Úvod do mobilní robotiky AIL028
|
|
- Zdeňka Valentová
- před 9 lety
- Počet zobrazení:
Transkript
1 md at robotika.cz prosince 2007
2 1 2 3D model světa ProMIS Cvičení hledání domečku
3 Model štěrbinové kamery Idealizovaný jednoduchý model kamery Paprsek světla vychází z bodu scény, prochází štěrbinou kamery a dopadá do roviny obrázku (image plain) x c u 0a fxc z c f 0c zc
4 Souřadnicové soustavy souřadnice vnějšího světa index w kamerové souřadnice počátek ve středu štěrbiny, osa Z c směřuje od kamery, index c eukleidovské souřadnice v obrázku osy rovnoběžné s kamerovými souřadnicemi, ale X i, Y i leží v rovině obrázku, index i afinní souřadnice obrázku podobné předchozím, osy U, V, W, U nemusí svírat pravý úhel s V, W.
5 prováděná kamerou Bod v prostoru x, světové souřadnice x w = [x w, y w, z w ] T Převod ze světových do kamerových souřadnic: posunutí t a otočení R, tedy platí x c x c = y c = R(x w t) z c Označíme-li si f ohniskovou vzdálenost, z podobnosti trojúhelníků pro převod do roviny obrázku platí: u c = [ fx c, fy ] T x, f z c z c Zajímají nás především afinní souřadnice tohoto bodu.
6 Afinní souřadnice principiální bod průsečík optické osy s rovinou obrázku. V afinních odpovídá bodu u 0a = [u 0, v 0, 0] T. homogenní souřadnice Bod u v homogenních souřadnicích můžeme reprezentovat jako ũ = [U, V, W ] T, a ten se do eukleidovských dvourozměrných souřadnic zobrazí jako u = [u, v] T = [U/W, V /W ] T. afinní transformace celou transformaci lze vyjádřit jako násobení matice 3 3. Neznámé a, b a c sklonění a změna měřítka: ũ = U V W = a b u 0 0 c v fxc z c fyc z c 1 = fa fb u 0 0 fc v x c z c y c z c1
7 Vnitřní a vnější parametry kamery Po přenásobení z c dostaneme: fa fb u 0 x c z c ũ = 0 fc v 0 y c z c = fa fb u 0 0 fc v R(x w t) = = KR(x w t) K se nazývá kalibrační matice kamery a její koeficienty bývají označovány jako vnitřní (intrinsic) parametry kamery, matice R a t se označují jako vnější (extrinsic) parametry kamery a vypovídají o poloze kamery vzhledem k vnějším eukleidovským souřadnicím.
8 závěr umíme transformaci 3D 2D potřebujeme 2D 3D co s tím?
9 3D získáme jako průsečík dvou polopřímek více kamer jedna kamera + znalost změny polohy problém identifikace odpovídajících bodů (matching)
10 Drobné triky aktivní modifikace scény - např. osvětlení viditelným laserem, odečtení obrázku s a bez laseru, threshold značky na podlaze, blikající LEDka čárové kódy
11 Referenční 2D plocha
12 Detekce objektů v obrázku nalezení hranice hranovým detektorem náhodné zvolení dvou reprezentatů verifikace výběru pokud obrázek obsahuje rovnou čáru a 50% bodů na ní leží, tak pravděpodobnost, že vyberu vhodného kandidáta je 25%. Pravděpodobnost, že vyberu vhodného kandidáta v 10ti pokusech je = 94%
13 OpenCV podpora počítačového vidění původně byla vytvořena firmou Intel open source
14 3D model světa ProMIS Cvičení hledání domečku augmented = rozšířená kombinace virtuální reality se skutečností (video) aplikace: architektura, opravářství, medicína...
15 3D model světa 3D model světa ProMIS Cvičení hledání domečku Obtaining 3D Models With a Hand-Held Camera / Marc Pollefeys, SIGGRAPH 2001 je třeba rozumnět vstupním obrázkům videa sledování mnoha bodů scény věrohodnost problémy s osvětlením
16 ProMIS 3D model světa ProMIS Cvičení hledání domečku Professional Minimum Invasion Surgery trainer kombinace reálných laparoskopických nástrojů s virtuální realitou reálný nebo simulovaný endoskop pouze vizuální zpětná vazba info:
17 Hledání domečku 3D model světa ProMIS Cvičení hledání domečku úkol: nalézt v obrázku ikonu domu domeček = čtverec + rovnostranný trojúhelník vstup: barevný obrázek
18 Úloha 1: označení domečku 3D model světa ProMIS Cvičení hledání domečku označit čtverec domečku zeleným křížem
19 Úloha 2: retušování trojúhelníku 3D model světa ProMIS Cvičení hledání domečku odmazání části odpovídající trojúhelníku
20 Úloha 3: vložení obrázku 3D model světa ProMIS Cvičení hledání domečku nahrazení čtverce obrázkem
21 Úloha 4: 3D jehlan 3D model světa ProMIS Cvičení hledání domečku nakreslení místo kříže 3D jehlan
22 Úloha 5: pohyb 3D model světa ProMIS Cvičení hledání domečku parametrizace předešlých úloh: místo obrázku slide-show nebo TV rostoucí a zmenšující se jehlan
23 Úloha 6: virtuální okno 3D model světa ProMIS Cvičení hledání domečku nahrazení čtverce průhledem do jiného (např. virtuálního) světa
Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA
Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic
Kalibrační proces ve 3D
Kalibrační proces ve 3D FCC průmyslové systémy společnost byla založena v roce 1995 jako součást holdingu FCC dodávky komponent pro průmyslovou automatizaci integrace systémů kontroly výroby, strojového
Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr
Geometrické transformace v prostoru Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Shodné transformace 1 Shodné transformace stejný přístup jako ve 2D shodné transformace (shodnosti,
11 Zobrazování objektů 3D grafiky
11 Zobrazování objektů 3D grafiky Studijní cíl Tento blok je věnován základním algoritmům zobrazení 3D grafiky. Postupně budou probrány základní metody projekce kolmé promítání, rovnoběžné promítání a
Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.
Lineární funkce Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Číslo b je hodnota funkce f v bodě 0. Definičním oborem lineární funkce je množina
Analytická geometrie (AG)
Analytická geometrie (AG) - zkoumá geometrické útvary pomocí algebraických a analytických metod Je založena na vektorech a soustavě souřadnic, rozděluje se na AG v rovině a v prostoru. Analytická geometrie
Maticová optika. Lenka Přibylová. 24. října 2010
Maticová optika Lenka Přibylová 24. října 2010 Maticová optika Při průchodu světla optickými přístroji dochází k transformaci světelného paprsku, vlnový vektor mění úhel, který svírá s optickou osou, paprsek
CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 22 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Kontroloři Státní zemědělské a potravinářské inspekce
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
ŠVP Školní očekávané výstupy. - vytváří konkrétní soubory (peníze, milimetrový papír, apod.) s daným počtem prvků do 100
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 1. období 3. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo M3101 používá přirozená
MATEMATIKA. Problémy a úlohy, v nichž podrobujeme geometrický objekt nějaké transformaci
MATEMATIKA Úloha o čtverci a přímkách ŠÁRKA GERGELITSOVÁ TOMÁŠ HOLAN Matematicko-fyzikální fakulta UK, Praha Problémy a úlohy, v nichž podrobujeme geometrický objekt nějaké transformaci (například podobnosti)
X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
7 Analytické vyjádření shodnosti
7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +
2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2
Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací
Vlastnosti pravděpodobnosti, geometrická pravděpodobnost
Vlastnosti pravděpodobnosti, geometrická pravděpodobnost 1. Přátelé Igor a Dano si domluví schůzku mezi 9.00 a 10.00. Jejich příchody na dané místo jsou náhodné v rámci smluveného časového intervalu. Každý
6 Samodružné body a směry afinity
6 Samodružné body a směry afinity Samodružnými body a směry zobrazení rozumíme body a směry, které se v zobrazují samy na sebe. Například otočení R(S má jediný samodružný bod, střed S, anemá žádný samodružný
ROZ1 CVIČENÍ VI. Geometrická registrace (matching) obrazů
ROZ1 CVIČENÍ VI. Geometrická registrace (matching) obrazů REGISTRACI OBRAZU (IMAGE REGISTRATION) Více snímků téže scény Odpovídající pixely v těchto snímcích musí mít stejné souřadnice Pokud je nemají
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.
Kvadratická funkce Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí y = ax 2 + bx + c Číslo a je různé od nuly, b,c jsou libovolná reálná čísla. Definičním oborem kvadratické funkce je
Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr
Geometrické transformace v rovině Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Shodné transformace 1 Shodné transformace shodné transformace (shodnosti, izometrie) převádějí objekt
Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy
36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem
Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.
5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených
Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné.
11 Stejnolehlost Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné. Definice 26. Budiž dán bod S a reálné číslo κ (různé od 0 a 1). Stejnolehlost H(S; κ) se středem S
37. PARABOLA V ANALYTICKÉ GEOMETRII
37.. Napiš rovnici paraboly, která má osu rovnoběžnou s osou y a prochází body A 0; 60, B 4; 8, C 8;36. 0m p60n 4m p8n 8m p36n m p pn 0 6 8 6 mm p pn 64 6 7 3 mm p pn 6 8m64 p 3 64 6m9 p Je-li osa rovnoběžná
Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.
U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek
Úvod Typy promítání Matematický popis promítání Implementace promítání Literatura. Promítání. Pavel Strachota. FJFI ČVUT v Praze
Promítání Pavel Strachota FJFI ČVUT v Praze 30. března 2011 Obsah 1 Úvod 2 Typy promítání 3 Matematický popis promítání 4 Implementace promítání Obsah 1 Úvod 2 Typy promítání 3 Matematický popis promítání
PLANIMETRIE úvodní pojmy
PLANIMETRIE úvodní pojmy Je část geometrie zabývající se studiem geometrických útvarů v rovině. Základními stavebními kameny v rovině budou bod a přímka. 1) Přímka a její části Dvěma různými body lze vést
Lineární transformace
Lineární transformace 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.c http://cgg.mff.cuni.c/~pepca/ 1 / 28 Požadavk běžně používané transformace posunutí, otočení, většení/menšení, kosení,..
5. Statika poloha střediska sil
5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny
pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A
Přijímací zkouška na MFF UK pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé úlohy
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo
AXONOMETRIE - 2. část
AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.
Globální extrémy. c ÚM FSI VUT v Brně. 10. ledna 2008
10. ledna 2008 Příklad. Určete globální extrémy funkce f(x, y) = x 2 + 2xy + 2y 2 3x 5y na množině M. Množina M je trojúhelník určený body A[0, 2], B[3, 0], C[0, 1]. Protože množina M je kompaktní (uzavřená,
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,
Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou
Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí
Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,
5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu
Michal Zamboj. January 4, 2018
Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj January 4, 018 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu
Obrázek 101: Podobné útvary
14 Podobná zobrazení Obrázek 101: Podobné útvary Definice 10. [Podobné zobrazení] Geometrické zobrazení f se nazývá podobné zobrazení, jestliže existuje kladné reálné číslo k tak, že pro každé dva body
Očekávané výstupy z RVP Učivo Přesahy a vazby
Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel : počítání do dvaceti - číslice
Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků
Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy
Základní geometrické tvary
Základní geometrické tvary č. 37 Matematika 1. Narýsuj bod A. 2. Narýsuj přímku b. 3. Narýsuj přímku, která je dána body AB. AB 4. Narýsuj polopřímku CD. CD 5. Narýsuj úsečku AB. 6. Doplň. Rýsujeme v rovině.
c jestliže pro kladná čísla a,b,c platí 3a = 2b a 3b = 5c.
Úloha 1 1 b. Od součtu neznámého čísla a čísla 17 odečteme rozdíl těchto čísel v daném pořadí. Vypočtěte a zapište výsledek v. Úloha 2 1 b. 25 Na číselné ose jsou obrazy čísel 0 a 1 vzdáleny 5 mm. Určete
Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát
Michal Veselý, 00 Základní části fotografického aparátu tedy jsou: tělo přístroje objektiv Pochopení funkce běžných objektivů usnadní zjednodušená představa, že objektiv jako celek se chová stejně jako
CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.
4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,
Souřadnicové prostory
Prostor objektu Tr. objektu Tr. modelu Prostor scény Souřadnicové prostory V V x, y z x, y z z -z x, y Tr. objektu V =V T 1 T n M Tr. modelu Tr. scény x, y Tr. pohledu Tr. scény Tr. pohledu Prostor pozorovatele
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Úlohy nad rastrovými daty Daniela
Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje
Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII V úvodu analytické geometrie jsme vysvětlili, že její hlavní snahou je popsat geometrické útvary (body, vektory, přímky, kružnice,...) pomocí čísel nebo proměnných.
Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností.
Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností. Metody řešení konstrukčních úloh: množinou bodů zobrazením výpočtem kombinací předchozích způsobů Konstrukční
Perspektiva. Doplňkový text k úvodnímu cvičení z perspektivy. Obsahuje: zobrazení kružnice v základní rovině metodou osmi tečen
Perspektiva Doplňkový text k úvodnímu cvičení z perspektivy Obsahuje: úvodní pojmy určení skutečné velikosti úsečky zadané v různých polohách zobrazení kružnice v základní rovině metodou osmi tečen 1 Příklad
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka
Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška
7.5.3 Hledání kružnic II
753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou
kamerou. Dle optických parametrů objektivu mohou v získaném obraze nastat geometrická
Odstranění geometrických zkreslení obrazu Vstupní obraz pro naše úlohy získáváme pomocí optické soustavy tvořené objektivem a kamerou. Dle optických parametrů objektivu mohou v získaném obraze nastat geometrická
Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy
1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné
JAK NA HYPERBOLU S GEOGEBROU
Trendy ve vzdělávání 015 JAK NA HYPERBOLU S GEOGEBROU KRIEG Jaroslav, CZ Resumé Článek ukazuje, jak pomocí GeoGebry snadno řešit úlohy, které vedou na konstrukci hyperboly, případně jak lehce zkonstruovat
Předpokládané znalosti žáka 1. stupeň:
Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje
Geometrie pro počítačovou grafiku - PGR020
Geometrie pro počítačovou grafiku - PGR020 Zbyněk Šír Matematický ústav UK Zbyněk Šír (MÚ UK) - Geometrie pro počítačovou grafiku - PGR020 1 / 18 O čem předmět bude Chceme podat teoretický základ nezbytný
(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,
1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
Opakování k maturitě matematika 4. roč. TAD 2 <
8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární
Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU
Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Analytická geometrie. Hyperbola VY_32_INOVACE_M0119.
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII SOUŘADNICOVÉ SOUSTAVY VE FTM hlavní souřadnicové soustavy systém snímkových souřadnic systém modelových
10. Analytická geometrie kuželoseček 1 bod
10. Analytická geometrie kuželoseček 1 bod 10.1. Kružnice opsaná obdélníku ABCD, kde A[2, 3], C[8, 3], má rovnici a) x 2 10x + y 2 + 7 = 0, b) (x 3) 2 + (y 3) 2 = 36, c) x 2 + 10x + y 2 18 = 0, d) (x 10)
Geometrické transformace pomocí matic
Geometrické transformace pomocí matic Pavel Strachota FJFI ČVUT v Praze 2. dubna 2010 Obsah 1 Úvod 2 Geometrické transformace ve 2D 3 Geometrické transformace ve 3D Obsah 1 Úvod 2 Geometrické transformace
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické
Další polohové úlohy
5.1.16 alší polohové úlohy Předpoklady: 5115 Průniky přímky s tělesem Př. 1: Je dána standardní krychle. Sestroj průnik přímky s krychlí pokud platí: leží na polopřímce, =, leží na polopřímce, =. Příklad
May 31, Rovnice elipsy.notebook. Elipsa 2. rovnice elipsy. SOŠ InterDact Most, Mgr.Petra Mikolášková
Elipsa 2 rovnice elipsy SOŠ InterDact Most, Mgr.Petra Mikolášková 1 Název školy Autor Název šablony Číslo projektu Předmět SOŠ InterDACT s.r.o. Most Mgr. Petra Mikolášková III/2_Inovace a zkvalitnění výuky
Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32
Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;
ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.
ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní
CVIČNÝ TEST 6. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 6 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Každý z n žáků jedné třídy z gymnázia v Přelouči se
Aplikace. Středové promítání. A s. Výpočet pohybu kamery rekonstrukcí videosekvence 3D rekonstrukce objektů 3D modelování
Aplikace Výpočet pohybu kamery rekonstrukcí videosekvence 3D rekonstrukce objektů 3D modelování Středové promítání σ A S B S...střed promítání ν...průmětna σ...centrální rovina σ π, S σ π A s B σ, neexistuje
Michal Zamboj. December 23, 2016
Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu
Střední příčky trojúhelníku
1.7.12 Střední příčky trojúhelníku Předpoklady: 010711 Př. 1: Narýsuj libovolný trojúhelník A (zvol ho tak, aby se co nejvíce lišil od trojúhelníku, který narýsoval soused). Najdi středy všech stran S
SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ
Předmět: Ročník: Vytvořil: Datum: MTEMTIK DRUHÝ Mgr. Tomáš MŇÁK 21. června 2012 Název zpracovaného celku: SHODNÁ ZORZENÍ V ROVINĚ Teoretická část GEOMETRICKÁ ZORZENÍ V ROVINĚ Zobrazení Z v rovině je předpis,
Funkce - pro třídu 1EB
Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
Automatické rozpoznávání dopravních značek
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ Jiří Hofman Automatické rozpoznávání dopravních značek Semestrální práce z předmětu ITS 2012 Obsah 1. Automatické rozpoznávání dopravních značek (ATSR)...
Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -
Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické
1. Přímka a její části
. Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v
Gymnázium, Brno, Elgartova 3
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma: Analytická geometrie
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.
Optika pro mikroskopii materiálů I
Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických
TECHNICKÁ DOKUMENTACE
VŠB-TU Ostrava, Fakulta elektrotechniky a informatiky Katedra elektrických strojů a přístrojů KAT 453 TECHNICKÁ DOKUMENTACE (přednášky pro hodiny cvičení) Zobrazování Petr Šňupárek, Martin Marek 1 Co je
transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]
[1] Afinní transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím využití například v počítačové grafice Evropský sociální fond Praha & EU. Investujeme do
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
pracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Funkce kvadratická funkce Mirek Kubera žák načrtne grafy požadovaných funkcí, formuluje a zdůvodňuje vlastnosti studovaných funkcí, modeluje závislosti
Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky
Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr
REALIZACE BAREVNÉHO KONTRASTU DEFEKTŮ V OPTICKÉ PROSTOVĚ-FREKVENČNÍ OBLASTI SPEKTRA
REALIZACE AREVNÉHO KONTRASTU DEFEKTŮ V OPTICKÉ PROSTOVĚFREKVENČNÍ OLASTI SPEKTRA. Úvod Antonín Mikš Jiří Novák Fakulta stavební ČVUT katedra fyziky Thákurova 7 66 9 Praha 6 V technické praxi se často vyskytuje
Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem
Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A
metoda Regula Falsi 23. října 2012
Hledání kořenů rovnic jedné reálné proměnné metoda Regula Falsi Michal Čihák 23. října 2012 Metoda Regula Falsi hybridní metoda je kombinací metody sečen a metody půlení intervalů předpokladem je (podobně
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a
- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:
1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.