha a vzájemné vztahy) popisná (atributy) Reprezentace prostorových dat (formát) rastrová Spojitý konceptuální model vektorová
Apriorní rozdělení. Jan Kracík.
Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.
Algoritmy a struktury neuropočítačů ASN - P11
Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova
Bayesovské metody. Mnohorozměrná analýza dat
Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A
Obraz matematický objekt. Spojitý obraz f c : (Ω c R 2 ) R
Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Diskrétní obraz f d : (Ω {0... n 1 } {0... n 2 }) {0... f max } Obraz matematický objekt
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky
Konvoluční model dynamických studií ledvin. seminář AS UTIA
Konvoluční model dynamických studií ledvin Ondřej Tichý seminář AS UTIA.. Obsah prezentace Scintigrafická obrazová sekvence a její analýza Konstrukce standardního modelu a jeho řešení Experiment Ovlivnění
Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 39
Extrakce obrazových příznaků Ing. Aleš Láník, Ing. Jiří Zuzaňák Ústav počítačové grafiky a multimédíı Fakulta informačních technologíı Vysoké Učení technické v Brně Extrakce obrazových příznaků 1 / 39
Kartografické stupnice. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita
Kartografické stupnice Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 16. 10. 2012 Stupnice
Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí
Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý
Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)
Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr.
Katedra informatiky, Univerzita Palackého v Olomouci. 27. listopadu 2013
Katedra informatiky, Univerzita Palackého v Olomouci 27. listopadu 2013 Rekonstrukce 3D těles Reprezentace trojrozměrných dat. Hledání povrchu tělesa v těchto datech. Představení několika algoritmů. Reprezentace
Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu.
Řešení příkladu - klasifikace testovacího subjektu pomocí Bayesova klasifikátoru: ata si vizualizujeme (Obr. ). Objem mozkových komor 9 8 7 6 5 pacienti kontroly testovací subjekt 5 6 Objem hipokampu Obr.
12 Metody snižování barevného prostoru
12 Metody snižování barevného prostoru Studijní cíl Tento blok je věnován základním metodám pro snižování barevného rozsahu pro rastrové obrázky. Postupně zde jsou vysvětleny důvody k použití těchto algoritmů
KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.
1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:
Omezení barevného prostoru
Úpravy obrazu Omezení barevného prostoru Omezení počtu barev v obraze při zachování obrazového vjemu z obrazu Vytváření barevné palety v některých souborových formátech Různé filtry v grafických programech
Jana Dannhoferová Ústav informatiky, PEF MZLU
Počítačová grafika Křivky Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Základní vlastnosti křivek křivka soustava parametrů nějaké rovnice, která je posléze generativně
KOMPRESE OBRAZŮ. Václav Hlaváč, Jan Kybic. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání.
1/25 KOMPRESE OBRAZŮ Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD
SIFT: Scale Invariant Feature Transform Automatické nalezení korespondencí mezi dvojicí obrázků
SIFT: Scale Invariant Feature Transform Automatické nalezení korespondencí mezi dvojicí obrázků lukas.mach@gmail.com Přílohy (videa, zdrojáky, ) ke stažení na: http://mach.matfyz.cz/sift Korespondence
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky
Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,
Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet.
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Dnešní program Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu
Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 53
Extrakce obrazových příznaků Ing. Aleš Láník, Ing. Jiří Zuzaňák Ústav počítačové grafiky a multimédíı Fakulta informačních technologíı Vysoké Učení technické v Brně Extrakce obrazových příznaků 1 / 53
Základy umělé inteligence
Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v
Aproximace a interpolace
Aproximace a interpolace Aproximace dat = náhrada nearitmetické veličiny (resp. složité funkce) pomocí aritmetických veličin. Nejčastěji jde o náhradu hodnot složité funkce g(x) nebo funkce zadané pouze
Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování
problematika geometrického modelování manifold, Eulerova rovnost základní typy modelů hranový model stěnový model objemový model datové reprezentace modelů základní metody geometrického modelování těleso
Restaurace (obnovení) obrazu při známé degradaci
Restaurace (obnovení) obrazu při známé degradaci Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky
Algoritmus sledování objektů pro funkční vzor sledovacího systému
Algoritmus sledování objektů pro funkční vzor sledovacího systému Technická zpráva - FIT - VG20102015006 2014-04 Ing. Filip Orság, Ph.D. Fakulta informačních technologií, Vysoké učení technické v Brně
1 Modelování systémů 2. řádu
OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Úlohy nad rastrovými daty Daniela
13 Barvy a úpravy rastrového
13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody
Tvorba výpočtového modelu MKP
Tvorba výpočtového modelu MKP Jaroslav Beran (KTS) Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
MATLAB a numerické metody
MATLAB a numerické metod MATLAB je velmi vhodný nástroj pro numerické výpočt mnoho problémů je již vřešeno (knihovní funkce nebo Toolbo), jiné si můžeme naprogramovat sami. Budeme se zabývat některými
Projekt do předmětu ZPO
Projekt do předmětu ZPO Sledování ruky pomocí aktivních kontur 13. května 2014 Autoři: Pavlík Vít, xpavli62@stud.fit.vutbr.cz Žerdík Jan, xzerdi00@stud.fit.vutbr.cz Doležal Pavel, xdolez08@stud.fit.vutbr.cz
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 5 Aproximační techniky 2012 Spolehlivost
Kombinatorická minimalizace
Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny
ACTIVE SHAPE MODELS. Metody registrace objekt ů v obrázku. Václav Krajíček
ACTIVE SHAPE MODELS Metody registrace objekt ů v obrázku Václav Krajíček Oblasti počítačového vidění Segmentace Registrace Active Shape Models Klasifikace Problémy počítačového vidění Šum Geometrické deformace
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza
AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Shluková analýza Cílem shlukové analýzy je nalézt v datech podmnožiny
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Přehled vhodných metod georeferencování starých map
Přehled vhodných metod georeferencování starých map ČVUT v Praze, katedra geomatiky 12. 3. 2015 Praha Georeferencování historická mapa vs. stará mapa georeferencování umístění obrazu mapy do referenčního
Usuzování za neurčitosti
Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích
Stavový model a Kalmanův filtr
Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,
Odhady - Sdružené rozdělení pravděpodobnosti
Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy
AVDAT Mnohorozměrné metody, metody klasifikace
AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Pružinový algoritmus a algoritmus úpravy hustoty pulsů ve 2D. Iva Bartůňková 3.ročník 2004/05
Pružinový algoritmus a algoritmus úpravy hustoty pulsů ve 2D Iva Bartůňková 3.ročník 2004/05 Půltónování a rozptylování Procesy, převádějící obrázek se spojitými odstíny na jeho reprezentaci omezenou paletou
Rosenblattův perceptron
Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného
OBRAZOVÁ ANALÝZA. Speciální technika a měření v oděvní výrobě
OBRAZOVÁ ANALÝZA Speciální technika a měření v oděvní výrobě Prostředky pro snímání obrazu Speciální technika a měření v oděvní výrobě 2 Princip zpracování obrazu matice polovodičových součástek, buňky
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny
Metamorfóza obrázků Josef Pelikán CGG MFF UK Praha
Metamorfóza obrázků 1998-2011 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Morphing 2011 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 21 Metamorfóza obrázků -
Detekce interakčních sil v proudu vozidel
Detekce interakčních sil v proudu vozidel (ANEB OBECNĚJŠÍ POHLED NA POJEM VZDÁLENOSTI V MATEMATICE) Doc. Mgr. Milan Krbálek, Ph.D. Katedra matematiky Fakulta jaderná a fyzikálně inženýrská České vysoké
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při