Jasové transformace. Karel Horák. Rozvrh přednášky:
|
|
- Danuše Matějková
- před 6 lety
- Počet zobrazení:
Transkript
1 1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace.
2 2 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace.
3 Jasové transformace úvod 3 / 23 Jasová transformace: změna hodnot obrazové funkce vstupního obrazu podle daného pravidla T vstupem i výstupem je obraz stejných parametrů (rozlišení, bitová hloubka) při transformaci nedochází k rozpoznávání a interpretaci objektů (anonymita) Jasové transformace se provádí zpravidla v rámci předzpracování obrazu: jasové korekce nerovnoměrného osvětlení korekce konstrastu (histogram) Snímání Předzpracování Segmentace Popis Klasifikace Kamera Osvětlení Filtry Expozice Synchronizace Kompenzace zkreslení Filtrace šumu Výběr ROI Prahování Hrany Významné body Transformace Morfologie Selekce/extrakce příznaků Redukce prostoru Analýza prostoru příznaků Lineární a nelineární třídění Pravidlový klasifikátor Bayesův klasifikátor
4 Jasové transformace úvod 4 / 23 Rozdělení jasových transformací primárně podle velikosti okolí vyšetřovaného bodu: globální lokální bodové Globální jasová transformace: nová hodnota pixelu je vypočítána z hodnot celého obrazu Lokální jasová transformace: nová hodnota pixelu je vypočítána z hodnot lokálního okolí pixelu Bodová jasová transformace: nová hodnota pixelu je vypočítána jen z hodnoty téhož pixelu
5 5 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace.
6 Histogram obrazu definice 6 / 23 Histogram obrazu: grafické znázornění závislosti četností jasových úrovní v obrazu na hodnotách těchto úrovní vodorovná osa = jasové úrovně např. 0; q svislá osa = četnost bodů 0;MAX... h(q) h(128)= % 512x512, 0;255 Jiný pohled: relativní četnost jevu aproximuje jeho pravděpodobnost lim histogram lze proto chápat jako odhad rozdělení pravděpodobnosti f(q) takového jevu A, že náhodně vybraný pixel má právě jasovou úroveň q
7 Histogram obrazu negativ 7 / 23 Histogram negativu úvaha: negativ (komplement) obrazu vzniká převrácením smyslu úrovní (světlá tmavá a obráceně) každý index q 0;255 je tedy transformován na index (255-q) nedochází k relativním změnám počtu pixelů mezi jednotlivými úrovněmi Pokud jsou splněny uvedené podmínky, je histogram negativu stranově převrácenou variantou histogramu originálu podle vertikální osy:
8 Histogram obrazu kumulovaný histogram 8 / 23 Kumulovaný histogram obrazu: vznikne integrací prostého histogramu obrazu podél proměnné q výsledkem je monotónní neklesající funkce h k (q) 1, 0;255 Normalizovaná verze kumulovaného histogramu se využívá jako převodní charakteristika při ekvalizaci histogramu.
9 9 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace.
10 Globální jasová transformace definice 10 / 23 Globální jasová transformace: nová hodnota pixelu je vypočítána z hodnot celého obrazu symbol Ω(I) značí doménu celého obrazu Ω" $ % &,', &,'Ω" Příklady globálních jasových transformací: integrální obraz (přesně platí jen pro poslední pixel integrálního obrazu) Fouriérova transformace (nelineární globální transformace) Ω(I)
11 11 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace.
12 Lokální jasová transformace definice 12 / 23 Lokální jasová transformace: nová hodnota pixelu je vypočítána z hodnot lokálního okolí pixelu symbol Ω(x,y) značí blízké okolí uvažovaného bodu Ω&,' $ % &,', &,'Ω" Příklady lokálních jasových transformací: lokální filtrace (redukce šumu, vyhlazování obrazu) zvýraznění rysů (hrany) Ω(x,y)
13 Lokální jasová transformace vyhlazování obrazu 13 / 23 Příklad vyhlazování obrazu = statistika blízkého okolí vyšetřovaného bodu: prostý průměr (střední hodnota) / vážený průměr medián (prostřední hodnota) modus (nejčastější hodnota) jiná statistika (max/min atd.) Příklad 1 prostý / vážený průměr: výpočetně řešeno konvolucí ( ) výsledek je určen tvarem konvolučního jádra h(x,y) % &,', &,' &,' ( &,' &,'
14 Lokální jasová transformace vyhlazování obrazu 14 / 23 Příklad vyhlazování obrazu = statistika blízkého okolí vyšetřovaného bodu: prostý průměr (střední hodnota) / vážený průměr medián (prostřední hodnota) modus (nejčastější hodnota) jiná statistika (max/min atd.) Příklad 2 medián: medián: nikoli střední ale prostřední hodnota v seřazené posloupnosti dat alternativa = namísto mediánu (kvantil Q 0,5 ) použít jiný kvantil (kvartil, decil, percentil) nelze řešit konvolucí (pouze multiplikativní a aditivní operace) % &,'.,/, &,' &,'Ω % &,', 0/+ : 3, (,, +,,, 0/+,,, 05(,, : 3&3 789: <5&5=
15 15 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace.
16 Bodová jasová transformace definice 16 / 23 Bodová jasová transformace: nová hodnota pixelu je vypočítána jen z hodnoty téhož pixelu symbol f (x,y) značí původní hodnotu obrazové funkce % > &,' $ % &,', &,'Ω" Příklady bodových jasových transformací: jasová korekce (každý pixel korigován jinak) převodní charakteristika (všechny pixely korigovány stejně) roztažení a vyrovnání histogramu f (x,y)
17 Bodová jasová transformace jasová korekce 17 / 23 Jasová korekce = kompenzace systematické chyby při pořízení obrazu vlivem např.: nerovnoměrné osvětlení rozdílná citlivost prvků snímače + vadné buňky nedokonalá přenosová funkce optické soustavy (jasová část) Pro korekci je třeba určit degradační funkci a předpokládat multiplikativní charakter poruchy: g(x,y) = nekorigovaný obraz e(x,y) = degradační funkce % &,' 8&,',&,' f(x,y) = korigovaný obraz Degradační funkce e(x,y) modeluje poruchu a lze ji stanovit buď analyticky nebo fyzicky: Analytický model = aproximace poruchy analytickou plochou Empirický model = pořízení etalonového snímku
18 Bodová jasová transformace jasová korekce 18 / 23 Jasová korekce: f(x,y)=e(x,y) g(x,y) [korigovaný obraz=degradační funkce nekorigovaný obraz] Analytický model poruchy: je dán obecně nelineární rovnicí určenou z apriorní explicitní informace Příklad analytického modelu degradační funkce: korekce nerovnoměrného osvětlení (scéna je osvětlena z levého horního rohu tj. korekce je opačná) multiplikativní degradační funkce je druhého řádu 8 &,' &' &16
19 Bodová jasová transformace jasová korekce 19 / 23 Jasová korekce: f(x,y)=e(x,y) g(x,y) [korigovaný obraz=degradační funkce nekorigovaný obraz] Empirický model poruchy definovaná scéna: pořídíme snímek g(x,y) při explicitně určené scéně g (x,y) degradační funkce je určena podílem obou signálů: 8 &,',&,', &,' Empirický model poruchy nedefinovaná scéna: pořídíme prázdný snímek bez objektu g 0 (x,y) a snímek za tmy g B (x,y) pozor, nejde o nulový snímek degradační funkce je určena zlomkem: g 0 (x,y) g B (x,y) 8 &,' 1, &,', C &,' výpočet korigovaného snímku je modifikován: % &,' 8 &,', &,', C &,' g(x,y) f(x,y)
20 20 / 23 Bodová jasová transformace převodní charakteristika Převodní charakteristika = transformace T jasové stupnice g vstupního obrazu na jasovou stupnici f výstupního obrazu. % D, Implementace: LUT = pro 8 bitové obrazy vektor T(t 0, t 1,..., t 255 ), t i 0;255, i,j: t i t j i > j analytický předpis např. prahování: % E 0, F G 255, H G
21 21 / 23 Bodová jasová transformace ekvalizace histogramu Ekvalizace histogramu = transformace jasové stupnice, po níž jsou jasové složky ve výstupním obrazu zastoupeny rovnoměrně: zvýšení kontrastu pro pozorovatele definovaná normalizace obrazu pro jasové porovnávání dvou obrazových segmentů Cíl ekvalizace: nalézt neklesající transformační funkci T na základě histogramu h(i) vstupního obrazu takovou, aby histogram g(i) výstupního obrazu byl uniformní na celém intervalu hodnot jasu Vstup výpočtu Výstup výpočtu = histogram vstupního obrazu = výstupní obraz I J I K J, K rozlišení snímku MxN se nemění energie histogramů je stejná histogram určen vstupním obrazem libovolné rozložení ekvalizovaný histogram uniformní rozložení
22 22 / 23 Bodová jasová transformace ekvalizace histogramu Ideálně rovnoměrné rozložení čar histogramu je možné jen u spojitého obrazu. U diskrétního obrazu je teoretická výška čar: L M, kde Q M,Nrozměry obrazu q q 0 ;q k definiční obor histogramu Postup výpočtu ekvalizovaného obrazu: 1. histogram obrazu h(i) 2. kumulovaný histogram h k (i) 3. normalizace h k (i) na převodní charakteristiku 4. transformace jasové stupnice podle T
23 23 / 23 Bodová jasová transformace ekvalizace histogramu Ekvalizace histogramu formulace: Ekvalizace histogramu výsledek: M f g ( f g +
1 Jasové transformace
1 Jasové transformace 1.1 Teoretický rozbor 1.1.1 Princip jasové transformace Jasové transformace představují transformační funkce, které mění vždy určitou hodnotu vstupní jasové funkce na výstupní. Transformace
Zpracování obrazu a fotonika 2006
Základy zpracování obrazu Zpracování obrazu a fotonika 2006 Reprezentace obrazu Barevný obrázek Na laně rozměry: 1329 x 2000 obrazových bodů 3 barevné RGB kanály 8 bitů na barevný kanál FUJI Superia 400
Analýza a zpracování digitálního obrazu
Analýza a zpracování digitálního obrazu Úlohy strojového vidění lze přibližně rozdělit do sekvence čtyř funkčních bloků: Předzpracování veškerých obrazových dat pomocí filtrací (tj. transformací obrazové
Operace s obrazem. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013
Operace s obrazem Biofyzikální ústav LF MU Obraz definujeme jako zrakový vjem, který vzniká po dopadu světla na sítnici oka. Matematicky lze obraz chápat jako vícerozměrný signál (tzv. obrazová funkce)
2010 Josef Pelikán, CGG MFF UK Praha
Filtrace obrazu 21 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ 1 / 32 Histogram obrázku tabulka četností jednotlivých jasových (barevných) hodnot spojitý případ hustota pravděpodobnosti
Popis objektů. Karel Horák. Rozvrh přednášky:
1 / 41 Popis objektů Karel Horák Rozvrh přednášky: 1. Úvod.. Příznakový vektor. 3. Příznakový prostor. 4. Členění příznaků. 5. Identifikace oblastí. 6. Radiometrické deskriptory. 7. Fotometrické deskriptory.
Operace s obrazem I. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č.
Operace s obrazem I Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova 1 Filtrování obrazu 2 Lineární a nelineární filtry 3 Fourierova
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
Obraz matematický objekt. Spojitý obraz f c : (Ω c R 2 ) R
Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Diskrétní obraz f d : (Ω {0... n 1 } {0... n 2 }) {0... f max } Obraz matematický objekt
Analýza pohybu. Karel Horák. Rozvrh přednášky: 1. Úvod. 2. Úlohy analýzy pohybu. 3. Rozdílové metody. 4. Estimace modelu prostředí. 5. Optický tok.
1 / 40 Analýza pohybu Karel Horák Rozvrh přednášky: 1. Úvod. 2. Úlohy analýzy pohybu. 3. Rozdílové metody. 4. Estimace modelu prostředí. 5. Optický tok. 2 / 40 Analýza pohybu Karel Horák Rozvrh přednášky:
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Zpracování obrazů. Honza Černocký, ÚPGM
Zpracování obrazů Honza Černocký, ÚPGM 1D signál 2 Obrázky 2D šedotónový obrázek (grayscale) Několikrát 2D barevné foto 3D lékařské zobrazování, vektorová grafika, point-clouds (hloubková mapa, Kinect)
Jasové a geometrické transformace
Jasové a geometrické transformace Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských partyzánů 1580/3 http://people.ciirc.cvut.cz/hlavac,
Histogram a jeho zpracování
Histogram a jeho zpracování 3. přednáška předmětu Zpracování obrazů Martina Mudrová 24 Definice Co je to histogram? = vektor absolutních četností výskytu každé barvy v obrázku [H(1),H(2), H(c)] c m.n c
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
Omezení barevného prostoru
Úpravy obrazu Omezení barevného prostoru Omezení počtu barev v obraze při zachování obrazového vjemu z obrazu Vytváření barevné palety v některých souborových formátech Různé filtry v grafických programech
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
Grafika na počítači. Bc. Veronika Tomsová
Grafika na počítači Bc. Veronika Tomsová Proces zpracování obrazu Proces zpracování obrazu 1. Snímání obrazu 2. Digitalizace obrazu převod spojitého signálu na matici čísel reprezentující obraz 3. Předzpracování
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Histogram a jeho zpracování
... 3.. 5.. 7.. 9 Histogram a jeho zpracování 3. přednáška předmětu Zpracování obrazů Martina Mudrová Definice Co je to histogram? = vektor absolutních četností výskytu každé barvy v obrázku [H(),H(),
Matematická morfologie
/ 35 Matematická morfologie Karel Horák Rozvrh přednášky:. Úvod. 2. Dilatace. 3. Eroze. 4. Uzavření. 5. Otevření. 6. Skelet. 7. Tref či miň. 8. Ztenčování. 9. Zesilování..Golayova abeceda. 2 / 35 Matematická
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
Statistika I (KMI/PSTAT)
Statistika I (KMI/PSTAT) Cvičení druhé aneb Kvantily, distribuční funkce Statistika I (KMI/PSTAT) 1 / 1 Co se dnes naučíme Po absolvování této hodiny byste měli být schopni: rozumět pojmu modus (modální
Odhad stavu matematického modelu křižovatek
Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
Restaurace (obnovení) obrazu při známé degradaci
Restaurace (obnovení) obrazu při známé degradaci Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky
Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 39
Extrakce obrazových příznaků Ing. Aleš Láník, Ing. Jiří Zuzaňák Ústav počítačové grafiky a multimédíı Fakulta informačních technologíı Vysoké Učení technické v Brně Extrakce obrazových příznaků 1 / 39
Digitalizace a zpracování obrazu
Digitalizace a zpracování obrazu Jaroslav Fiřt a), Radek Holota b) a) Nové technologie výzkumné centrum Sedláčkova 15 306 14 Plzeň tel. (+420) 377236881, kl. 237 e-mail: firt@kae.zcu.cz b) Nové technologie
U Úvod do modelování a simulace systémů
U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení
Defektoskopie. 1 Teoretický úvod. Cíl cvičení: Detekce měřicího stavu a lokalizace objektu
Defektoskopie Cíl cvičení: Detekce měřicího stavu a lokalizace objektu 1 Teoretický úvod Defektoskopie tvoří v počítačovém vidění oblast zpracování snímků, jejímž úkolem je lokalizovat výrobky a detekovat
Praktická cvičení. Anotace
Pondělí Praktická cvičení Anotace Úloha 1. Úvod do práce se softwarem Surmon Cílem úlohy je ukázat účastníkům možnosti softwaru Surmon jako nástroje pro práci s daty. Jedná se o práci s pracovní plochou,
Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která
Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho
Počítače a grafika. Ing. Radek Poliščuk, Ph.D. Přednáška č.7. z předmětu
Ústav automatizace a informatiky Fakulta strojního inženýrství Vysoké učení technické v Brně Přednáška č.7. z předmětu Počítače a grafika Ing. Radek Poliščuk, Ph.D. 1/14 Obsahy přednášek Přednáška 7 Zpracování
Operace s obrazem II
Operace s obrazem II Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova Matematická morfologie Segmentace obrazu Klasifikace objektů
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Biofyzikální ústav LF MU Brno. jarní semestr 2011
pro obor Ošetřovatelská péče v gerontologii Biofyzikální ústav LF MU Brno jarní semestr 2011 Obsah letmý dotyk teorie systémů klasifikace a analýza biosignálů Co je signál? Co je biosignál? Co si počít
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
DZDDPZ5 Zvýraznění obrazu - prahování. Doc. Dr. Ing. Jiří Horák Ing. Tomáš Peňáz, Ph.D. Institut geoinformatiky VŠB-TU Ostrava
DZDDPZ5 Zvýraznění obrazu - prahování Doc. Dr. Ing. Jiří Horák Ing. Tomáš Peňáz, Ph.D. Institut geoinformatiky VŠB-TU Ostrava Zvýraznění obrazu Bodová zvýraznění 1-pásmové (radiometrické), vícepásmové
Roman Juránek. Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 30
Extrakce obrazových příznaků Roman Juránek Ústav počítačové grafiky a multimédíı Fakulta informačních technologíı Vysoké Učení technické v Brně Extrakce obrazových příznaků 1 / 30 Motivace Účelem extrakce
ZPRACOVÁNÍ DAT DÁLKOVÉHO PRŮZKUMU
A - zdroj záření B - záření v atmosféře C - interakce s objektem D - změření záření přístrojem E - přenos, příjem dat F - zpracování dat G - využití informace v aplikaci Typ informace získávaný DPZ - vnitřní
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
OBRAZOVÁ ANALÝZA. Speciální technika a měření v oděvní výrobě
OBRAZOVÁ ANALÝZA Speciální technika a měření v oděvní výrobě Prostředky pro snímání obrazu Speciální technika a měření v oděvní výrobě 2 Princip zpracování obrazu matice polovodičových součástek, buňky
13 Barvy a úpravy rastrového
13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody
Kapitola 4: Průběh funkce 1/11
Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU V současné době se pro potlačení šumu u řečového signálu používá mnoho různých metod. Jedná se například o metody spektrálního odečítání, Wienerovy filtrace,
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály Systémy: definice, několik příkladů Vlastnosti systémů
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe. Adam Novozámský (novozamsky@utia.cas.cz)
NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe Adam Novozámský (novozamsky@utia.cas.cz) TEORIE Šum a jeho odstranění ŠUM Co je to šum v obrázku a jak vzniká? Jaké známe typy šumu? ŠUM V obrázku
ZPRACOVÁNÍ OBRAZU přednáška 4
ZPRACOVÁNÍ OBRAZU přednáška 4 Vít Lédl vit.ledl@tul.cz TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
Kapitola 4: Průběh funkce 1/11
Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající
DIGITÁLNÍ OBRAZ. Obrázky (popř. slajdy) převzaty od
DIGITÁLNÍ OBRAZ JANA ŠTANCLOVÁ jana.stanclova@ruk.cuni.cz Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah fáze zpracování obrazu reprezentace obrazu digitalizace obrazu
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE
STATISTIKA 1 Adam Čabla Katedra statistiky a pravděpodobnosti VŠE KONTAKTY WWW: sites.google.com/site/adamcabla E-mail: adam.cabla@vse.cz Telefon: 777 701 783 NB367 na VŠE, konzultační hodiny: Pondělí
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
Základy popisné statistiky
Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2
PŘEVOD ŠEDOTÓNOVÝCH SNÍMKŮ NA BINÁRNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
Princip pořízení obrazu P1
Princip pořízení obrazu P1 Optická vinětace objektivu Optická soustava Mechanická vinětace objektivu Optická soustava Optická soustava Hloubka ostrosti závislá na použitém objektivu, velikosti pixelu a
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,
KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování
Úpravy rastrového obrazu
Přednáška 11 Úpravy rastrového obrazu Geometrické trasformace Pro geometrické transformace rastrového obrazu se používá mapování dopředné prochází se pixely původního rastru a určuje se barva a poloha
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.
1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:
UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
Defektoskopie a klasifikace
1 / 30 Defektoskopie a klasifikace Karel Horák Rozvrh přednášky: 1. Počítačové vidění v průmyslu. 2. Defektoskopie a defektometrie. 3. Zařízení v defektoskopii. 4. Metody v defektoskopii. 5. Distanční
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Geometrické transformace
1/15 Předzpracování v prostoru obrazů Geometrické transformace Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/
Simulace. Simulace dat. Parametry
Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,
PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA)
PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA) Reprezentativní náhodný výběr: 1. Prvky výběru x i jsou vzájemně nezávislé. 2. Výběr je homogenní, tj. všechna x i jsou ze stejného
NÁHODNÁ VELIČINA. 3. cvičení
NÁHODNÁ VELIČINA 3. cvičení Náhodná veličina Náhodná veličina funkce, která každému výsledku náhodného pokusu přiřadí reálné číslo. Je to matematický model popisující více či méně dobře realitu, který
8 Střední hodnota a rozptyl
Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení
Popisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
KOMPRESE OBRAZŮ. Václav Hlaváč, Jan Kybic. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání.
1/25 KOMPRESE OBRAZŮ Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD
HLEDÁNÍ HRAN. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání.
1/35 HLEDÁNÍ HRAN Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac FYZIOLOGICKÁ MOTIVACE 2/35 Výsledky
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
Zpracování digitalizovaného obrazu (ZDO) - Segmentace II
Zpracování digitalizovaného obrazu (ZDO) - Segmentace II Další metody segmentace Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
Základy pravděpodobnosti a statistiky. Popisná statistika
Základy pravděpodobnosti a statistiky Popisná statistika Josef Tvrdík Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace v úterý 14.10 až 15.40 hod. Příklad ze života Cimrman, Smoljak/Svěrák,
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.
3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých
4EK213 LINEÁRNÍ MODELY
4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi
Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP
IV Přednáška Diskrétní náhodná proměnná Charakteristiky DNP Základní rozdělení DNP Diskrétní náhodná veličina Funkce definovaná na Ω, přiřazující každému elementárnímu jevu E prvky X(E) D R kde D je posloupnost
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
DZDDPZ3 Digitální zpracování obrazových dat DPZ. Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava
DZDDPZ3 Digitální zpracování obrazových dat DPZ Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava Digitální zpracování obrazových dat DPZ Předzpracování (rektifikace a restaurace) Geometrické
Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. 1 Př. 1: Cestující na vybraném spoji linky MHD byli dotazováni za účelem zjištění spokojenosti s kvalitou MHD. Legenda 1 Velmi spokojen Spokojen 3 Nespokojen 4 Velmi nespokojen
PRAVDĚPODOBNOST A STATISTIKA 1 Metodický list č 1.
Metodický list č 1. Název tématického celku: Elementární statistické zpracování 1 - Kolekce a interpretace statistických dat, základní pojmy deskriptivní statistiky. Cíl: Základním cílem tohoto tematického
Úloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání