Charakterizace materiálů I KFY / P224. Martin Kormunda
|
|
- Michal Tobiška
- před 9 lety
- Počet zobrazení:
Transkript
1 Charakterizace materiálů I KFY / P224
2 Přednáška 3 SEM (Scanning Electron Microscopy) TEM (Transmition Electron Microscopy)
3 Mikroskopy
4 Konstrukční princip elektronového mikroskopu Jsou dány vlastnostmi urychlených elektronů Možnost ovlivnění dráhy elektronů elektromagnetickým nebo elektrostatickým polem. Elektronový paprsek se může účinně šířit pouze ve vakuu. Elektronový paprsek je možno pozorovat pouze nepřímo (fluorescenční stínítko, fotografická deska, televizní obrazovka). Druh elektronového mikroskopu (prozařovací, řádkovací) dán interakcí elektronů s preparátem, která se užívá k zobrazení ( prozářené elektrony; vyražené =sekundární elektrony).
5 Interakce elektronů se vzorkem S. Jackson, Metal Oxide Catalyst, ISBN:
6 Mikroskopy - TEM Hitachi H kV Transmission Electron Microscope JEOL2010F Simulátor TEM
7 Proč elektronová mikroskopie Jakýkoliv mikroskop může maximálně rozlišit (přibližně) pouze 2 body ležící od sebe ve vzdálenosti ½ λ (vlnové délky) zdroje osvětlení. Viditelné světlo má λ přibližně 550nm = světelný mikroskop má rozlišovací schopnost přibližně 250nm. Maximální užitečné zvětšení je cca 1000x. Rozlišovací schopnost oka/rozlišovací schopnost mikroskopu=0,25/2, = 1000x Vlnová délka příslušející urychlenému elektronu (60kV) je přibližně 0,005nm (=stotisíckrát kratší než viditelné světlo). 0,25/2, = x Praktická rozlišovací schopnost elektronového mikroskopu je 0,5-0,7 nm, špičkově 0,25-0,3nm, tedy méně než teoretická hodnota (vady elektronoptického systému).
8 TEM Transmisní elektronový mikroskop je možné popsat jako složité technické zařízení, které umožňuje pozorování preparátů do tloušťky 100 nm při vysokém zvětšení a s velkou rozlišovací schopností. Vzhledem k příbuznosti paprskových diagramů lze jej považovat za analogii světelného mikroskopu v procházejícím světle. Oba přístroje mají společnou i řadu součástí - zdroje světla nebo elektronů, čočky skleněné nebo elektromagnetické a v obou se preparát umísťuje na mechanický stolek. TEM potřebuje ke své činnosti i mnoho dalších systémů, které u světelného mikroskopu nejsou, např. vysokonapěťové zdroje, elektroniku k řízení mikroskopu a výkonný vakuový systém pro vyčerpání jeho vnitřních prostor mikroskopu na hodnotu, která zabezpečí střední volnou dráhu elektronu alespoň v délce 3 m.
9 Interakce elektronového paprsku se vzorkem Tenkým vzorkem pod 100 nm část elektronů prochází ( prozáření ) beze změny část elektronů se absorbuje (teplo!) Prozařovací = transmisní elektronový mikroskop TEM (= stínový obraz)
10 Tenký vzorek Při průchodu elektron těsně míjí: atomové jádro = velká úchylka směru, ztráta rychlosti = elastický (pružný) rozptyl zasáhne jiný elektron = malá úchylka ve směru, ztráta velké části rychlosti = neelastický (nepružný) rozptyl = změna vlnové délky = chromatická vada = preparát musí být tenký odstranění uchýlených elektronů = clona mezi preparátem a objektivní čočkou zvětšování kontrastu preparátu = vnášení atomů těžkých kovů (Pb, U, W, Os, ), které mají větší náboj jádra a snáze působí elastický rozptyl.
11 Tlustý vzorek část elektronů se absorbuje (=teplo) část elektronů vyráží z povrchu jiné elektrony (=sekundární elektronzy) s malou energií. Z těch se rekonstruuje obraz = řádkovací = skenovací = rastrovací elektronový mikroskop = SEM.
12 Další důležité interakce = vznik rentgenových paprsků = analýza atomového složení preparátu; mikrosonda : buď délka vlny (spektrometr vlnově disperzní vždy jej jeden prvek od Be) nebo velikost energie (spektrometr energiově disperzní EDAX všechny prvky od Na)
13 TEM a optický mikroskop Oba přístroje mají společnou i řadu součástí - zdroje světla nebo elektronů, čočky skleněné nebo elektromagnetické a v obou se preparát umísťuje na mechanický stolek.
14 Kde získat elektrony pro měření Elektronové dělo: funkce: vybavení elektronů, směr, rychlost žhavené wolframové vlákno tvaru V (základní typ) hrot z boritu lanthanu (LaB6) wolframový hrot (autoemisní katoda), nutnost aby elektrony vycházely z co nejmenší plochy fokusační elektroda = Wehneltův válec = (elektrostatická čočka) (stlačuje elektronový svazek do místa těsně před anodou) anoda: potenciální rozdíl mezi katodou a anodou kV (u biologických preparátů obvykle 80 kv). Vysokovoltová elektronová mikroskopie ( kV) = silné objekty, živé objekty
15 Jak ovládat svazek elektronů Zobrazovací systém: elektromagnetické čočky = prstence z velmi čistého, měkkého, železa (= co nejmenší zbytkový magnetismus), zasazené v cívkách napájených stejnosměrným proudem. Dráha elektronu odchylována po spirálovité trajektorii dané směrem magnetických siločar. Otvor v čočce: malé rozměry x přesnost. Nepřesnost: osový astigmatismus. Další zdroj astigmatismu = vrstva zuhelnatělých uhlovodíků v otvorech čoček a clon. Osový astigmatismus: hlavní omezení rozlišovací schopnosti. Korekce: vnější přídatné magnetické pole určeného směru = stigmátor.
16 Vlastnosti elm. čoček pracují pouze ve vakuu pouze spojky lehká fokusovatelnost = změna magnetické hodnoty čočky = změna intenzity proudu v cívce (stabilita proudu v cívce) tvořený obraz se otáčí kolem osy čočky
17 Vady elm. čoček chromatická = kolísání urychlovacího napětí a tím vlnové délky svazku (stabilita vysokého napětí) = změna rychlosti elektronu při průchodu preparátem (neelastický rozptyl) = nutnost tenkého preparátu (50-100nm) sférická = okraj čočky láme jinak než její střed. Řešení = zmenšení úhlové apertury čočky = clony =kovové (Mo, Pt, Au) s otvorem μm
18 Detekce obrazu pro TEM stínítko pokryté ZnS fotografická deska nebo elektronické zpracování obrazu pomocí snímače CCD a obrazovky (počítače)
19 Mikroskop TEM Celková sestava TEM: válec kolona, kde se odehrává tvorba obrazu. Jednotlivé části a ovládací mechanické prvky t. Rozvod vakua a systém ventilů. stůl s elektrickými ovládacími prvky pomocná zařízení: zdroj vysokého napětí, vakuové pumpy
20 Příprava vzorků preparát musí obsahovat drobné částice nebo může být řezem tkání, ale jeho celková tloušťka nesmí přesahovat 100 nm. (Síla preparátu je kompromis: tenký preparát = dobré rozlišení ale malý kontrast, silný preparát obráceně. preparát musí být dostatečně stabilní, aby odolával pobytu ve vakuu a bombardování elektronovým paprskem kontrast preparátu tj. propustnost pro elektrony musí být upravena, aby byla vyhovující plošná velikost preparátu je dána rozměrem (průměr 3mm) kovových (obvykle Cu) terčků s otvory ( síťky ), na které se objekty umisťují.
21 Druhy vzorků Totální (drobné částice a organismy), viry, makromolekuly např. DNA, buňěčné komponenty (dosažení kontrastu: stínování šikmo napařenou vrstvou kovu, negativní barvení ) Repliky (otisky povrchových struktur), dosažení kontrastu: stínování šikmo napařenou vrstvou kovu Ultratenké řezy, aplikace histologických technik na EM. (kontrast: vnášení atomů těžkých kovů Pb, U při histochemických reakcích, kde reakční produk je neprostupný pro elektrony)
22 Repliky Metody přípravy otisků patřily k nejvíce užívaným v začátcích elektronové mikroskopie. V poslední době je tato poněkud složitá metoda využívána vzácně, nejčastěji v kombinaci s metodou mrazového leptání. Otisky se dělí na jednostupňové a dvoustupňové, pozitivní a negativní (obr. 1) Jednostupňový pozitivní otisk se utvoří tak, že objekt se ve vakuu nejprve šikmo nastínuje kovem a pak se na něj kolmo napaří silnější krycí vrstva uhlíku. Replika se potom splaví nebo sejme pomocí plastické hmoty. Jednostupňový negativní otisk se připraví tak, že se na objekt kolmo napaří ve vakuu vrstva uhlíku a stínuje se až sejmutá replika. 1- pozitivní jednostupňový otisk, 2- Negativní jednostupňový otisk, 3- Kormunda Pozitivní nepravý jednostupňový otisk (na opačné straně stínovaný), 4Martin Negativní dvoustupňový otisk, 5- Pozitivní dvoustupňový otisk, A- objekt, B- stínovaná vrstva kovu, C- tenká uhlíková replika, D- silná primární replika plastické hmoty, E- silná podkladová vrstva plastické hmoty
23 Preparační technika elektronové mikroskopie totální preparáty: zvláště důležité pro molekulární biologii. Dva druhy preparace: negativní barvení : suspenze částic a roztok barviva (fosfowolframan K nebo Na, /NH4/2MoO4, UAC, 0,5 1%). Při zaschnutí se vytvoří film kontrastující látky kolem částic a částečně i ve strukturách částic-viry preparáty stínované: napaření těžkého kovu (Pt, Au apod ) = zvýrazňování makromolekul např. DNA repliky: otisky povrchů: dnes hlavně jako součást metody mrazového lámání a leptání freeze fracture a freeze-etching. Jinak použití v biologii jen výjimečné, nyní většinou nahrazeno ultratenké řezy tkáněmi: obdoba klasických histologických technik na mnohem jemnější úrovni. Přechod mezi světelnou a elektronovou mikroskopií = polosilné řezy ( tlusťáky ) Všem způsobům preparace je společné nanesení objektů na nosné terčky = síťky (obvykle z Cu) průměr 3mm. Rozměry ok nepřímo udává ME-SH obvykle mezi 100Mesh (otvory 200μm) a 400MESH (otvory 40μm). Objekty se obvykle montují na síťky pokryté tenkou vrstvou nosné folie, pouze řezy je možno montovat přímo.
24 FIB příprava vzorků pro TEM pomocí Ga iontového děla lze obrábět a sledovat přímo v SEM rizace/mikroobrabenifokusovanym-iontovymsvazkem
25 FIB příprava vzorků pro TEM rizace/mikroobrabenifokusovanym-iontovymsvazkem
26 3D rekonstrukce pomocí TEM W kontakt transistoru v 2D a 3D rekonstrukci vzorek je během měření naklápěn a pak sestaven model, v 3D zřetelné změny tloušťky 100 nm de/2804/analytik/tem/litera tur/tem_2006_aipsemiconductortomography_en.pdf
27 3D rekonstrukce - Plazmová polymerace s nanoinkluzemi TEM 0,5 x 0,5 μm n-hexane content 0% AFM 1 x 1 μm J. Matoušek at. all, Vacuum 84 (2010), IF 1%
28 High resolution TEM - HRTEM v současnosti až 0.8A (0.08 nm). pozorujeme difrakční obrazce, které jsou Fourierovou transformací periodického potenciálu tj. složitá teorie, získání obrázku vyžaduje zpětnou matematickou transformaci měřeného signálu Si proměnná tloušťka Ge /Si
29 Mikroskopy - SEM
30 Rozdíly
31 Princip Elektronový paprsek se vytváří stejně jako v TEM. Fokusuje se soustavou čoček do co nejmenší stopy (průměr 5-10nm), která dopadá na pozorovaný preparát. Pomocí vychylovacích cívek elektronový paprsek přejíždí po povrchu pozorovaného preparátu v řádcích. Dopadem primárního paprsku jsou z preparátu vyráženy sekundární elektrony. Ty jsou přitahovány k detektoru a dopadají na scintilátor s fotonásobičem. Elektrický signál z fotonásobiče je zesílen a určuje intenzitu elektronového paprsku na obrazovce. Primární paprsek po preparátu a paprsek obrazovky běží synchronně.
32 Interakce elektronů s povrchy Typická vzdálenost atomů v pevné látce 0.4 nm = 4 A
33 SE SE mají nízkou energii proto se musí urychlit předpětím cca 10 kv z bližších míst je jich více než z vzdálenějších proto topografický kontrast, každý bod 10 až 1000 elektronů. SE
34 BSE BSE závisí na středním atomovém čísle vzorku. Obraz v odražených elektronech je schopen odlišit oblasti s různým prvkovým složením. Např. uhlík bude tmavý. BSE
35 Zrno z FeOx prášku SE sekundární elektrony BSE zpětně odražené elektrony
36 Tenké vrstvy a povrchové struktury D = o, total gas flow 7 sccm
37 Často kombinace SE + BSE Překrystalizované vlákno žárovky
38 Biologické vzorky SE - Křídlo mouchy
39 Tkaniny a filtry, membrány
40 Volba urychlovacího napětí Používá se mnohem nižší urychlovací napětí než u TEM (SEM obvykle 20 kv, TEM obvykle 80kV). Důvod je, aby se sekundární elektrony uvolňovaly co možná blízko povrchu objektu.
41 Vzorky velikost objektů až několik cm objekt musí být dokonale vysušen a preparován tak, aby povrchové struktury byly co nejlépe zachovány povrch objektu musí být pokryt vodivou vrstvou, která je souvislá, věrně sleduje detaily povrchu a nemaskuje je vodivá vrstva na povrchu preparátu musí umožňovat co největší zisk vyzářených sekundárních elektronů (ne uhlík)
42 Mrazová fixace Je stejně jako při použití chemického způsobu přípravy preparátů prvním a velmi důležitým krokem přípravy. Většina živých organismů obsahuje více než 70 % vody nerovnoměrně rozdělené do membránami ohraničených oblastí. Chceme-li tedy biologický vzorek dobře mrazově zafixovat, musíme vycházet především z vlastností vody, které jej tvoří. Při zmrazování voda vykazuje řadu anomálií, kterými se odlišuje od ostatních látek a které celý proces znesnadňují: - její objem ve zmrazeném stavu je zhruba o 9 % větší než v kapalném stavu - její hustota není nejvyšší v bodě tuhnutí, ale v kapalném stavu při teplotě 277 K - má anomálně vysoký bod tání (273 K), bod varu (373 K) a kritickou teplotu (647 K) - má vysoké vypařovací teplo a dielektrickou konstantu, která přispívá k její roli univerzálního rozpouštědla v biochemických reakcích - je známa řada krystalických forem ledu Tyto anomálie jsou do značné míry způsobeny přítomností intermolekulárních vazeb vodíkových můstků a van der Waalsových sil. V praxi znamenají nebezpečí poškození Martin Kormunda se objemem nebo tvořícími se ultrastruktury v důsledku potrhání buněk zvětšujícím krystaly.
43 Typ ledu v závislosti na rychlosti chlazení Robards a Sleyter, 1985
44 Další časté vybavení SEM Pro určení prvkového složení: spektrometr vlnově disperzní nebo EDAX
45 Literatura Tescan JEOL Wikipedia
46 Příště Schůzka v 17:00 na KBI Za Válcovnou 1000/8
Techniky mikroskopie povrchů
Techniky mikroskopie povrchů Elektronové mikroskopie Urychlené elektrony - šíření ve vakuu, ovlivnění dráhy elektrostatickým nebo elektromagnetickým polem Nepřímé pozorování elektronového paprsku TEM transmisní
Elektronová mikroskopie SEM, TEM, AFM
Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první
Proč elektronový mikroskop?
Elektronová mikroskopie Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop,, 1 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první komerční
ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII
ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII Lidské oko jako optická soustava dvojvypuklá spojka obraz skutečný, převrácený, mozek ho otočí do správné polohy, zmenšený rozlišovací schopnost oka cca 0.25
TEM (Transmition Electron Microscopy) HRTEM (High Resolution TEM) SEM (Scanning Electron Microscopy) EDX (Energy-dispersive X-ray spectroscopy)
TEM (Transmition Electron Microscopy) HRTEM (High Resolution TEM) SEM (Scanning Electron Microscopy) EDX (Energy-dispersive X-ray spectroscopy) Mikroskopy http://www.paru.cas.cz/lem/book/podkap/pic/7.1/1.gif
Elektronová mikroskopie a RTG spektroskopie. Pavel Matějka
Elektronová mikroskopie a RTG spektroskopie Pavel Matějka Elektronová mikroskopie a RTG spektroskopie 1. Elektronová mikroskopie 1. TEM transmisní elektronová mikroskopie 2. STEM řádkovací transmisní elektronová
Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček
Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček Druhy mikroskopie Podle druhu použitého paprsku nebo sondy rozeznáváme tyto základní druhy mikroskopie: Světelná mikrokopie
Vlnová délka světla je cca 0,4 µm => rozlišovací schopnost cca. 0,2 µm 1000 x víc než oko
VŠCHT - Forenzní analýza, 2012 RNDr. M. Kotrlý, KUP Mikroskopie Rozlišovací schopnost lidského oka cca 025 0,25mm Vlnová délka světla je cca 0,4 µm => rozlišovací schopnost cca. 0,2 µm 1000 x víc než oko
Elektronová mikroskopie a mikroanalýza-2
Elektronová mikroskopie a mikroanalýza-2 elektronové dělo elektronové dělo je zařízení, které produkuje elektrony uspořádané do svazku (paprsku) elektrony opustí svůj zdroj katodu- po dodání určité množství
SKENOVACÍ (RASTROVACÍ) ELEKTRONOVÁ MIKROSKOPIE
SKENOVACÍ (RASTROVACÍ) ELEKTRONOVÁ MIKROSKOPIE Klára Šafářová Centrum pro výzkum nanomateriálů, Olomouc 4.12. Workshop: Mikroskopické techniky SEM a TEM Obsah historie mikroskopie proč právě elektrony
C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289
OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17
M I K R O S K O P I E
Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066
Elektronová Mikroskopie SEM
Elektronová Mikroskopie SEM 26. listopadu 2012 Historie elektronové mikroskopie První TEM Ernst Ruska (1931) Nobelova cena za fyziku 1986 Historie elektronové mikroskopie První SEM Manfred von Ardenne
MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ
Mikroskopické techniky MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ Slouží k vizualizaci mikroorganismů Antoni van Leeuwenhoek (1632-1723) Čočka zvětšující 300x Různé druhy mikroskopů, které se liší
Elektronová mikroskopie II
Elektronová mikroskopie II Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Transmisní elektronová mikroskopie TEM Informace zprostředkována prošlými e - (TE, DE) Umožň žňuje studium vnitřní
4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY
4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY 4.1 Mikrostruktura stavebních hmot 4.1.1 Úvod Vlastnosti pevných látek, tak jak se jeví při makroskopickém zkoumání, jsou obrazem vnitřní struktury materiálu. Vnitřní
Analýza vrstev pomocí elektronové spektroskopie a podobných metod
1/23 Analýza vrstev pomocí elektronové a podobných metod 1. 4. 2010 2/23 Obsah 3/23 Scanning Electron Microscopy metoda analýzy textury povrchu, chemického složení a krystalové struktury[1] využívá svazek
Difrakce elektronů v krystalech a zobrazení atomů
Difrakce elektronů v krystalech a zobrazení atomů Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Eva Korytiaková, Gymnázium Nové Zámky, korpal@pobox.sk Abstrakt: Jak vypadá vnitřek hmoty? Lze spatřit
Moderní mikroskopie Elektronová mikroskopie (TEM, SEM) Mikroskopie skenující sondou
Moderní mikroskopie Elektronová mikroskopie (TEM, SEM) Mikroskopie skenující sondou Doc.RNDr. Roman Kubínek, CSc. Katedra experimentální fyziky Přírodovědecké fakulty, Univerzita Palackého v Olomouci Elektronová
TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE
TENTO MATERIÁL SLOUŽÍ JAKO PRACOVNÍ TEXT (DOPLNĚK K PRAKTICKÝM ÚLOHÁM) TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE Transmisní elektronová mikroskopie je jednou z experimentálních metod, bez kterých se v současné
3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).
PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost
Základní pojmy a vztahy: Vlnová délka (λ): vzdálenost dvou nejbližších bodů vlnění kmitajících ve stejné fázi
LRR/BUBCV CVIČENÍ Z BUNĚČNÉ BIOLOGIE 1. SVĚTELNÁ MIKROSKOPIE A PREPARÁTY V MIKROSKOPII TEORETICKÝ ÚVOD: Mikroskopie je základní metoda, která nám umožňuje pozorovat velmi malé biologické objekty. Díky
TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE
TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE Klára Šafářová Centrum pro výzkum nanomateriálů, UP Olomouc 4.12.2009 Workshop: Mikroskopické techniky SEM a TEM Obsah konstrukce transmisního elektronového mikroskopu
METODY ANALÝZY POVRCHŮ
METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější
Laboratoř charakterizace nano a mikrosystémů: Elektronová mikroskopie
: Jitka Kopecká ÚVOD je užitečný nástroj k pozorování a pochopení nano a mikrosvěta. Nachází své uplatnění jak v teoretickém výzkumu, tak i v průmyslu (výroba polovodičových součástek, solárních panelů,
Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření
Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá
Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce
Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ T. Jeřábková Gymnázium, Brno, Vídeňská 47 ter.jer@seznam.cz V. Košař Gymnázium, Brno, Vídeňská 47 vlastik9a@atlas.cz G. Malenová Gymnázium Třebíč malena.vy@quick.cz
Testování nanovlákenných materiálů
Testování nanovlákenných materiálů Eva Košťáková KNT, FT, TUL Obsah přednášky Testování nanovlákenných materiálů -Vizualizace (zobrazování nanovlákenných materiálů) -Chemické složení nanovlákenných materiálů
Mikroskopické techniky
Mikroskopické techniky Světelná mikroskopie Elektronová mikroskopie Mikroskopie skenující sondou Zkráceno z přednášky doc. RNDr. R. Kubínka, CSc. Zdroj informací: http://apfyz.upol.cz/ucebnice/elmikro.html
Mikroskopie rastrující sondy
Mikroskopie rastrující sondy Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Metody mikroskopie rastrující sondy SPM (scanning( probe Microscopy) Metody mikroskopie rastrující sondy soubor
Optika pro mikroskopii materiálů I
Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických
ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX
/ 1 ZPRACOVAL Mgr. Martin Hložek TMB MCK, 2011 ZADAVATEL David Humpola Ústav archeologické památkové péče v Brně Pobočka Znojmo Vídeňská 23 669 02 Znojmo OBSAH Úvod Skanovací elektronová mikroskopie (SEM)
Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný
Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA2_12 Název materiálu: Elektrický proud v plynech. Tematická oblast: Fyzika 2.ročník Anotace: Prezentace slouží k výkladu elektrického proudu v plynech. Očekávaný
DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj
DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým
Metody charakterizace
Metody y strukturní analýzy Metody charakterizace nanomateriálů I Význam strukturní analýzy pro studium vlastností materiálů Experimentáln lní metody využívan vané v materiálov lovém m inženýrstv enýrství:
ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek
/ 1 ZPRACOVAL Martin Hložek TMB MCK, 2011 ZADAVATEL PhDr. Margaréta Musilová Mestský ústav ochrany pamiatok Uršulínska 9 811 01 Bratislava OBSAH Úvod Skanovací elektronová mikroskopie (SEM) Energiově-disperzní
Elektronová mikroanalýz Instrumentace. Metody charakterizace nanomateriálů II
Elektronová mikroanalýz ýza 1 Instrumentace Metody charakterizace nanomateriálů II RNDr. Věra V Vodičkov ková,, PhD. Elektronová mikroanalýza relativně nedestruktivní rentgenová spektroskopická metoda
EM, aneb TEM nebo SEM?
EM, aneb TEM nebo SEM? Jiří Šperka Přírodovědecká fakulta, Masarykova univerzita, Brno 2. únor 2011 / Prezentace pro studentský seminář Jiří Šperka (Masarykova univerzita) SEM a TEM 2. únor 2011 1 / 21
Transmisní elektronová mikroskopie (TEM)
Historie vývoje elektronové mikroskopie Transmisní elektronová mikroskopie (TEM) 1897 J.J. Thomson objevil a popsal částici elektron při studiu vlastností katodového záření. Nobelova cena za fyziku v r.
Skupenské stavy látek. Mezimolekulární síly
Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.
Zobrazovací metody v nanotechnologiích
Zobrazovací metody v nanotechnologiích Optická mikroskopie Z vlnové povahy světla plyne, že není možné detekovat menší podrobnosti než polovina vlnové délky světla. Viditelné světlo má asi 500 nm, nejmenší
VETERINÁRNÍ A FARMACEUTICKÁ UNIVERZITA BRNO ELEKTRONOVÁ MIKROSKOPIE PRO PŘEDMĚT INSTRUMENTÁLNÍ ANALYTICKÉ METODY VE FARMACEUTICKÉ TECHNOLOGII
VETERINÁRNÍ A FARMACEUTICKÁ UNIVERZITA BRNO FARMACEUTICKÁ FAKULTA ÚSTAV TECHNOLOGIE LÉKŮ ELEKTRONOVÁ MIKROSKOPIE PRO PŘEDMĚT INSTRUMENTÁLNÍ ANALYTICKÉ METODY VE FARMACEUTICKÉ TECHNOLOGII Studijní materiál
25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory
25 A Vypracoval : Zdeněk Žák Pyrometrie Bezdotykové měření Pyrometrie (obrázky viz. sešit) Bezdotykové měření teplot je měření povrchové teploty těles na základě elektromagnetického záření mezi tělesem
Typy světelných mikroskopů
Typy světelných mikroskopů Johann a Zacharias Jansenové (16. stol.) Systém dvou čoček délka 1,2 m 17. stol. Typy světelných mikroskopů Jednočočkový mikroskop 17. stol. Typy světelných mikroskopů Italský
Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -
Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické
Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje
Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného
Optické metody a jejich aplikace v kompozitech s polymerní matricí
Optické metody a jejich aplikace v kompozitech s polymerní matricí Doc. Ing. Eva Nezbedová, CSc. Polymer Institute Brno Ing. Zdeňka Jeníková, Ph.D. Ústav materiálového inženýrství, Fakulta strojní, ČVUT
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části
Spektroskopické é techniky a mikroskopie. Spektroskopie. Typy spektroskopických metod. Cirkulární dichroismus. Fluorescence UV-VIS
Spektroskopické é techniky a mikroskopie Spektroskopie metody zahrnující interakce mezi světlem (fotony) a hmotou (elektrony a protony v atomech a molekulách Typy spektroskopických metod IR NMR Elektron-spinová
Testování nanovlákenných materiálů. Eva Košťáková KNT, FT, TUL
Testování nanovlákenných materiálů Eva Košťáková KNT, FT, TUL Obsah přednášky Testování nanovlákenných materiálů -Vizualizace (zobrazování nanovlákenných materiálů) -Chemické složení nanovlákenných materiálů
Nanolitografie a nanometrologie
Nanolitografie a nanometrologie 1 Nanolitografie 2 Litografie svazkem 3 Softlitografie 4 Skenovací nanolitografie Nanolitografie Poznámky k tvorbě nanostruktur tvorba užitečných nanostruktur vyžaduje spojení
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Ionizační detektor pro ESEM Ionization detector for ESEM DIPLOMOVÁ PRÁCE MASTER S THESIS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
M I K R O S K O P I E
Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066
CHARAKTERIZACE MIKROSTRUKTURY OCELÍ POMOCÍ POMALÝCH A VELMI POMALÝCH ELEKTRONŮ
CHARAKTERIZACE MIKROSTRUKTURY OCELÍ POMOCÍ POMALÝCH A VELMI POMALÝCH ELEKTRONŮ Aleš LIGAS 1, Jakub PIŇOS 1, Dagmar JANDOVÁ 2, Josef KASL 2, Šárka MIKMEKOVÁ 1 1 Ústav přístrojové techniky AV ČR, v.v.i.,
Elektronová mikroskopie
Elektronová mikroskopie Princip elektronové mikroskopie Optické přístroje podobně jako světelné mikroskopy. Místo světelného svazku používají elektrickým polem urychlené elektrony. Místo skleněných čoček
Elektřina. Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou.
Elektrostatika: Elektřina pro bakalářské obory Souvislost a analogie s mechanikou. Elektron ( v antice ) =?? Petr Heřman Ústav biofyziky, UK.LF Elektrostatika: Souvislost a analogie s mechanikou. Elektron
ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH
ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH PŘIHLÁŠKA STUDENTSKÉHO PROJEKTU Projekt Název projektu: Rozptyl primárních elektronů na atomech zalévacího média biologického materiálu
RENTGENKY ČASU. Vojtěch U l l m a n n f y z i k OD KATODOVÉ TRUBICE PO URYCHLOVAČE
RENTGENKY V PROMĚNÁCH ČASU OD KATODOVÉ TRUBICE PO URYCHLOVAČE Vojtěch U l l m a n n f y z i k Klinika nukleární mediciny FN Ostrava Ústav zobrazovacích metod ZSF OU Ostrava VÝBOJKY: plynem plněné trubice
Optická mikroskopie a spektroskopie nanoobjektů. Nanoindentace. Pavel Matějka
Optická mikroskopie a spektroskopie nanoobjektů Nanoindentace Pavel Matějka Optická mikroskopie a spektroskopie nanoobjektů 1. Optická mikroskopie blízkého pole 1. Princip metody 2. Instrumentace 2. Optická
Ultrazvuková defektoskopie. Vypracoval Jan Janský
Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací
Fotonásobič. fotokatoda. typicky: - koeficient sekundární emise = počet dynod N = zisk: G = fokusační elektrononová optika
Fotonásobič vstupní okno fotokatoda E h fokusační elektrononová optika systém dynod anoda e zesílení G N typicky: - koeficient sekundární emise = 3 4 - počet dynod N = 10 12 - zisk: G = 10 5-10 7 Fotonásobič
Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur)
Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur) -přenesení dané struktury na povrch strukturovaného substrátu Princip - interakce
10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita
Chování a vlastnosti nanočástic ovlivňuje velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita K. Záruba Optická mikroskopie Elektronová mikroskopie (SEM, TEM) Fotoelektronová
Chemie a fyzika pevných látek p2
Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl
Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál
Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických
Základní pojmy. Je násobkem zvětšení objektivu a okuláru
Vznik obrazu v mikroskopu Mikroskop se skládá z mechanické části (podstavec, stojan a stolek s křížovým posunem), osvětlovací části (zdroj světla, kondenzor, clona) a optické části (objektivy a okuláry).
Testování nanovlákenných materiálů
Testování nanovlákenných materiálů Vizualizace Eva Košťáková KNT, FT, TUL Obsah přednášky Testování nanovlákenných materiálů -Vizualizace (zobrazování nanovlákenných materiálů) -Chemické složení nanovlákenných
Viková, M. : MIKROSKOPIE V Mikroskopie V M. Viková
Mikroskopie V M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz Hloubka ostrosti problém m velkých zvětšen ení tloušťka T vrstvy vzorku kolmé k optické ose, kterou vidíme ostře zobrazenou Objektiv
Moderní světelná a elektronová mikroskopie
Moderní světelná a elektronová mikroskopie Doc. RNDr. Roman Kubínek, CSc. Katedra experimentální fyziky Přírodovědecké fakulty Univerzity Palackého v Olomouci Tento projekt je spolufinancován Evropským
Difrakce elektronů v krystalech, zobrazení atomů
Difrakce elektronů v krystalech, zobrazení atomů T. Sýkora 1, M. Lanč 2, J. Krist 3 1 Gymnázium Českolipská, Českolipská 373, 190 00 Praha 9, tomas.sykora@email.cz 2 Gymnázium Otokara Březiny a SOŠ Telč,
Obrazové snímače a televizní kamery
Obrazové snímače a televizní kamery Prof. Ing. Václav Říčný, CSc. Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Snímače obrazových signálů akumulační a neakumulační. Monolitické
Obrazové snímače a televizní kamery
Obrazové snímače a televizní kamery Prof. Ing. Václav Říčný, CSc. Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Snímače obrazových signálů akumulační a neakumulační. Monolitické
akustika zvuk, zdroj zvuku šíření zvuku odraz zvuku tón, výška tónu kmitočet tónu hlasitost zvuku světlo, zdroj světla přímočaré šíření světla
- určí, co je v jeho okolí zdrojem zvuku, pozná, že k šíření zvuku je nezbytnou podmínkou látkové prostředí - chápe odraz zvuku jako odraz zvukového vzruchu od překážky a dovede objasnit vznik ozvěny -
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ SCINTILAČNÍ DETEKTOR SEKUNDÁRNÍCH ELEKTRONŮ PRO REM PRACUJÍCÍ PŘI VYŠŠÍM TLAKU V KOMOŘE VZORKU BAKALÁŘSKÁ PRÁCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Nedestruktivní metody 210DPSM
Nedestruktivní metody 210DPSM Jan Zatloukal Diagnostické nedestruktivní metody proces stanovení určitých charakteristik materiálu či prvku bez jeho destrukce pomocí metod založených na principu interakce
TELEVIZNÍ ZÁZNAM A REPRODUKCE OBRAZU
TELEVIZNÍ ZÁZNAM A REPRODUKCE OBRAZU Hystorie Alexander Bain (Skot) 1843 vynalezl fax (na principu vodivé desky s napsaným textem nevodivým, který se snímal kyvadlem opatřeným jehlou s posunem po malých
Fyzika II. Marek Procházka Vlnová optika II
Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou
Nanoskopie Elektronová mikroskopie (TEM, SEM) Mikroskopie skenující sondou
Nanoskopie Elektronová mikroskopie (TEM, SEM) Mikroskopie skenující sondou Doc.RNDr. Roman Kubínek, CSc. Katedra experimentální fyziky Přírodovědecké fakulty, Univerzita Palackého v Olomouci Elektronová
Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen
J = S A.T 2. exp(-eφ / kt)
Vakuové součástky typy a využití Obrazovky: - osciloskopické - televizní + monitory Elektronky: - vysokofrekvenční (do 1 GHz, 1MW) - mikrovlnné elektronky ( až do 20 GHz, 10 MW) - akustické zesilovače
Optika. Zápisy do sešitu
Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá
Chemie a fyzika pevných látek l
Chemie a fyzika pevných látek l p2 difrakce rtg.. zářenz ení na pevných látkch,, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie
2. Určete frakční objem dendritických částic v eutektické slitině Mg-Cu-Zn. Použijte specializované programové vybavení pro obrazovou analýzu.
1 Pracovní úkoly 1. Změřte střední velikost zrna připraveného výbrusu polykrystalického vzorku. K vyhodnocení snímku ze skenovacího elektronového mikroskopu použijte kruhovou metodu. 2. Určete frakční
Theory Česky (Czech Republic)
Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider
INTERAKCE IONTŮ S POVRCHY II.
Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených
Elektřina: Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou.
Elektřina pro bakalářské obory Elektron ( v antice ) =?? Petr Heřman Ústav biofyziky, K.LF Elektron ( v antice ) = jantar Jak souvisí jantar s elektřinou?? Jak souvisí jantar s elektřinou: Mechanické působení
Transmisní elektronová mikroskopie Skenovací elektronová mikroskopie Mikroskopie skenující sondou. Mikroskopické metody SEM, TEM, AFM
Mikroskopické metody SEM, TEM, AFM Rozlišení v optické mikroskopii důvod pro vyvíjení nových technik omezení rozlišení světelné mikroskopie nejmenší vzdálenost dvou bodů, kterou ještě rozlišíme závisí
Laboratorní úloha č. 7 Difrakce na mikro-objektech
Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
VIBRAČNÍ SPEKTROMETRIE
VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Elektřina a magnetismus - elektrický náboj tělesa, elektrická síla, elektrické pole, kapacita vodiče - elektrický proud v látkách, zákony
CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ
CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ Lukáš ZUZÁNEK Katedra strojírenské technologie, Fakulta strojní, TU v Liberci, Studentská 2, 461 17 Liberec 1, CZ,
Krystalografie a strukturní analýza
Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl
Princip rastrovacího konfokálního mikroskopu
Konfokální mikroskop Obsah: Konfokální mikroskop... 1 Princip rastrovacího konfokálního mikroskopu... 1 Rozlišovací schopnost... 2 Pozorování povrchů ve skutečných barvách... 2 Konfokální mikroskop Olympus
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY KONTRAST V OBRAZE ZÍSKANÉM POMOCÍ IONIZAČNÍHO DETEKTORU VE VP SEM
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník
VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají
Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole.
Magnetické pole Stacionární magnetické pole Kolem trvalého magnetu existuje magnetické pole. Stacionární magnetické pole Pilinový obrazec magnetického pole tyčového magnetu Stacionární magnetické pole