HYDROBIOLOGIE MOLEKULÁRNÍ STRUKTURA VODY 06/10/2015 VODA ABIOTICKÉ FAKTORY VODA. Významné vlastnosti vody: Struktura molekuly Anomálie Vlastnosti
|
|
- Štefan Pešan
- před 9 lety
- Počet zobrazení:
Transkript
1 HYDROBIOLOGIE VODA ABIOTICKÉ FAKTORY Molekulární struktura vody Základní fyzikální parametry Základní chemické parametry Miloslav Petrtýl MOLEKULÁRNÍ STRUKTURA VODY VODA Struktura molekuly Anomálie Vlastnosti Za normální teploty a tlaku je to bezbarvá, čirá kapalina bez zápachu, v silnější vrstvě namodralá. V přírodě se vyskytuje ve třech skupenstvích: pevné led a sníh kapalné voda plynné vodní pára. Její významné vlastnosti tvoří spolu se vzduchem (kyslíkem) a základní podmínky důležité pro život na Zemi. Organismy (až na výjimky) obsahují značné množství vody 70 98% Vodíkové můstky ovlivňují významně vlastnosti vody kapalina při teplotách C H 2 S, NH 3,CH 3 plyny Anomálie vody ovlivňuje hustotu oproti jiným kapalinám polární dipol Významné vlastnosti vody: Velká tepelná kapacita termohalinní výměník (světový oceán + atmosféra zajišťují relativně stabilní podmínky). Velká rozpouštěcí schopnost a malá reaktivita (polární rozpouštědlo). Bod tání Bod varu CH 4 NH 3 H 2 S H 2 Se HF Vysoké povrchové napětí kapilární vzlínavost, životní prostředí pro malé vodní organismy na hladině. Polarita dobré rozpouštědlo pro soli, nepolární látky nerozpustné hydrofobie 1
2 ANIMACE STRUKTURY A CHOVÁNÍ MOLEKUL(Y) VODY FYZIKÁLNÍ VLASTNOSTI VODY hustota teplota viskozita hydrostatický tlak průnik světla barva a zabarvení V molekule vody jádro atomu kyslíku s6 protony přitahuje 2 elektrony atomů vodíku silněji než jejich vlastní jádra; díky tomu sdílené elektrony stráví při oběhu více času na straně kyslíku a ten pak získává slabý záporný náboj, vodíky vykazují slabý náboj kladný; tento typ vazby se nazývá polární kovalentní vazba protože určité oblasti (póly) molekuly mají slabý pozitivní či negativní náboj. HUSTOTA HUSTOTA VODY PŘI RŮZNÝCH TEPLOTÁCH Závisí na množství rozpuštěných látek, na teplotě a na tlaku. JEDNOTKA: kg. m 3 případně g. l 1 Množství rozpuštěných látek ve vodě je obvykle 1 g. l 1, u nás 0,1 0,5 g.l 1 (mořská voda 35 g. l 1 ) Vliv teploty Voda má největší hustotu při 4 C (přesněji 3,94 C) (1000 kg/m 3 ) Při zvyšující se i snižující se teplotě se měrná hmotnost vody snižuje a studenější a teplejší voda je proto lehčí Při teplotě 25 o Cjen 997 kg/m 3 Proto se v nádržích tvoří led jen u hladiny a u dna se hromadí voda 4 C teplá HUSTOTA Vrstvení vody v závislosti na teplotě VIDEO Za různé teploty je těleso o stejné objemové (měrné) hmotnosti různě ponořeno Změna hustoty vody při 0 4 C je 30x menší než okolo C, studená voda stabilnější, dole v létě i v zimě 2
3 TEPLOTA VODY TEPLOTA VODY M zásadní význam pro: koloběh látek intenzitu metabolismu vod. organismů ovlivňuje tak přímo primární i sekundární produkci JEDNOTKA: C Změny teploty vody během roku spolu se světelnou periodicitou nejvíce ovlivňují aktivitu a biorytmy vodních organismů a jejich vývojové cykly Měření pomocí teploměrů, data logerů, sond, Tepelná radiace v nádrži pochází ze třech zdrojů sluneční záření hlavně infračervená složka zemské nitro (geotermální zdroj) vřídla, horké prameny lidská činnost antropický faktor (chladící systémy, vytápění) Relativně málo významné je předávání tepla z ovzduší a částečně ze dna nádrže, resp. Přítoku. DENNÍ TEPLOTNÍ REŽIM U tekoucích vod jsou obecně díky promíchávání vody rozdíly teplot v různých vrstvách či v průběhu dne minimální. S ohledem na vysokou tepelnou kapacitu nedochází ani u stojatých vod v průběhu dne a noci k výrazným změnám teploty vody (viz pocitový rozdíl při koupeli přes den a večer) TEPLO A TEPELNÁ KAPACITA Specifické teplo (kolik energie (kj) potřeba na ohřátí 1 kg vody o 1 C) je relativně vysoké = voda má vysokou tepelnou kapacitu (mnohokrát větší než vzduch) ohřáté masy vody působí jako akumulátor tepla Ochlazením vody o 1 C voda teoreticky oteplí stejné množství vzduchu o 4 C m 3 vody při 30 C drží v sobě 500x více tepla než stejný objem vzduchu při stejné teplotě Odparné teplo též vysoké, působí proti přehřívání (odparem se snižuje energie a nezvyšuje se tolik teplota) Tepelná vodivost vody je 25 30x vyšší než tepelná vodivost vzduchu chladná voda ochlazuje daleko rychleji než vzduch přesto molekulární přenos tepla vodou i na malé vzdálenosti je zcela bezvýznamný, téměř veškerý přenos se proto uskutečňuje pohybem (prouděním) vody ROZVOD TEPLA PROUDĚNÍ Hlavním zdrojem energie je sluneční radiace Teplo se šíří převážně prouděním Ke stabilitě termálního rozvrstvení přispívá rozdílná hustota a viskozita různě teplých vrstev Střídavým oteplováním a ochlazováním svrchních vrstev vody vzniká konvekční vertikální proudění jimž se pravidelně v denním rytmu (=cirkadiánně) promíchávají svrchní vrstvy (v noci ochladí vrchní vrstvy a klesají...) Horizontální proudy (drift) vytváří vítr Jarní a letní promíchávání se realizuje jen do hloubky, které ovlivňuje konvekční a driftové proudění, hranice se nazývá skočná vrstva termoklina SEZÓNNÍ ROZVRSTVENÍ TEPLOTY Roční cyklus různorodé stratifikace vytváří specifické fyzikálněchemické podmínky. Ovlivňuje koloběh látek i biotickou složku V různých podmínkách se kombinují různé typy termálních stratifikací a cirkulací Pro jezera a hluboké nádrže mírného pásma je běžné: jarní a podzimní cirkulace, letní a zimní stagnace nádrže dimiktické pokud se aspoň jednou promísí celý vodní sloupec holomiktické, opak meromiktické (bez mísení) jarní míchání (vliv větru) letní stratifikace podzimní míchání zimní (převrácená) stratifikace mělká jezera a rybníky se promíchávají stále, stratifikace není nebo jen velmi krátce v létě DIMIKTICKÉ JEZERO oteplení svrchních vrstev přes den a ochlazení přes noc, kdy klesá chladnější voda dolů (bezvětří) 3
4 MEROMIKTICKÁ NÁDRŽ MÁ STABILNÍ VRSTVENÍ STRATIFIKACE DLE PODNEBÍ A HLOUBKY Zhruba směrem od pólu k rovníku jsou nádrže těchto typů: amiktické trvale zamrzlé, není míchání studené monomiktické chladné oblasti v zimě led, 1x míchání v létě, když rozmrznou studené polymiktické mělké, led v zimě, léto bez ledu, patří tam i naše rybníky dimiktické (hlubší nádrže v našich podmínkách) teplé polymiktické mělké, v zimě bez ledu, vícekrát se míchají teplé monomiktické hluboké, bez ledu, míchají se v zimě, kdy nemrznou velmi hluboké, dole rozklad padajících látek, uvolňuje se spousta minerálních látek voda s větší hustotou, která se nepromíchává (i po desetiletí) oligomiktické míchají se v závislosti na podmínkách počasí každý rok jinak (jezera v severní Americe se míchají jen některé roky) VISKOZITA (VNITŘNÍ TŘENÍ) vnitřní odpor molekul kapalin tj. odpor proti vlastnímu pohybu, který klade nejen sama sobě, ale i pohybu jiných částic včetně organismů odpor, který klade voda tělesům, jež se v ní pohybují VISKOZITA (VNITŘNÍ TŘENÍ) ovlivňuje vznášení planktonních organismů v létě jedna z teorií cyklomorfózy (změny tvaru planktonu) voda 100x větší než vzduch voda x olej s teplotou viskozita klesá voda při 25 C poloviční než 0 C rychlejší pohyb, ale i sedimentace HYDROSTATICKÝ TLAK HYDROSTATICKÝ TLAK JEDNOTKA: Pa (pascal), kpa, mpa, Na hladině tlak přibližně 101,3 kpa (1,013 bar). S hloubkou roste tlak vody na každých 10 m o 100 kpa (1 bar tj. 1 atmosféru) v 10 m je tedy dvojnásobný, ve 20 m trojnásobný... úměrně tlaku se zmenšuje objem plynu (v 10 m poloviční) Boyle Mariottůvzákon voda však objem téměř nezmenšuje při tlaku 40 MPa (hloubka vody 4000 m) zmenší voda svůj objem pouze o 2 % (nestlačitelnost kapalin) v hloubkách žijící organismy nemají v těle prostory vyplněné vzduchem ovlivňuje rozpouštění dusíku v krvi tzv. kesonová nemoc U organismů splynovými vakuolami, ryb splynovým měchýřem stejně jako u potápějících se ptáků a savců dochází při zvyšování tlaku kvelkým změnám objemu vzduchu vsouladu sjeho stlačitelností (podle Boyle Mariottova zákona). Se zvyšujícím se tlakem se zvyšuje rozpustnost CO 2, a ten zvyšuje rozpustnost vápníku ve vodě a tím se zvyšuje i stabilita systému uhličitan : hydrogenuhličitan. Hlubinní živočichové proto obtížně kryjí fyziologickou potřebu vápníku, což se projevuje redukcí jejich koster. 4
5 ADHEZE A KOHEZE jev na hranici kapaliny a pevného předmětu koheze soudržnost molekul adheze přilnavost k povrchu pevné látky převládá li adheze je látka smáčivá (hydrofilní), opak hydrofobie nesmáčivost hydrofobie nezbytná pro některé organismy (plastron, vodní plíce), opak hydrofilní žábry POVRCHOVÉ NAPĚTÍ Vytváří se zvýšenou soudržností molekul na rozhraní mezi kapalným a plynným prostředím povrch kapaliny se snaží dosáhnout stavu s co nejmenší energií molekuly na povrchu kapaliny působí na sebe silami a vzniká membrána zvýšená soudržnost molekul Vzniká tzv. povrchová blanka ta poskytuje řadě vodních organismů stabilizační plochu a oporu k trvalému nebo přechodnému pobytu Snížení povrchového napětí vody způsobují povrchově aktivní látky (tenzidy) Ty mohou být původu: Přirozeného Antropogenního (mycí prostředky detergenty) zvyšují smáčivost neuston a pleuston Postlethwait et al., 1991 TENZIDY (DETERGENTY) neovlivňují kvalitu vody jen chemicky (svou vlastní toxicitou narušují např. aktivitu dýchacích enzymů), ale i mechanicky: pleuston se ve vodě utopí dochází k hydrataci buněk a k jejich zvětšování změny metabolismu, osmózy (žábry ryb) narušují ochranné vrstvy, rozpouštění ochranné tukové, voskové slizové vrstvy, sliz, zrychlují pronikání toxinů pokožkou, brána pro patogeny... zhoršují samočistící schopnosti vod PRŮNIK SVĚTLA DO VODY Do vody neproniká veškeré dopadající světlo množství odraženého světla závisí na úhlu dopadu Čím kolměji svítí slunce, tím menší odraz ráno, večer a v zimě odráží voda více světla vodní hladina odráží v létě v průměru odraz 2 %, v zimě 14 % dopadajícího světla Vysoký rozptyl světla Vysoká adsorpce (energie fotonů se přemění na teplo) čím delší vlnová délka, tím větší pohlcení (adsorpce) UV vysoké jen u barevných vod absorpce transmise PRŮNIK SVĚTLA DO VODY PRŮHLEDNOST VODY Propustnost světla se měří ponornými fotoelektrickými články Množství světla koriguje průhlednost vody Zjišťuje se pomocí Secchiho desky Průhlednost v rybnících nejčastěji 1 2 m Pomocí Secchiho desky se též přibližně zjišťuje koncentrace chlorofylu ve vodě (ta je měřítkem množství biomasy fytoplanktonu) zjišťuje se pomocí Secchiho desky (kotouč o průměru 30 cm rozdělený na dva protistojné tmavé a bílé kvadranty) nebo bílý čtverec o straně 20 cm ponoří se až do hloubky kdy bílá barva už přestane být vidět, změří se v poloviční hloubce průhlednosti se měří zbarvení vody zahrnuje i zdánlivou barvu (řasy a sedimenty...) skutečná barva daná jen rozpuštěnými látkami zákal (turbidita) oligotrofní vody až 20 m eutrofní vody ve vegetačním období 30 cm 5
6 PRŮHLEDNOST SECCHIHO DESKY PRŮNIK SVĚTLA O RŮZNÝCH VLN. DÉLKÁCH DO VODY V destilované vodě by nejdále pronikala modrá část světla (UV), má nejmenší vlnovou délku a nejméně pronikala červená část (IF), která je nejlépe pohlcena Modrá část je však (ačkoli není pohlcena) lehce rozptýlena a odražena a to třeba již rozpuštěnými částečkami solí, takže i v průhledné vodě naopak proniká nejméně, protože se první odráží vidíme čistou vodu jako modrou sebemenší množství částeček modrou část spektra pohlcují (takže se nerozptyluje a neodráží) a voda se pak jeví zelená, jelikož to je to co proniká nejdále a pak se rozptyluje a je vidět odražené je zelená část (zelenohnědá) Průnik světla o různých vln. délkách do vody různé zdroje Barva Vlnová délka [nm] Extinkční koeficient Absorb. světlo v %.m ,87 84,6 Červená 720 1,05 65,0 Oranžová 613 0,25 22,2 Žlutá 565 0,043 4,2 Zelená 504 0,010 0,9 Modrá 473 0,005 0,46 Fialová 408 0,010 0, ,036 3,6 PRŮNIK SVĚTLA EUTROFNÍ ČI ZAKALENÁ NÁDRŽ Ve vodě sobsahem humusových látek, nebo ve vodě zakalené je krátkovlnné záření velmi rychle absorbováno. Výsledkem je, že ve větší hloubce převládá záření o delší vlnové délce oranžové a červené (přibližně nad 600 nm). Bez dodatkového zdroje světla mizí výrazné barvy (červená) Zdroj světla pomůže zviditelnit barvy ovšem pouze dostatečně blízko 6
7 STRATIFIKACE SVĚTLA STRATIFIKACE ZONACE VRSTVY Světlo podmínkou života autotrofů (resp. FAR fotosynteticky aktivní radiace) Ve vodním sloupci převážně sinice a řasy svrchní vrstva eufotická (trofogenní, syntetická) kompenzační bod fotosyntézy, níže již tak málo světla, že fotosyntéza nestačí pokrýt vlastní respiraci vrstva afotická převládají disimilační procesy Hloubka eufotická vrstvy se počítá z průhlednosti, násobené koeficientem dle množství částic rozptýlených ve vodě závisí na turbiditě a trofii LOM SVĚTLA LOM SVĚTLA Lom světla při průchodu vodním sloupcem způsobuje, že objekt pod hladinou vidíme v jiném místě, než skutečně je. Světelný paprsek se při průchodu z prostředí řidšího (vzduch) do prostředí hustšího (voda) láme ke kolmici. Nad vodou Pod vodou Objekt vidíme o cá 1/3 větší a o 1/4 blíž, než je ve skutečnosti BARVA VODY Pozorovaná barva vody je výsledkem rozptylu světla a absorpce Přesné posuzování pomocí spektrofotometru Z přirozených sloučenin ovlivňují barvu hlavně: huminové kyseliny, které zbarvují vodu do žluta suspenze organických látek (jílu, popele apod.), ty zabarvují vodu zpravidla do žlutočervena až hněda Skutečná barva vody je dána jen rozpuštěnými látkami Množství světla přijatého vodou a hloubka jeho průniku závisí na obsahu látek a biologickém oživení vody oligotrofní nádrž s vysokou průhlednosti Nejvíce se absorbuje červené (fialové), nejméně zelené (žlutozelené) vrstva 1 m vody absorbuje 65% červeného a jen 1% zeleného světla modré se sice absorbuje nejméně, ale dochází u něho k rozptylu a odrazu, takže hluboko nepronikne, stejně UV 7
8 ZBARVENÍ VODY CHEMICKÉ VLASTNOSTI VODY Vyjadřuje vizuální vjem vyvolaný pohledem na bílou plochu, ponořenou do nádrže (Secciho deska) Je to charakteristika používaná zvláště v rybářství Kromě skutečné barvy vody vyvolané rozpuštěnými látkami zahrnuje také vliv: suspendovaných látek (anorganický zákal např. při velké vodě) vodních organismů (vegetační zákal) rozpuštěných látek (huminové kyseliny) Zdánlivá barva vody: skutečná + posun daný okolím (odraz stromů, okolí) nebo částicemi ve vodě nerozpuštěnými reakce ph redox potenciál konduktivita rozpustnost látek ve vodě ph reakce vody Chemicky je ph definováno jako záporná hodnota dekadického logaritmu aktivity vodíkových iontů v roztoku ph = log (H + ) ph ANIMACE významný abiotický faktor životního prostředí, který určuje rovnovážný stav mezi H 2 CO 3, Ca(HCO3)2 a CaCO 3 ve sladkých vodách Pro ryby a většinu organismů je nejvhodnější reakce mezi 6,5 8,5 Hodnoty pod 5 a nad 9,5 jsou pro ryby nebezpečné ph reakce vody Kdy a kde se objevuje nízké ph: na jaře při tání sněhu v oblastech s kyselým geologickým podkladem v povodí se smrkovými monokulturami v místech vrchovištních rašelinišť Kdy vysoké ph: objevuje se koncem jara a v létě v důsledku odčerpání volného CO 2 a HCO 3 fotosyntézou Významné: při ph nad 8 se uvolňuje z amonných sloučenin NH 3 což je nebezpečné pro ryby MOŽNOSTI ÚPRAVY PH Slabě kyselé vody se upravují vápněním. V rybnících se aplikuje močovina. Aplikace uhličitanu amonného. 8
9 KONCENTRACE H + SYSTÉM ROVNOVÁHY FOREM CO 2 ph koncentrace aktivních vodíkových iontů je dána mírou disociace přítomných rozpuštěných látek: KNK (ALKALITA) KNK = yselinová neutralizační kapacita. schopnost vody vázat určité látkové množství kyseliny do zvolené hodnoty ph (tj. neutralizovat kyselinu) Jedná se o pufrační schopnost vody Ve vnitrozemských vodách je obvykle nejhojnějším typem iontů uhličitan některé z jeho forem: CO 3 2, HCO 3, nedisociovaná H 2 CO 3, rozpuštěný (volně hydratovaný) CO 2 stav tohoto systému tj. míra disociace forem oxidu uhličitého, je neoddělitelně spjat s hodnotou ph vody Obsah bazických látek (např. rozpuštěného vápníku) ve vodě a její ústojnou schopnost (tj. mírnění výkyvů ph) JEDNOTKA mmol. l 1 případně mg. l 1 Měřítkem alkality je množství desetimolární HCl spotřebované na 100 ml zkoumané vody pro posun k určité hodnotě ph. Schopnost vody vázat kyseliny je tedy v těsné souvislosti s obsahem CO 2 ve vodě. KNK (ALKALITA) Je závislá: na původu vody (voda dešťová, pramenitá aj.) geologickém útvaru (podloží) na obsahu CO 2 Přiměřená alkalita vody je předpokladem pro bohatý rozvoj nižších vodních organismů (potravní základna) Optimum pro životní pochody ve vodě = 2 6 HYDROGENUHLIČITAN x UHLIČITANOVÝ SYSTÉM viz dále. Voda funguje jako dvě látky, které oxidací a redukcí plynule přecházejí jedna v druhou. Redoxní potenciál vyjadřuje míru schopnosti převést jednoho z těchto dvou reakčních partnerů do oxidovaného stavu (tj. ukrást mu elektron ). Jednotka chemické aktivity prvků a sloučenin v reverzibilních procesech spojených se změnou iontového náboje. JEDNOTKA: mv v přírodě dosahuje hodnot 400 až +700 mv REDOXNÍ SOUSTAVA REDUKCE přibírá elektrony OXIDACE ztrácí elektrony REDOX POTENCIÁL (ORP) OXIDAČNĚ REDUKČNÍ POTENCIÁL záporný logaritmus vodíkového tlaku vredoxním systému. REDOX POTENCIÁL hovoří o redukčních či oxidačních schopnostech vody v povrchových vrstvách kolísá mezi mv u dna pokles pod 300 značí redukční poměry a výskyt dvojmocného železa, pod 100 výskyt sirovodíku dán převážně výskytem kyslíku ve vodě anoxie ( 50 až +50mV), veškerý kyslík se spotřebuje na oxidační procesy a tudíž není měřitelný (aerobové jej ale získají třeba z dusičnanu redukcí na molekulu dusíku N 2 ) anaerobie (nižší než 50mV), kyslík v prostředí vůbec není a probíhající oxidačně redukční procesy dány výskytem Fe 2+ /Fe 3+, Mn 2+ /Mn 3+, H 2 S/SO 2 4, CH 4 /CO 2, NH 4+ /NO 3, zaznamenán trvalý výskyt sirovodíku, metanu aj... REDOX POTENCIÁL Stoupající hodnota rh odpovídá stoupajícím oxidačním účinkům a naopak Např. rh= 0 silně redukované prostředí rh = 42 silně okysličené prostředí Pro optimální růst rostlin se uvádí rh Vpřírodě registrujeme redox potenciálem schopnost prostředí redukovat nebo oxidovat substrát Vnitřní prostředí organismu má hodnoty mV Pitná voda většinou kolem +100mV rychlejší stárnutí, málo antioxidantů!! Měřící technika často užívá zkratku ORP (Oxidačně Redukční Potenciál) 9
10 REDOX POTENCIÁL MĚRNÁ ELEKTRICKÁ VODIVOST (KONDUKTIVITA) Vodivost (konduktance) Míra ionizovatelných anorganických a organických součástí vody JEDNOTKA vodivosti je siemens (S) Měrná vodivost (konduktivita) JEDNOTKA je S/m, (v hydrochemii obvykle ms/m) 1 μs/cm = 0,1 ms/m MĚRNÁ ELEKTRICKÁ VODIVOST (KONDUKTIVITA) destilovaná voda prakticky nevodivá vodivost dána množstvím rozpuštěných iontů odpovídá tedy množství rozpuštěných látek, ale neselektivně stanovení pomocí konduktometru jednotky...s/m (Sm/m 2 ), resp ms/m dříve μs/cm (1 μs/cm = 0,1 ms/m) teplotní korekční faktor 1 C 2 % odchylka, přepočet na 25 C např. korekce z 20 C, K 25 =1,116 K 20 destilovaná voda do 0,3 ms/m povrchové vody do 50 ms/m stolní vody do 100 ms/m ROZPUSTNOST LÁTEK VE VODĚ Proces rozpouštění vyžaduje chemickou přitažlivost mezi rozpouštědlem a rozpuštěnou látkou. Polární (iontový) solvent tak nemůže rozpustit zcela neutrální látku a podobně nepolární solvent nerozpustí iontovou látku. Vzhledem k separaci náboje ve své molekule voda působí jako polární rozpouštědlo a atakuje iontové krystaly např.solí a převádí je do roztoku. Polární vlastnosti molekuly vody a náboje dalších prvků tedy do značné míry určují rozpustnost těchto látek. Odráží se to i ve výskytu anorganických látek ve vodě v přírodě, kdy nejčastěji nacházenými látkami jsou snadno rozpustné Na +, K +, Mg 2+, Ca 2+,HCO 3,SO 4 2 acl. Zdroj: ROZPUSTNOST PLYNŮ VE VODĚ Rozpustnost plynu za dané teploty je úměrná jeho parciálnímu tlaku nad roztokem (Henryho zákon) v tlakových lahvích je ve vodě rozpuštěno více CO 2 a po otevření je voda přesycená, objevují se unikající bublinky (sodovka, šampaňské) S rostoucí teplotou rozpustnost plynů klesá Zahřejeme li vodu na 50 C objeví se bublinky plynů, které byly rozpuštěny ve vodě za nižší teploty ROZPUSTNOST PLYNŮ VE VODĚ Parciální tlak plynů na hladinu, vytvářený vzdušnou atmosférou je dle zastoupení ve vzduchu (dusík 78 %, kyslík 21 %, CO % ), normální atmosférický tlak je uvažován 101,3 kpa (0,1 Mpa) rovnovážná koncentrace plynu ve vodě C=K i. P i K koeficient absorpce konstanta rozpustnosti plynu za dané teploty P parciální tlak plynu (dle zastoupení v atmosféře) Ve vodě je rovnovážný obsah plynů (% objemu jednotlivých plynů) 63% N, 35,6% O 2, 1,3% CO 2 Rozdílná rozpustnost plynů ve vodě poměr koeficientu rozpustnosti plynů při 10 C vztažený k dusíku dusík 1 kyslík 2.3 CO 2 100,4 222,6 chlór 424,3 Např. H 2 S je dobře rozpustný, ačkoli jeho tlak v atmosféře minimální, může být ve vodě 10
11 TVRDOST VODY TVRDOST VODY 5 TŘÍD Souhrn solí kovů alkalických zemin (především Ca a Mg s uhličitany, sírany, chloridy, apod.) tj. obsah rozpuštěných nerostů ve vodě. TVRDOST CELKOVÁ koncentrace kationtů dvojmocných kovů (Ca a Mg) TVRDOST UHLIČITANOVÁ množství Ca a Mg ekvivalentní přítomným uhličitanům a hydrogenuhličitanům TVRDOST NEUHLIČITANOVÁ dána rozdílem celkové a uhličitanové je to množství dvojmoc. kationtů (Ca a Mg) vázaných na sírany, chloridy, dusičnany... TVRDOST PŘECHODNÁ A TRVALÁ JEDNOTKA německý stupeň dgh Jeden stupeň odpovídá 10 mg CaO/litr nebo 7,2 mg MgO/litr. Podle současných norem se vyjadřuje jako suma vápníku a hořčíku v mmol/l. Voda velmi měkká (demineralizovaná, destilovaná, vyrobená pomocí reverzní osmózy) 0 1 dgh ( N), nemá ani jiné soli Voda měkká (dešťová nebo z málorozpustného podloží či rašelinišť) 1(4) 8 dgh Voda polotvrdá (říční, většina povrchových vod) 8 12 dgh Voda tvrdá (studniční spodní voda) dgh Voda velmi tvrdá (z vápencových oblastí) nad 18 dgh PŘEPOČET JEDNOTEK TVRDOSTI VODY DĚKUJI ZA POZORNOST Hanns J. Krause: Aquarienwasser. Diagnose, Therapie, Aufbereitung. 2. verbesserte Auflage, Neuauflage. bede Verlag, Kollnburg 1993 MEZE TVRDOSTI VODY
Voda jako životní prostředí: fyzikální vlastnosti vody.
Voda jako životní prostředí: fyzikální vlastnosti vody. VODA Za normální teploty a tlaku je to bezbarvá, čirá kapalina bez zápachu, v silnější vrstvě namodralá. V přírodě se vyskytuje ve třech skupenstvích:
Hydrobiologie přednáška 2
Hydrobiologie přednáška 2 Abiotické podmínky fyzikální vlastnosti ovlilvňující života ve vodě VODA Za normální teploty a tlaku je to bezbarvá, čirá kapalina bez zápachu, v silnější vrstvě namodralá. V
Základní fyzikálně-chemické vlastnosti vody. Molekula vody. Hustota. Viskozita
Vodní prostředí O čem to bude Fyzikální vlastnosti vody Chemické vlastnosti vody Koloběhy látek ve vodě Ze široka Velký hydrologický cyklus v biosféře Světové oceány pokrývají 70,8% zemského povrchu Povrchové
molekulární struktura (vodíkové můstky, polarita) hustota viskozita teplo povrchové napětí adheze a koheze proudění
molekulární struktura (vodíkové můstky, polarita) hustota viskozita teplo povrchové napětí adheze a koheze proudění Proč se zabývat teplotou vody? řídí biologické děje (růst, přežívání, reprodukci, kompetici,...),
kyslík ve vodě CO 2 (vápenato-)uhličitanová rovnováha alkalita
kyslík ve vodě CO 2 ph (vápenato-)uhličitanová rovnováha alkalita elementární plyny s vodou nereagují, ale rozpouštějí se fyzikálně (N 2, O 2, ) plynné anorganické sloučeniny (CO 2, H 2 S, NH 3 ) s vodou
kyslík ve vodě CO 2 (vápenato-)uhličitanová rovnováha alkalita
kyslík ve vodě CO 2 ph (vápenato-)uhličitanová rovnováha alkalita elementární plyny s vodou nereagují, ale rozpouštějí se fyzikálně (N 2, O 2, ) plynné anorganické sloučeniny (CO 2, H 2 S, NH 3 ) s vodou
Voda jako životní prostředí - světlo
Hydrobiologie pro terrestrické biology Téma 6: Voda jako životní prostředí - světlo Sluneční světlo ve vodě Sluneční záření dopadající na hladinu vody je 1) cestou hlavního přísunu tepla do vody 2) zdrojem
Vodní prostředí. O čem to bude. Velký hydrologický cyklus v biosféře. Ze široka. Fyzikální vlastnosti vody. Chemické vlastnosti vody
Vodní prostředí O čem to bude Fyzikální vlastnosti vody Chemické vlastnosti vody Koloběhy látek ve vodě Ze široka Velký hydrologický cyklus v biosféře Světové oceány pokrývají 70,8% zemského povrchu Povrchové
Voda jako životní prostředí ph a CO 2
Hydrobiologie pro terrestrické biology Téma 8: Voda jako životní prostředí ph a CO 2 Koncentrace vodíkových iontů a systém rovnováhy forem oxidu uhličitého Koncentrace vodíkových iontů ph je dána mírou
Základy hydrobiologie (limnologie, limnoekologie, limnobiologie) Jan Helešic (helesic&sci.muni.cz)
Základy hydrobiologie (limnologie, limnoekologie, limnobiologie) Jan Helešic (helesic&sci.muni.cz) Základní učebnice Základní učebnice Základní učebnice Základní učebnice Voda na Zemi Rozložení pevninské
ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala
ÚPRAVA VODY V ENERGETICE Ing. Jiří Tomčala Úvod Voda je v elektrárnách po palivu nejdůležitější surovinou Její množství v provozních systémech elektráren je mnohonásobně větší než množství spotřebovaného
J i h l a v a Základy ekologie
S třední škola stavební J i h l a v a Základy ekologie 10. Voda jako podmínka života Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Tomáš Krásenský
) se ve vodě ihned rozpouští za tvorby amonných solí (iontová, disociovaná forma NH 4+ ). Vzájemný poměr obou forem závisí na ph a teplotě.
Amoniakální dusík Amoniakální dusík se vyskytuje téměř ve všech typech vod. Je primárním produktem rozkladu organických dusíkatých látek živočišného i rostlinného původu. Organického původu je rovněž ve
Voda jako životní prostředí fyzikální a chemické vlastnosti obecně
Hydrobiologie pro terrestrické biology Téma 4: Voda jako životní prostředí fyzikální a chemické vlastnosti obecně voda jako životní prostředí : Fyzikální a chemické vlastnosti vody určují životní podmínky
Hydrochemie Oxid uhličitý a jeho iontové formy, ph, NK
1 Oxid uhličitý - CO 2 původ: atmosférický - neznečištěný vzduch 0,03 obj. % CO 2 biogenní aerobní a anaerobní rozklad OL hlubinný magma, termický rozklad uhličitanových minerálů, rozklad uhličitanových
HYDROBIOLOGIE GARANT HYDROBIOLOGIE INFO ZDROJE INFORMACÍ STUDIJNÍ LITERATURA
NÁPLŇ PŘEDNÁŠKY ÚVOD DO HYDROBIOLOGIE Informace k průběhu výuky Historie a dělení hydrobiologie Význam a uplatnění v praxi Voda a hydrologický cyklus Povodí ČR Miloslav Petrtýl http://home.czu.cz/petrtyl/
Technologie pro úpravu bazénové vody
Technologie pro úpravu GHC Invest, s.r.o. Korunovační 6 170 00 Praha 7 info@ghcinvest.cz Příměsi významné pro úpravu Anorganické látky přírodního původu - kationty kovů (Cu +/2+, Fe 2+/3+, Mn 2+, Ca 2+,
Opakování
Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony
VODA. Voda na Zemi. Salinita vody CZ.1.07/2.2.00/28.0158. Modifikace profilu absolventa biologických studijních oborů na PřF UP. Ekologie živočichů 1
VODA EKO/EKŽO EKO/EKZSB Ivan H. Tuf Katedra ekologie a ŽP PřF UP v Olomouci Modifikace profilu absolventa : rozšíření praktické výuky a molekulárních, evolučních a cytogenetických oborů Voda na Zemi Oceány
Voda - Chemické vlastnosti. Kyslík
Voda - Chemické vlastnosti Významný pro: dýchání hydrobiontů, aerobní rozklad organické hmoty. Do vody se dostává: Kyslík difúzí při styku se vzduchem (vlnění, čeření), při fotosyntéze rostlin, přítokem.
J i h l a v a Základy ekologie
S třední škola stavební J i h l a v a Základy ekologie 11. Atmosféra Země - vlastnosti Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Tomáš Krásenský
Acidobazické děje - maturitní otázka z chemie
Otázka: Acidobazické děje Předmět: Chemie Přidal(a): Žaneta Teorie kyselin a zásad: Arrhemiova teorie (1887) Kyseliny jsou látky, které odštěpují ve vodném roztoku proton vodíku H+ HA -> H+ + A- Zásady
Test vlastnosti látek a periodická tabulka
DUM Základy přírodních věd DUM III/2-T3-2-08 Téma: Test vlastnosti látek a periodická tabulka Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Test vlastnosti
05 Biogeochemické cykly
05 Biogeochemické cykly Ekologie Ing. Lucie Kochánková, Ph.D. Prvky hlavními - biogenními prvky: C, H, O, N, S a P v menších množstvích prvky: Fe, Na, K, Ca, Cl atd. ve stopových množstvích I, Se atd.
TLUMIVÁ KAPACITA (ústojnost vody)
TLUMIVÁ KAPACITA (ústojnost vody) je schopnost vody tlumit změny ph po přídavku kyselin a zásad nejvýznamnější je uhličitanový tlumivý systém CO 2 HCO 3 - CO 3 2- další tlumivé systémy: fosforečnany, boritany,
Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická. Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE.
Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE Studijní texty 2010 Struktura předmětu 1. ÚVOD 2. EKOSYSTÉM MODELOVÁ JEDNOTKA 3.
Pracovní list č. 3 téma: Povětrnostní a klimatičtí činitelé část 2
Pracovní list č. 3 téma: Povětrnostní a klimatičtí činitelé část 2 Obsah tématu: 1) Vzdušný obal země 2) Složení vzduchu 3) Tlak vzduchu 4) Vítr 5) Voda 1) VZDUŠNÝ OBAL ZEMĚ Vzdušný obal Země.. je směs
www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ
Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Tematický okruh Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748
Slaná voda pro fyzika?
Slaná voda pro fyzika? JINDŘIŠKA SVOBODOVÁ Pedagogická fakulta Masarykovy univerzity, Brno V příspěvku se zabývám tzv. solárním jezírkem. Jde o zajímavý jev, který má i praktické využití, Uvádíme potřebné
Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje. 26.2.2010 Mgr.
Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje 26.2.2010 Mgr. Petra Siřínková ABIOTICKÉ PODMÍNKY ŽIVOTA SLUNEČNÍ ZÁŘENÍ TEPLO VZDUCH VODA PŮDA SLUNEČNÍ
Život rostlin (i ostatních organismů) je neoddělitelně spjat s vodou stálou a nenahraditelnou složkou rostlinného těla. první rostliny vznikly ve vodním prostředí, kde velmi dlouho probíhala jejich evoluce;
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat
Uhlík. Oxid uhličitý.
Uhlík. Uhlík patří mezi nepostradatelné základní stavební látky všeho živého. Na naší planetě se uhlík vyskytuje v pěti velkých rezervoárech. V atmosféře, v přírodních vodách, v uhličitanových horninách,
Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají)
Úvod do koroze (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají) Koroze je proces degradace kovu nebo slitiny kovů působením
SHRNUTÍ A ZÁKLADNÍ POJMY chemie 8.ročník ZŠ
SHRNUTÍ A ZÁKLADNÍ POJMY chemie 8.ročník ZŠ 1. ČÍM SE ZABÝVÁ CHEMIE VLASTNOSTI LÁTEK, POKUSY - chemie přírodní věda, která studuje vlastnosti a přeměny látek pomocí pozorování, měření a pokusu - látka
Hydrochemie koncentrace látek (výpočty)
1 Atomová hmotnostní konstanta/jednotka m u Relativní atomová hmotnost Relativní molekulová hmotnost Látkové množství (mol) 1 mol je takové množství látky, které obsahuje tolik částic, kolik je atomů ve
Atmosféra, znečištění vzduchu, hašení
Atmosféra, znečištění vzduchu, hašení Zemská atmosféra je vrstva plynů obklopující planetu Zemi, udržovaná na místě zemskou gravitací. Obsahuje přibližně 78 % dusíku a 21 % kyslíku, se stopovým množstvím
Půdní voda. *vyplňuje póry v půdách. *nevytváří souvislou hladinu. *je důležitá pro růst rostlin.
PODPOVRCHOVÁ VODA Půdní voda *vyplňuje póry v půdách. *nevytváří souvislou hladinu. *je důležitá pro růst rostlin. Podzemní voda hromadí se na horninách, které jsou málo propustné pro vodu vytváří souvislou
2) Povětrnostní činitelé studují se v ovzduší atmosféře (je to..) Meteorologie je to věda... Počasí. Meteorologické prvky. Zjišťují se měřením.
Pracovní list č. 2 téma: Povětrnostní a klimatičtí činitelé část. 1 Obsah tématu: Obsah tématu: 1) Vlivy působící na rostlinu 2) Povětrnostní činitelé a pojmy související s povětrnostními činiteli 3) Světlo
Složení látek a chemická vazba Číslo variace: 1
Složení látek a chemická vazba Číslo variace: 1 Zkoušecí kartičku si PODEPIŠ a zapiš na ni ČÍSLO VARIACE TESTU (číslo v pravém horním rohu). Odpovědi zapiš na zkoušecí kartičku, do testu prosím nepiš.
Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova
1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota
Vliv abiotických a biotických stresorů na vlastnosti rostlin 2015, ČZU Praha
Vliv abiotických a biotických stresorů na vlastnosti rostlin 2015, ČZU Praha Sándor T. Forczek #, Josef Holík #, Luděk Rederer &, Václav Koza & # Ústav experimantální botaniky AV ČR, v.v.i. & Povodí Labe
Fotosyntéza (2/34) = fotosyntetická asimilace
Fotosyntéza (2/34) = fotosyntetická asimilace FOTO - protože k fotosyntéze je třeba fotonů Jedná se tedy o zachycování sluneční energie a přeměnu jednoduchých anorganických látek (CO 2 a H 2 O) na složitější
ROZTOK. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý. Vzdělávací oblast: Člověk a příroda / Chemie / Směsi
Autor: Mgr. Stanislava Bubíková ROZTOK Datum (období) tvorby: 12. 4. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Směsi 1 Anotace: Žáci se seznámí s pojmy roztok, stejnorodá směs. V
Voda jako životní prostředí rozpuštěné látky : sloučeniny dusíku
Hydrobiologie pro terrestrické biology Téma 9: Voda jako životní prostředí rozpuštěné látky : sloučeniny dusíku Koloběh dusíku Dusík je jedním z hlavních biogenních prvků Hlavní zásobník : atmosféra, plynný
3. STRUKTURA EKOSYSTÉMU
3. STRUKTURA EKOSYSTÉMU 3.4 VODA 3.4.1. VLASTNOSTI VODY VODA Voda dva významy: - chemická sloučenina 2 O - přírodní roztok plynné kapalné pevné Skupenství Voda jako chemická sloučenina 1 δ+ Základní fyzikální
Skupenské stavy látek. Mezimolekulární síly
Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.
J. Kubíček FSI Brno 2018
J. Kubíček FSI Brno 2018 Fosfátování je povrchová úprava, kdy se na povrch povlakovaného kovu vylučují nerozpustné fosforečnany. Povlak vzniká reakcí iontů z pracovní lázně s ionty rozpuštěnými z povrchu
Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ
Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 7.6.2013
Voda vlastnosti, rozložení v hydrosféře, chemické rozbory vody
Voda vlastnosti, rozložení v hydrosféře, chemické rozbory vody Význam vody: chemická sloučenina podmiňující život na Zemi (všechny formy života závisejí na vodě např. má vliv na klima krajiny) koloběh
Fyziologie rostlin - maturitní otázka z biologie (3)
Otázka: Fyziologie rostlin Předmět: Biologie Přidal(a): Isabelllka FOTOSYNTÉZA A DÝCHANÍ, VODNÍ REŽIM ROSTLINY, POHYBY ROSTLIN, VÝŽIVA ROSTLIN (BIOGENNÍ PRVKY, AUTOTROFIE, HETEROTROFIE) A)VODNÍ REŽIM VODA
BIOLOGIE OCEÁNŮ A MOŘÍ
BIOLOGIE OCEÁNŮ A MOŘÍ 1. ekologické faktory prostředí světlo salinita, hustota, tlak teplota obsah rozpuštěných látek a plynů 2 1.1 sluneční světlo ubývání světla do hloubky odraz světla od vodní hladiny,
Modul 02 Přírodovědné předměty
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty hmota i energie nevznikají,
PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE. Pomůcky: Doplňte všechny části plamene kahanu a uveďte, jakou mají teplotu.
PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE Jméno: Třída: Ch-II-1 Teplota plamene Spolupracovník: Hodnocení: Datum měření: Určení teploty plamene v jeho různých částech Pomůcky: Teorie: Doplňte všechny části
Úprava podzemních vod ODKYSELOVÁNÍ
Úprava podzemních vod ODKYSELOVÁNÍ 1 Způsoby úpravy podzemních vod Neutralizace = odkyselování = stabilizace vody odstranění CO 2 a úprava vody do vápenato-uhličitanové rovnováhy Odstranění plynných složek
Směsi, roztoky. Disperzní soustavy, roztoky, koncentrace
Směsi, roztoky Disperzní soustavy, roztoky, koncentrace 1 Směsi Směs je soustava, která obsahuje dvě nebo více chemických látek. Mezi složkami směsi nedochází k chemickým reakcím. Fyzikální vlastnosti
ATMOSFÉRA. Anotace: Materiál je určen k výuce zeměpisu v 6. ročníku základní školy. Seznamuje žáky s vlastnostmi a členěním atmosféry.
ATMOSFÉRA Anotace: Materiál je určen k výuce zeměpisu v 6. ročníku základní školy. Seznamuje žáky s vlastnostmi a členěním atmosféry. Atmosféra je to plynný obal Země společně s planetou Zemí se otáčí
Třídění látek. Chemie 1.KŠPA
Třídění látek Chemie 1.KŠPA Systém (soustava) Vymezím si kus prostoru, látky v něm obsažené nazýváme systém soustava okolí svět Stěny soustavy Soustava může být: Izolovaná = stěny nedovolí výměnu částic
DOUČOVÁNÍ KVINTA CHEMIE
1. ÚVOD DO STUDIA CHEMIE 1) Co studuje chemie? 2) Rozděl chemii na tři důležité obory. DOUČOVÁNÍ KVINTA CHEMIE 2. NÁZVOSLOVÍ ANORGANICKÝCH SLOUČENIN 1) Pojmenuj: BaO, N 2 0, P 4 O 10, H 2 SO 4, HMnO 4,
Voda polární rozpouštědlo
VY_32_INVACE_30_BEN05.notebook Voda polární rozpouštědlo Temacká oblast : Chemie anorganická chemie Datum vytvoření: 2. 8. 2012 Ročník: 2. ročník čtyřletého gymnázia (sexta osmiletého gymnázia) Stručný
Úprava podzemních vod
Úprava podzemních vod 1 Způsoby úpravy podzemních vod Neutralizace = odkyselování = stabilizace vody odstranění CO 2 a úprava vody do vápenato-uhličitanové rovnováhy Odstranění plynných složek z vody (Rn,
Fyzická geografie. Mgr. Ondřej Kinc. Podzim
Globální půdy 27. 11. 2014 Fyzická geografie Podzim 2014 Mgr. Ondřej Kinc kinc@mail.muni.cz půda =????? pedologie =.. předmětem pedologie je půda, resp. pedosféra =. půda vzniká působením půdotvorných.,
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat
Jaro 2010 Kateřina Slavíčková
Jaro 2010 Kateřina Slavíčková Biogenní prvky Organismy se liší od anorganického okolí mimo jiné i složením prvků. Některé prvky, které jsou v zemské kůře zastoupeny hojně (např. hliník), organismus buď
Chemie životního prostředí III Hydrosféra (03) Sedimenty
Centre of Excellence Chemie životního prostředí III Hydrosféra (03) Sedimenty Ivan Holoubek RECETOX, Masaryk University, Brno, CR holoubek@recetox. recetox.muni.cz; http://recetox.muni muni.cz Koloidní
Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů.
Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů. Násobky jednotek název značka hodnota kilo k 1000 mega M 1000000 giga G 1000000000 tera T 1000000000000 Tělesa a látky Tělesa
PRACOVNÍ LIST EVVO - VODA
Projekt Integrovaný vzdělávací systém města Jáchymov Mosty indikátor 06.43.19 PRACOVNÍ LIST EVVO - VODA Úkol: Fyzikální a chemická analýza vody Princip: Vlastním pozorováním získat poznatky o vlastnostech
PRIMÁRNÍ PRODUKCE. CO 2 + H 2 A světlo, fotosyntetický pigment (CH 2 O) + H 2 O + 2A
PRIMÁRNÍ PRODUKCE PP je závislá na biochemických procesech fotosyntézy autotrofních organizmů její množství je dáno množstvím dostupných živin v systému produktem je biomasa vytvořená za časovou jednotku
METEOROLOGICKÉ A FYZIKÁLNĚ-CHEMICKÉ FAKTORY
Základní fyzikálně chemické parametry tekoucích a stojatých vod, odběr vzorků METEOROLOGICKÉ A FYZIKÁLNĚ-CHEMICKÉ FAKTORY Doc. Ing. Radovan Kopp, Ph.D. Odběr vzorků Při odběrech vzorků se pozoruje, měří
POKYNY FAKTORY OVLIVŇUJÍCÍ RYCHLOST REAKCÍ
POKYNY Prostuduj si teoretický úvod a následně vypracuj postupně všechny zadané úkoly zkontroluj si správné řešení úkolů podle řešení FAKTORY OVLIVŇUJÍCÍ RYCHLOST REAKCÍ 1) Vliv koncentrace reaktantů čím
Vnitřní energie. Teplo. Tepelná výměna.
Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie
AQUATEST a.s. Zkušební laboratoře. Co znamenají naměřené hodnoty v pitné vodě?
AQUATEST a.s. Zkušební laboratoře Co znamenají naměřené hodnoty v pitné vodě? Zkušební laboratoř č. 1243 - akreditovaná Českým institutem pro akreditaci dle ČSN EN ISO/IEC 17025: 2005 IČ/DIČ 44794843/CZ44794843
Chemie životního prostředí III Hydrosféra (04) Samočistící schopnost vod
Centre of Excellence Chemie životního prostředí III Hydrosféra (04) Samočistící schopnost vod Ivan Holoubek RECETOX, Masaryk University, Brno, CR holoubek@recetox. recetox.muni.cz; http://recetox.muni
Stanovení kvality humusu spektrofotometricky
Stanovení kvality humusu spektrofotometricky Definice humusu Synonymum k půdní organické hmotě Odumřelá organická hmota v různém stupni rozkladu a syntézy, jejíž část je vázána na minerální podíl Rozdělení
Problematika separace uranu z pitné vody
ÚJV Řež, a. s. Problematika separace uranu z pitné vody (Projekt TA02010044 Zefektivnění systému čištění pitných vod ze zdrojů s nadlimitní koncentrací uranu (regenerační stanice pro radioaktivně kontaminované
Molekulová fyzika a termika:
Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta
Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje.
KOLOBĚH LÁTEK A TOK ENERGIE Látky jako uhlík, dusík, kyslík a voda v ekosystémech kolují. Energii se do ekosystémů dostává z vnějšku a opět z něj vystupuje. Základní podmínky pro život na Zemi. Světlo
Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby
Předmět: CHEMIE Ročník: 8. Časová dotace: 2 hodiny týdně Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Konkretizované tematické okruhy realizovaného průřezového tématu září orientuje se
TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie
TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty 1 2 chemického složení
KYSLÍKOVÉ DEFICITY - PROJEV NESTABILITY RYBNIČNÍHO EKOSYSTÉMU? Ing. Ivana Beděrková Ing. Zdeňka Benedová doc. RNDr. Libor Pechar, CSc.
KYSLÍKOVÉ DEFICITY - PROJEV NESTABILITY RYBNIČNÍHO EKOSYSTÉMU? Ing. Ivana Beděrková Ing. Zdeňka Benedová doc. RNDr. Libor Pechar, CSc. Úvod do problematiky Fytoplankton=hlavní producent biomasy, na kterém
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
Celkový dusík Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví člověka, rizika
12. Elektrochemie základní pojmy
Důležité veličiny Elektroda, článek Potenciometrie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Důležité veličiny proud I (ampér - A) náboj Q (coulomb - C) Q t 0 I dt napětí, potenciál
Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA
Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA
2 Roztoky elektrolytů. Osmotický tlak
Roztoky elektrolytů. Osmotický tlak 1. Doplněním uvedených schémat vyjádřete rozdílné chování různých typů látek po jejich rozpuštění ve vodě. Použijte symboly AB(aq), A + (aq), B - (aq). [s pevná fáze,
*Základní škola praktická Halenkov * * *VY_32_INOVACE_03_01_03 * *Voda
Základní škola praktická Halenkov VY_32_INOVACE_03_01_03 Voda Číslo projektu CZ.1.07/1.4.00/21.3185 Klíčová aktivita III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Zařazení učiva v rámci ŠVP Chemie
Bakteriologické ukazatele. Koliformní bakterie. Escherichia coli. Enterokoky. Počty kolonií při 22 C a 36 C. 1 Co znamenají parametry pitné vody
1 Co znamenají parametry pitné vody Níže uvádíme vysvětlení jednotlivých parametrů rozboru. V hlavičce tabulky je vždy název parametru, a zdali je daný parametr součástí i informativního rozboru ("levnějšího
ŘEŠENÍ KONTROLNÍHO TESTU ŠKOLNÍHO KOLA
Ústřední komise Chemické olympiády 48. ročník 2011/2012 ŠKOLNÍ KOLO kategorie C ŘEŠENÍ KONTROLNÍHO TESTU ŠKOLNÍHO KOLA KONTROLNÍ TEST ŠKOLNÍHO KOLA (60 BODŮ) Úloha 1 Neznámý nerost 21 bodů 1. Barva plamene:
CZ.1.07/1.5.00/ Digitální učební materiály III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28.
STANOVENÍ CHLORIDŮ. Odměrné argentometrické stanovení chloridů podle Mohra
STANOVENÍ CHLORIDŮ Odměrné argentometrické stanovení chloridů podle Mohra Cíl práce Stanovte titr odměrného standardního roztoku dusičnanu stříbrného titrací 5 ml standardního srovnávacího roztoku chloridu
SHRNUTÍ A ZÁKLADNÍ POJMY UČEBNICE ZÁKLADY CHEMIE 1
SHRNUTÍ A ZÁKLADNÍ POJMY UČEBNICE ZÁKLADY CHEMIE 1 1. ČÍM SE ZABÝVÁ CHEMIE VLASTNOSTI LÁTEK, POKUSY - chemie přírodní věda, která studuje vlastnosti a přeměny látek pomocí pozorování, měření a pokusu -
CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.
CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. Látkové množství Značka: n Jednotka: mol Definice: Jeden mol je množina, která má stejný počet prvků, jako je atomů ve 12 g nuklidu
Martin Hynouš hynous@ghcinvest.cz gsm: 603 178 866
Martin Hynouš hynous@ghcinvest.cz gsm: 603 178 866 1. VODA 2. LEGISLATIVA 3. TECHNOLOGIE 4. CHEMIE H 2 0 nejběţnější sloučenina na světě tvoří přibliţně 71% veškerého povrchu Země je tvořena 2 atomy vodíku
Vzduchová technika v potápění
Vzduchová technika v potápění (Funkce plicních automatik ) 8.1.2003 Čillík, Buřil 1 V bodech Historie potápění Vidění pod vodou Slyšení pod vodou Plicní automatika 8.1.2003 Čillík, Buřil 2 Historie potápění
Superkritická fluidní extrakce (SFE) Superkritická fluidní extrakce
Superkritická fluidní extrakce (zkráceně SFE, z angl. Supercritical Fluid Extraction) = extrakce, kde extrakčním činidlem je tekutina v superkritickém stavu, tzv. superkritická (nadkritická) tekutina (zkráceně
DRUHY VOD přírodní odpadní atmosférické povrchové podzemní pitná užitková provozní odpadní ATMOSFÉRICKÉ VODY déšť, mrholení, mlha, rosa
DRUHY VOD Vody lze rozlišovat podle původu na přírodní a odpadní, dle výskytu na atmosférické, povrchové a podzemní, dle použití voda pitná, užitková, provozní a odpadní. ATMOSFÉRICKÉ VODY Pod tímto pojmem