Kyselina dusičná. jedna z nejdůležitějších chemikálií

Rozměr: px
Začít zobrazení ze stránky:

Download "Kyselina dusičná. jedna z nejdůležitějších chemikálií"

Transkript

1 Kyselina dusičná jedna z nejdůležitějších chemikálií Výroba: minulost - surovinou pro průmyslovou výrobu dusičnan sodný (ledek sodný, guano) současnost - katalytické spalování amoniaku (první výrobní jednotka r v Gerthe, Německo) v roce 2003 bylo v Evropě vyrobeno 16,6 milionů tun HNO 3 výrobní kapacita se pohybuje od 150 do tun/den

2 Kyselina dusičná Produkce: zředěná (slabá) koncentraci % hm. výroba průmyslových hnojiv koncentrovaná (silná) koncentrace až 99 % hm. pro reakce s organickými látkami

3 Kyselina dusičná Použití: výroba dusíkatých hnojiv (cca 70 %) dusičnan amonný,vápenatý, draselný a sodný výroba výbušnin (cca 10 %) dusičnan amonný ostatní aplikace dusičnan sodný - oxidovadlo pro sklářský a smaltařský průmysl kyselina adipová - výchozí surovina pro vlákna a plasty nitrobenzen - výroba anilínu dinitrotoluen výroba diisokyanátu (polyuretany) ocelářský průmysl -moření ušlechtilých ocelí

4 Kyselina dusičná Chemická podstata procesu oxidační sekce 4NH 5O 3 2 Pt, Rh 4NO 6H oC 2 O vedlejší reakce 4NH 4O 2N O 6H O NH 3O 2N 6H O Výtěžek oxidu dusnatého závislost na tlaku a teplotě Tlak (bar) Teplota ( C) Výtěžek NO( %) pod 1, ,7 až 6, nad 6,

5 Kyselina dusičná Chemická podstata procesu oxidace a absorpce H 2 O 2NO O 2NO 2 2 sekundární vzduch obsah kyslíku ve směsi 2 4 % (objemově) 3NO H O 2HNO NO exotermní reakce absorber kontinuálně chlazen kyselina dusičná v absorpční koloně obsahuje rozpuštěné oxidy dusíku stupeň "bělení" kyseliny působení sekundárního vzduchu

6 Kyselina dusičná Typy technologií zvýšení tlaku v absorpční sekci - mezi kondenzační chladič a absorpční kolonu vložen kompresor typy výroben pracujících při jediné úrovni tlaku: nízkotlaké (P< 1,7 bar), středotlaké (P = 1,7-6,5 bar), vysokotlaké (P = 6,5-13 bar) výrobny pracujících při dvou úrovních tlaku - vyšší tlak ve stupni absorpce - nižší tlak ve stupni katalytické oxidace

7 Kyselina dusičná Používané technologie (historie) 1 - výparník NH 3, 2 - kompresor, 3 - filtr, 4 - směšovač, 5 - kontaktní reaktor, 6 - ekonomizér, 7 - předehřev vzduchu, 8 - chladič, 9 - oxidační kolona, 10 - denitrifikační kolona, 11 - absorpční kolona Technologické schéma výroby HNO 3 s jednou úrovní tlaku

8 Kyselina dusičná Univezální blokové schéma výroby zředěné HNO 3 (55 65 %)

9 Kyselina dusičná 1 výparník čpavku, 2 turbokompresor, 3 filtr, 4 směšovač, 5 předehřev vzduchu, 6 kontaktní reaktor, 7 výměník tepla, 8 chladič, 9 absorpční kolona, 10 expanzní turbína Technologické schéma výroby HNO 3 (střední tlak, jedna úroveň tlaku)

10 Kyselina dusičná střední tlak, jedna úroveň tlaku Teplo Amoniak Odpařování Vzduch Filtrace Filtrace Energie Komprese Teplo Ohřev (ne vždy) Filtrace Míšení Filtrace (ne vždy) Katalytický reaktor Pára do jiných jednotek Zachycovač Napájecí voda kotle Tepelný výměník Přehřátá pára Parní turbína Energie Studený koncový plyn Tepelný výměník Horký koncový plyn Chladící voda Chladící kondenzátor Vzduch Zachycování NO x Procesní voda Chladící voda Absorpce Bělení Emisní turbína Energie Sekundární vzduch Kyselina dusičná 30 70% Vypouštění do atmosféry

11 Kyselina dusičná 1 výparník čpavku, 2 turbokompresor, 3 filtr, 4 směšovač, 5 předehřev vzduchu, 6 kontaktní reaktor, 7 výměník tepla, 8 chladič, 9 turbokompresor, 10 výměník tepla, 11 kondenzátor, 12 - absorpční kolona, 13 expanzní turbína Technologické schéma výroby HNO 3 (střední tlak, dvě úroveně tlaku)

12 Kyselina dusičná koncentrace > 68 % azeotrop 68,4 % Způsob výroby přímý absorpce NO x do zředěné HNO 3 pod tlakem nepřímý extraktivní destilace s H 2 SO 4, nebo s Mg(NO 3 ) 2 zakoncentrování zředěné HNO3 destilací

13 Kyselina dusičná koncentrace > 68 % Přímý způsob výroby

14 Kyselina dusičná koncentrace > 68 % Přímý způsob výroby

15 Kyselina dusičná koncentrace > 68 % Nepřímý způsob výroby Extraktivní destilace zředěné HNO 3 s Mg(NO 3 ) 2

16 Kyselina dusičná koncentrace > 68 % Nepřímý způsob výroby parametr proces s Mg(NO 3 ) 2 proces s H 2 SO 4 poč. koncentrace kys. dusičné poč. koncentrace kys. dusičné topná pára (1-1,8 Mpa ), t 2 1,75 1,45 2 1,75 1,45 chladící voda, m elektrická energie, kwh odpařená voda, t 0,82 0,66 0,53 0,82 0,66 0,53

17 Kyselina dusičná koncentrace > 68 % Nepřímý způsob výroby Destilace zředěné HNO 3 s H 2 SO 4

18 Kyselina dusičná koncentrace > 68 % Nepřímý způsob výroby Zakoncentrování zředěné HNO3 destilací

19 Kyselina dusičná střední tlak, jedna úroveň tlaku odpařování amoniaku vypařován s využitím vody nebo kondenzátu přehřívání (vyloučení vstupu kapalné fáze do dalších sekcí) filtrace amoniaku odstraněny stopy rzi z uhlíkaté oceli filtrace vzduchu dvou nebo třístupňová filtrace komprese vzduchu kompresory vzduchu expansními turbína parní turbína pracující v kondenzačním režimu

20 Kyselina dusičná střední tlak, jedna úroveň tlaku směšovací sekce statické mixery nezbytné pro dosažení příznivých podmínek pro funkci katalyzátoru směšovač Helax

21 Kyselina dusičná reaktor kalalytický reaktor příznivá teplota katalyzátoru vysoký výtěžek NO teplota je řízena nastavováním poměru vzduch/amoniak obsah amoniaku ve směsi nepřekročil spodní mez výbušnosti (do 13 obj.%) 1 - přívod reakční směsi 2 - odvod reakční směsi 3 - usměrňovač toku 4 platino-rodiová síta 5 - parní kotel

22 Kyselina dusičná reaktor kalalytický reaktor složení katalyzátoru platina legována rhodiem podíl rhodia 5 10 % životnost katalyzátoru platiny a rhodia se může během reakce odpařovat někdy instalován systém na zachycení platiny schopnost slitiny paladia a zlata zachycovat platinu a rhodium umožňuje zachytit 60 až 80 % úniků platiny a rhodia Parametry oxidace amoniaku v závislost na pracovním tlaku

23 Kyselina dusičná reaktor kalalytický reaktor pracovní podmínky koncentrace amoniaku výtěžek NO nejvyšší při poměru NH 3 /vzduch v rozsahu 9,5-10,5 % rovnoměrné rozdělení toku plynné směsi napříč sít katalyzátoru účinnost konverze s rostoucím obsahem amoniaku klesá amoniak se vzduchem tvoří výbušnou směs spodní mez výbušnosti klesá s tlakem vysokotlaký reaktor max. koncentrace amoniaku 11 % nízkotlaký reaktor max. koncentrace amoniaku 13,5 % v praxi používána střední koncentrace cca 10 % teplota reakce teplotní interval 850 až 950 C - výtěžkem cca 96 % vysoká reakční teplota urychluje spalování amoniaku zvýšená tvorby N2 a N2O - snížení konverze žádaných produktů reakční teplota - přímo ovlivněna poměrem amoniak/vzduch zvýšení obsahu amoniaku o 1 % zvyšuje teplotu o cca 68 C

24 Kyselina dusičná reaktor Vztah mezi účinností spalování amoniaku a teplotou spalování při tlaku 1 a 4 bar

25 Kyselina dusičná reaktor Snížená produkce N 2 O Rozklad N 2 O rozšířením komory reaktoru prázdná reakční komora (délka cca 3,5 m) doby zdržení v horké zóně 1 až 3 sekundy snížení obsahu N 2 O o % N 2 O je při vyšších teplotách nestálý (rozklad na dusík a kyslík) zanedbatelné provozní náklady Použitelnost v nově stavěných výrobnách nelze v nízkotlakém zařízení v reaktorech o průměru do 4 m

26 Kyselina dusičná reaktor Snížená produkce N 2 O Katalytický rozklad N 2 O v reaktoru rozklad bezprostředně za místem vzniku selektivní katalyzátorem De-N 2 O (nosič Ce 2 O 3, akt. složka Co) vrstva mm nesnižuje výtěžek NO zvýšení tlakové ztráty zvýšení nákladů cenou katalyzátoru náklady 0,98 1,20 EUR na tunu vyrobené kyseliny dusičné Použitelnost v nově stavěných výrobnách v rekonstruovaných výrobnách

27 Kyselina dusičná využití tepla Rekuperace tepla reaktor předehřívač páry výměníky ohřev koncových plynů po absorpci Chladící sekce dochlazení proudu plynu před vstupem do absorpční sekce (t max = 50 C) v chladiči kondenzuje slabý roztok kyseliny (veden do absorpční kolony) během chlazení plynných produktů oxidace NO 2NO O 2NO 2 2 přidán sekundární vzduch koncentrace O 2 ve směsi 2 až 4 % (obj.)

28 Kyselina dusičná absorpce Absorpční kolona protiproudý režim s recirkulací skrápěcího roztoku sítová nebo kloboučková patra vzdálenost mezi patry roste směrem od hlavy kolony k patě většina pater je osazena ještě chladicími hady 3 NO H O 2HNO NO exotermní reakce průběh těchto reakce závisí významně na teplotě a tlaku příznivý vysoký tlak, nízká teplota kyselina dusičná vznikající v absorpční koloně obsahuje oxidy dusíku vedena do stupně bělení kyseliny působením sekundárního vzduchu pata kolony koncentrace kyseliny hm. % (teplota, tlak, počet teoretických pater, koncentrací oxidů dusíku v plynu hlava kolony koncový plyn - teplota C - zachycení NO x, expanzní turbína

29 Kyselina dusičná absorpce Absorpční kolona sítová patra kloboučková patra 1 - plášť kolony, 2 - přepadová trubka, 3 - sítové patro 4 kapalina, 5 - pěna 1 - plášť kolony, 2 - přepadová trubka, 3 - patro s nátrubky, 4 - klobouček s otvory, 5 - kapalina 6 pára, 7 - pěna

30 Kyselina dusičná absorpce Absorpční kolona sítová patra kloboučková patra

31 Kyselina dusičná absorpce Absorpční kolona sítová patra kloboučková patra

32 Kyselina dusičná absorpce Absorpční kolona - optimalizace Tlak příznivý vysoký tlak vysoká účinnost absorpce minimalizovány emise NO x v moderních výrobnách nejběžnější tlak 1,7 6,5 bar Parametry absorpce ve výrobnách typu M/H a L/M M/H středotlaký/vysokotlaký proces L/M nízkotlaký/středotlaký proces

33 Kyselina dusičná absorpce Absorpční kolona - optimalizace Teplota tvorba kyseliny dusičné ve spodní třetině absorpční kolony nutné chladit reakční směs Optimální styk mezi NO x, O 2 a vodou konstrukčním řešením absorpční kolony (objemu kolony, počet a typ pater kolony, vzdálenosti mezi patry, počet zařazených kolon) stupeň přeměny NO x na kyselinu dusičnou funkcí doby zdržení reakční směsi v absorpčním stupni většině výroben kyseliny dusičné instalována jediná absorpční kolona

34 Kyselina dusičná absorpce Absorpční kolona - optimalizace zvýšením účinnosti absorpčního stupně snížení emisí NO x instalace jedné velké absorpční kolony zvýšení objemu kolony a počtu pater chlazení spodní část (40 50 %) chladící voda horní část (50 60 %) podchlazená voda (2-7 C) dosažitelné úrovně emisních koncentrací koncový plyn ppm NO x ( mg NO x /Nm 3 )

35 Kyselina dusičná absorpce Expansní turbina využití energie akumulované v podobě kompresní práce pro pohon kompresorů umístnění koncové plyny z absorpční kolony expansní turbina není schopna produkovat dostatek energie doplňující množství energie dodáváno parní turbínou

36 Kyselina dusičná koncové plyny snižování emisí zpracování koncových plynů SCR (pro odstranění NO x NSCR (pro odstranění NO x a N 2 O

37 Kyselina dusičná zachycování NO x a N 2 O z koncových plynů Současné zachycení NO x a N 2 O reaktor mezi výměníkem na ohřev koncových plynů a expanzní turbínou pracovní teplota C katalyzátor Fe-zeolit první vrstva (stupeň DeN 2 O) rozklad N 2 O na dusík a kyslík (při velké koncentraci NO x ) druhá vrstva (stupeň DeN 2 O/DeNO x ) redukce NO x amoniakem (probíhá i další rozklad N 2 O)

38 Kyselina dusičná zachycování NO x a N 2 O z koncových plynů Současné zachycení NO x a N 2 O přínos životnímu prostředí současné odstranění N 2 O a NO x účinnost odstranění N 2 O %, dosažitelné úrovně emisí 0,12 0,25 kg N 2 O na tunu 100 % HNO 3 (20 40 ppm) účinnost odstranění NO x 99 %, emisní úrovně NO x nižší než 5 ppm

39 Kyselina dusičná zachycování NO x a N 2 O z koncových plynů Neselektivní katalytická redukce (NSCR) NO x a N 2 O oxidy dusíku redukovány reakcí s redukčním činidlem (palivem) dusík a voda neselektivní -přidávané palivo reaguje především s volným kyslíkem přítomných v plynu a dále pak odstraňuje i NO x a N 2 O palivo - zemní plyn, vodík (nutné použít přebytek paliva) aktivní složka katalyzátorů pro NSCR - platina, oxid vanadičný, oxidy železa nosič katalyzátoru -alumina teplota vstupního plynu - od C pro H 2 od C pro zemní plyn teplota výstupního plynu - nad 800 C

40 Kyselina dusičná zachycování NO x a N 2 O z koncových plynů Neselektivní katalytická redukce (NSCR) NO x a N 2 O dva technologické postupy Jednostupňový proces obsah kyslíku v koncovém plynu nižší než 2,8 % teplota výstupních plynů z jednotky NSCR cca 800 C Dvoustupňový proces kyslíku ve vstupním plynu vyšší než 3 % použity dva reaktory mezi reaktory odběr tepla pomocí výměníku ohřívána pouze část plynu výstup z prvního reaktoru ochlazen studeným plynem přínos životnímu prostředí současné odstranění N 2 O a NO x snížení emisí N 2 O minimálně o 95 % (snížení emisních koncentrací pod 50 ppm) snížení emisních koncentrací NO x na ppm ( mg/m 3 )

41 Kyselina dusičná zachycování NO x a N 2 O z koncových plynů Selektivní katalytická redukce (SCR) NO x a N 2 O dávkování stechiometrického množství NH 3 do proudu odpadního plynu 6NO 4NH 5N 6H O NO 8NH 7N 12H O NO NO 2NH 2N 3H O NO O 4NH 5N 6H O Procesní podmínky koncový plyn ohřát na reakční teplotu (120 až 140 C) výměník optimální reakční teplota v rozsahu C tlaková ztráta 0,01 až 0,1 bar teplota koncových plynů po odstranění oxidů dusíku C

42 Kyselina dusičná zachycování NO x a N 2 O z koncových plynů Selektivní katalytická redukce (SCR) NO x a N 2 O Katalyzátory - různá struktura medové plástve desky pelety přínos životnímu prostředí dosažitelná konverze NOx % dosažitelné úrovně emisních koncentrací ppm snížení emisních koncentrací NO x na ppm ( mg/m 3 )

Průmysl dusíku. amoniak - kyselina dusičná - dusičnan amonný - močovina - chloramin - hydrazin. NaClO NaOH CO(NH 2 ) 2.

Průmysl dusíku. amoniak - kyselina dusičná - dusičnan amonný - močovina - chloramin - hydrazin. NaClO NaOH CO(NH 2 ) 2. Průmysl dusíku amoniak - kyselina dusičná - dusičnan amonný - močovina - chloramin - hydrazin CO(NH 2 ) 2 NaClO NaOH NH 2 Cl N 2 H 4 methan CO 2 (uhlí, ropa) H 2 NH 3 NO 2 HNO 3 O 2 vzduch voda vzduch

Více

Amoniak. 1913 průmyslová výroba syntetického amoniaku

Amoniak. 1913 průmyslová výroba syntetického amoniaku Amoniak 1913 průmyslová výroba syntetického amoniaku využití 20 % výroba dusíkatých hnojiv 80 % nejrůznější odvětví průmyslu (plasty, vlákna, výbušiny, hydrazin, aminy, amidy, nitrily a další organické

Více

Denitrifikace. Ochrana ovzduší ZS 2012/2013

Denitrifikace. Ochrana ovzduší ZS 2012/2013 Denitrifikace Ochrana ovzduší ZS 2012/2013 1 Úvod Pojem oxidy dusíku NO NO 2 Další formy NO x Vznik NO x 2 Vlastnosti NO Oxid dusnatý Vlastnosti M mol,no = 30,01 kg/kmol V mol,no,n = 22,41 m 3 /kmol ρ

Více

Omezování plynných emisí. Ochrana ovzduší ZS 2012/2013

Omezování plynných emisí. Ochrana ovzduší ZS 2012/2013 Omezování plynných emisí Ochrana ovzduší ZS 2012/2013 1 Úvod Různé fyzikální a chemické principy + biotechnologie Principy: absorpce adsorpce oxidace a redukce katalytická oxidace a redukce kondenzační

Více

Omezování plynných emisí. Ochrana ovzduší ZS 2010/2011

Omezování plynných emisí. Ochrana ovzduší ZS 2010/2011 Omezování plynných emisí Ochrana ovzduší ZS 2010/2011 1 Úvod Různé fyzikální a chemické principy + biotechnologie Principy: absorpce adsorpce oxidace a redukce katalytická oxidace a redukce kondenzační

Více

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování Zplyňování = termochemická přeměna uhlíkatého materiálu v pevném či kapalném skupenství na výhřevný energetický plyn pomocí zplyňovacích médií a tepla. Produktem je plyn obsahující výhřevné složky (H 2,

Více

KTEV Fakulty životního prostředí UJEP v Ústí n.l. Průmyslové technologie 3 příklady pro cvičení. Ing. Miroslav Richter, PhD.

KTEV Fakulty životního prostředí UJEP v Ústí n.l. Průmyslové technologie 3 příklady pro cvičení. Ing. Miroslav Richter, PhD. KTEV Fakulty životního prostředí UJEP v Ústí n.l. Průmyslové technologie 3 příklady pro cvičení Ing. Miroslav Richter, PhD., EUR ING 2014 Materiálové bilance 3.5.1 Do tkaninového filtru vstupuje 10000

Více

Zpracování ropy doc. Ing. Josef Blažek, CSc. 4. přednáška

Zpracování ropy doc. Ing. Josef Blažek, CSc. 4. přednáška ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Zpracování ropy doc. Ing. Josef Blažek, CSc. 4. přednáška Rafinace pohonných hmot, zpracování sulfanu, výroba vodíku

Více

NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS

NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE Ing. Stanislav HONUS ORGANICKÝ MATERIÁL Spalování Chemické přeměny Chem. přeměny ve vodním prostředí Pyrolýza Zplyňování Chemické Biologické Teplo

Více

Směšovací poměr a emise

Směšovací poměr a emise Směšovací poměr a emise Hmotnostní poměr mezi palivem a okysličovadlem - u motorů provozovaných v atmosféře, je okysličovadlem okolní vzduch Složení vzduchu: (objemové podíly) - 78% dusík N 2-21% kyslík

Více

Bezpečnostní inženýrství - Chemické procesy -

Bezpečnostní inženýrství - Chemické procesy - Bezpečnostní inženýrství - Chemické procesy - M. Jahoda Nebezpečí a prevence chemických procesů 2 Chemické reakce Tepelné efekty exotermní procesy (teplo se uvolňuje => nutnost chlazení) endotermní procesy

Více

Technické plyny. kapalný vzduch kyslík dusík vzácné plyny vodík (syntézní plyny)

Technické plyny. kapalný vzduch kyslík dusík vzácné plyny vodík (syntézní plyny) Technické plyny kapalný vzduch kyslík dusík vzácné plyny vodík (syntézní plyny) Kapalný vzduch složení vzduchu Před zkapalněním odstranění nežádoucích složek, např. vodní pára, CO 2, prach Zkapalňování

Více

Orientačně lze uvažovat s potřebou cca 650 750 Kcal na vypaření 1 l kapalné odpadní vody.

Orientačně lze uvažovat s potřebou cca 650 750 Kcal na vypaření 1 l kapalné odpadní vody. Proces Biodestil Biodestil je nový pokrokový proces pro zpracování vysoce kontaminovaných nebo zasolených odpadních vod, které jsou obtížně likvidovatelné ostatními konvenčními metodami. Tento proces je

Více

Krajský úřad Pardubického kraje OŽPZ - oddělení integrované prevence

Krajský úřad Pardubického kraje OŽPZ - oddělení integrované prevence Krajský úřad Pardubického kraje OŽPZ - oddělení integrované prevence *KUPAX00NHEHH* KUPAX00NHEHH Číslo jednací: KrÚ 7409/2018/OŽPZ/VO Spisová značka: SpKrÚ 79213/2017/OŽPZ/OIP Vyřizuje: Ing. Evžen Vokál,

Více

Kompaktní kompresorové chladiče

Kompaktní kompresorové chladiče Kompaktní kompresorové chladiče Vzduchem chlazený kondenzátor Vodou chlazený kondenzátor Kompresorový chladič se vzduchem chlazeným kondenzátorem Ohřátý chladící vzduch z kondenzátoru Desuperheater 100%

Více

Co víme o nekatalytické redukci oxidů dusíku

Co víme o nekatalytické redukci oxidů dusíku Co víme o nekatalytické redukci oxidů dusíku Ing. Pavel Machač, CSc., email: pavel.machac@vscht.cz, tel.: (40) 0 444 46 Ing. Jana Vávrová, email: jana1.vavrova@vscht.cz, tel.: (40) 74 971 991 VŠCHT Praha,

Více

Kyselina fosforečná Suroviny: Výroba: termický způsob extrakční způsob

Kyselina fosforečná Suroviny: Výroba: termický způsob extrakční způsob Kyselina fosforečná bezbarvá krystalická sloučenina snadno rozpustná ve vodě komerčně dodávané koncentrace 75% H 3 PO 4 s 54,3% P 2 O 5 80% H 3 PO 4 s 58.0% P 2 O 5 85% H 3 PO 4 s 61.6% P 2 O 5 po kyselině

Více

Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR

Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR Celkový dusík Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví člověka, rizika

Více

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3 Výpočtový seminář z Procesního inženýrství podzim 2008 Bilance Materiálové a látkové 10.10.2008 1 Tématické okruhy bilance - základní pojmy bilanční schéma způsoby vyjadřování koncentrací a přepočtové

Více

Spalování zemního plynu

Spalování zemního plynu Kotel na odpadní teplo pro PPC Kotel na odpadní teplo pro PPC Označení KNOT (Doc. Kolovratník) HRSG = Heat Recovery Steam Generator Funkce dochladit spaliny odcházející z plynové turbíny vyrobit páru pro

Více

CHEMICKÉ TECHNOLOGIE PRO PROCESNÍ INŽENÝRSTVÍ N VÝROBA MTBE

CHEMICKÉ TECHNOLOGIE PRO PROCESNÍ INŽENÝRSTVÍ N VÝROBA MTBE CHEMICKÉ TECHNOLOGIE PRO PROCESNÍ INŽENÝRSTVÍ N409059 VÝROBA MTBE Fyzikální a chemické vlastnosti Suroviny Reakce Technologie Dvoustupňová výroba Jednostupňová výroba Charakteristiky technologií Zdroje

Více

Finanční podpora státu u opatření na snižování emisí v segmentu velké energetiky na území Moravskoslezského kraje

Finanční podpora státu u opatření na snižování emisí v segmentu velké energetiky na území Moravskoslezského kraje Finanční podpora státu u opatření na snižování emisí v segmentu velké energetiky na území Moravskoslezského kraje Ing. Radomír Štěrba 9.-10. září 2015 Rožnov pod Radhoštěm ENERGETIKA A ŽIVOTNÍ PROSTŘEDÍ

Více

NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ

NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ Provoz automobilových PSM je provázen produkcí škodlivin, které jsou emitovány do okolí: škodliviny chemické (výfuk.škodliviny, kontaminace),

Více

Používání energie v prádelnách

Používání energie v prádelnách Leonardo da Vinci Projekt Udržitelný rozvoj v průmyslových prádelnách Modul 5 Energie v prádelnách Kapitola 2 Používání energie v prádelnách Modul 5 Energie v prádelnách Kapitola 2 Používání energie 1

Více

28.10.2013. Kogenerace s parním strojem. Limity parního motoru

28.10.2013. Kogenerace s parním strojem. Limity parního motoru Parní motor PM VS je objemový parní stroj sestávající z bloku motoru, válců, pístů šoupátkového rozvodu. Parní stroj je spojen s generátorem elektrické energie. Parní stroj i generátor je umístěn na společném

Více

Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np:

Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np: PRVKY PÁTÉ SKUPINY Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np: Obecná konfigurace: ns np Nejvyšší kladné

Více

TEPELNÁ ČERPADLA EKOLOGICKÁ A ÚSPORNÁ ŘEŠENÍ PRO RODINNÉ DOMY, BYTOVÉ DOMY, VEŘEJNÉ OBJEKTY A FIRMY

TEPELNÁ ČERPADLA EKOLOGICKÁ A ÚSPORNÁ ŘEŠENÍ PRO RODINNÉ DOMY, BYTOVÉ DOMY, VEŘEJNÉ OBJEKTY A FIRMY TEPELNÁ ČERPADLA EKOLOGICKÁ A ÚSPORNÁ ŘEŠENÍ PRO RODINNÉ DOMY, BYTOVÉ DOMY, VEŘEJNÉ OBJEKTY A FIRMY Systém topení a ohřevu TUV s tepelným čerpadlem VZDUCH-VODA KOMPAKT Vhodný pro všechny typy objektů včetně

Více

Příklady úspěšných projektů čistší produkce (Cleaner Production) Výroba: kyseliny sírové mikrokorundu

Příklady úspěšných projektů čistší produkce (Cleaner Production) Výroba: kyseliny sírové mikrokorundu Příklady úspěšných projektů čistší produkce (Cleaner Production) Výroba: kyseliny sírové mikrokorundu Ing. Miroslav Richter, PhD., EUR ING Fakulta životního prostředí Univerzity J.E.Purkyně v Ústí n.l.

Více

Perspektivní metody. PROČ sušení pevných paliv? Většina dodané energie se ztrácí. Klasická metoda sušení horkými spalinami

Perspektivní metody. PROČ sušení pevných paliv? Většina dodané energie se ztrácí. Klasická metoda sušení horkými spalinami Perspektivní metody sušení pevných paliv Klasická metoda sušení horkými spalinami Uzavřený mlecí okruh PROČ sušení pevných paliv? zvýšení výhřevnosti snazší vzněcování spalování při vyšší teplotě menší

Více

Emisní limity pro zvláště velké spalovací zdroje znečišťování pro oxid siřičitý (SO 2 ), oxidy dusíku (NO x ) a tuhé znečišťující látky

Emisní limity pro zvláště velké spalovací zdroje znečišťování pro oxid siřičitý (SO 2 ), oxidy dusíku (NO x ) a tuhé znečišťující látky Příloha č. 20 (Příloha č. 1 NV č. 352/2002 Sb.) Emisní limity pro zvláště velké spalovací zdroje znečišťování pro oxid siřičitý (SO 2 ), oxidy dusíku (NO x ) a tuhé znečišťující látky 1. Emisní limity

Více

Úprava vody v elektrárnách a teplárnách Bezodpadové technologie Petra Křížová

Úprava vody v elektrárnách a teplárnách Bezodpadové technologie Petra Křížová Úprava vody v elektrárnách a teplárnách Bezodpadové technologie Petra Křížová MemBrain s.r.o., Pod Vinicí 87, 471 27 Stráž pod Ralskem 1 Úprava vody v elektrárnách a teplárnách a bezodpadové technologie

Více

Posouzení klimatizačních a chladících systémů v energetických auditech z pohledu energetického auditora Ing. Vladimír NOVOTNÝ I&C Energo a.s., Seminář AEA 26.5.2005 FAST Brno Veveří 95 Regionální kancelář

Více

ČEZ ENERGETICKÉ PRODUKTY, S.R.O.

ČEZ ENERGETICKÉ PRODUKTY, S.R.O. ČEZ ENERGETICKÉ PRODUKTY, S.R.O. Ø Společnost je jedním ze zakládajících členů Asociace pro využití energetických produktů (ASVEP), která se zabývá oblastí využívání energetických produktů ve stavebním

Více

Problematika koncentrací Hg ve spalinách vzniklých po spalování pevných fosilních paliv

Problematika koncentrací Hg ve spalinách vzniklých po spalování pevných fosilních paliv ÚJV Řež, a. s. Divize ENERGOPROJEKT PRAHA Problematika koncentrací Hg ve spalinách vzniklých po spalování pevných fosilních paliv Lukáš Pilař Konference Technologie pro elektrárny a teplárny na tuhá paliva

Více

Prvek Značka Z - protonové číslo Elektronegativita Dusík N 7 3,0 Fosfor P 15 2,2 Arsen As 33 2,1 Antimon Sb 51 2,0 Bismut Bi 83 2,0

Prvek Značka Z - protonové číslo Elektronegativita Dusík N 7 3,0 Fosfor P 15 2,2 Arsen As 33 2,1 Antimon Sb 51 2,0 Bismut Bi 83 2,0 Otázka: Prvky V. A skupiny Předmět: Chemie Přidal(a): kevina.h Prvek Značka Z - protonové číslo Elektronegativita Dusík N 7 3,0 Fosfor P 15 2,2 Arsen As 33 2,1 Antimon Sb 51 2,0 Bismut Bi 83 2,0 valenční

Více

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.

Více

TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ)

TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ) TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ) 6. část DIOXINY A FURANY Zpracoval: Tým autorů EVECO Brno, s.r.o. DIOXINY A FURANY DIOXINY PCDD: je obecný název pro skupinu toxických

Více

TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ)

TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ) TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ) 5. část TĚKAVÉ ORGANICKÉ SLOUČENINY A PACHOVÉ LÁTKY Zpracoval: Tým autorů EVECO Brno, s.r.o. TĚKAVÉ ORGANICKÉ SLOUČENINY Těkavé organické

Více

VLIVY VÝROBY OXIDU UHLIČITÉHO A SUCHÉHO LEDU NA ŽIVOTNÍ PROSTŘEDÍ

VLIVY VÝROBY OXIDU UHLIČITÉHO A SUCHÉHO LEDU NA ŽIVOTNÍ PROSTŘEDÍ VLIVY VÝROBY OXIDU UHLIČITÉHO A SUCHÉHO LEDU NA ŽIVOTNÍ PROSTŘEDÍ IGC Doc 111/03/E Český překlad proveden pracovní skupinou PS-4 ČATP EUROPEAN INDUSTRIAL GASES ASSOCIATION (EVROPSKÁ ASOCIACE PRŮMYSLOVÝCH

Více

Zpracování teorie 2010/11 2011/12

Zpracování teorie 2010/11 2011/12 Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit

Více

integrované povolení

integrované povolení V rámci aktuálního znění výrokové části integrovaného povolení jsou zapracovány dosud vydané změny příslušného integrovaného povolení. Uvedený dokument má pouze informativní charakter a není závazný. Aktuální

Více

3. Soda a potaš Ing. Miroslav Richter, Ph.D., EUR ING

3. Soda a potaš Ing. Miroslav Richter, Ph.D., EUR ING ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE 3. Soda a potaš Ing. Miroslav Richter, Ph.D., EUR ING Výroby sody a potaše Suroviny, Přehled výrobních technologií

Více

Autokláv reaktor pro promíchávané vícefázové reakce

Autokláv reaktor pro promíchávané vícefázové reakce Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.

Více

Obsah: Princip fungování absorpčního stroje 2 Solární chlazení 4 Jednostupňový absorpční chladicí stroj BROAD v provozu OKK Koksovny (Koksovna

Obsah: Princip fungování absorpčního stroje 2 Solární chlazení 4 Jednostupňový absorpční chladicí stroj BROAD v provozu OKK Koksovny (Koksovna Obsah: Princip fungování absorpčního stroje 2 Solární chlazení 4 Jednostupňový absorpční chladicí stroj BROAD v provozu OKK Koksovny (Koksovna Svoboda) 5 Newsletter of the Regional Energy Agency of Moravian-Silesian

Více

Příklad 1: Bilance turbíny. Řešení:

Příklad 1: Bilance turbíny. Řešení: Příklad 1: Bilance turbíny Spočítejte, kolik kg páry za sekundu je potřeba pro dosažení výkonu 100 MW po dobu 1 sek. Vstupní teplota a tlak do turbíny jsou 560 C a 16 MPa, výstupní teplota mokré páry za

Více

Ing. Jiří Charvát, Ing. Pavel Kolář Z 13 NOVÉ SMĚRY A PERSPEKTIVY SANACE HORNINOVÉHO PROSTŘEDÍ PO CHEMICKÉ TĚŽBĚ URANU NA LOŽISKU STRÁŽ

Ing. Jiří Charvát, Ing. Pavel Kolář Z 13 NOVÉ SMĚRY A PERSPEKTIVY SANACE HORNINOVÉHO PROSTŘEDÍ PO CHEMICKÉ TĚŽBĚ URANU NA LOŽISKU STRÁŽ Ing. Jiří Charvát, Ing. Pavel Kolář Z 13 NOVÉ SMĚRY A PERSPEKTIVY SANACE HORNINOVÉHO PROSTŘEDÍ PO CHEMICKÉ TĚŽBĚ URANU NA LOŽISKU STRÁŽ Chemická těžba uranu byla v o. z. TÚU Stráž pod Ralskem provozována

Více

VÍCE-VÝMĚNÍKOVÁ TEPELNÁ ČERPADLA

VÍCE-VÝMĚNÍKOVÁ TEPELNÁ ČERPADLA VÍCE-VÝMĚNÍKOVÁ TEPELNÁ ČERPADLA ForArch 2015 Ing. Jan Sedlář, Univerzitní Centrum Energeticky Efektivních Budov České Vysoké Učení Technické v Praze OBSAH Motivace k vývoji tepelných čerpadel pokročilejších

Více

Dusík a fosfor. Dusík

Dusík a fosfor. Dusík 5.9.010 Dusík a fosfor Dusík lyn Bezbarvý, bez chuti a zápachu Vyskytuje se v dvouatomových molekulách N Molekuly dusíku extremně stabilní říprava: reakce dusitanů s amonnými ionty NH N N ( ( ( ( Výroba:

Více

Univerzální středotlaké parní kotle KU

Univerzální středotlaké parní kotle KU Univerzální středotlaké parní kotle Popis Kotle jsou plamencožárotrubné, velkoprostorové kotle s přirozenou cirkulací kotelní vody, pro spalování kapalných a plynných paliv. Rozměry spalovací komory jsou

Více

Fosfor a sloučeniny fosforu. Suroviny. Sloučeniny. kalcinace pro oddělení organických. Kyselina trihydrogenfosforečná H3PO4

Fosfor a sloučeniny fosforu. Suroviny. Sloučeniny. kalcinace pro oddělení organických. Kyselina trihydrogenfosforečná H3PO4 Fosfor a sloučeniny fosforu Sloučeniny Fosfor bílý Kyselina trihydrogenfosforečná H3PO4 Suroviny Apatit Ca5 (PO4)3(F, OH, Cl) fluoroapatity úpravy mletí promývání sítování magnetické oddělování oxidů železa

Více

TERMICKÉ PROCESY PŘI VYUŽITÍ ALTERNATIVNÍCH SUROVIN. Most, 13.6.2013 Autor: Doc. Ing. J.LEDERER, CSc.

TERMICKÉ PROCESY PŘI VYUŽITÍ ALTERNATIVNÍCH SUROVIN. Most, 13.6.2013 Autor: Doc. Ing. J.LEDERER, CSc. TERMICKÉ PROCESY PŘI VYUŽITÍ ALTERNATIVNÍCH SUROVIN Most, 13.6.2013 Autor: Doc. Ing. J.LEDERER, CSc. OBSAH PRINCIPY POUŽÍVANÝCH TERMOCHEMICKÝCH PROCESŮ VELKOKAPACITNÍ REALIZACE TERMOCHEMICKÝCH PROCESŮ

Více

Chlazení kapalin. řada WDE. www.jdk.cz. CT120_CZ WDE (Rev.04-11)

Chlazení kapalin. řada WDE. www.jdk.cz. CT120_CZ WDE (Rev.04-11) Chlazení kapalin řada WDE www.jdk.cz CT120_CZ WDE (Rev.04-11) Technický popis WDE-S1K je řada kompaktních chladičů kapalin (chillerů) s nerezovým deskovým výparníkem a se zabudovanou akumulační nádobou

Více

Expert na zelenou energii

Expert na zelenou energii Expert na zelenou energii Člen podnikatelské skupiny LUKA & BRAMER GROUP se sídlem v Brně Zaměřená na: dodávku technologií pro využití a zpracování odpadů dodávku a servis technologických celků a zařízení

Více

Chemické procesy v ochraně životního prostředí

Chemické procesy v ochraně životního prostředí Chemické procesy v ochraně životního prostředí 1. Vliv výroby energie na životní prostředí 2. Zpracování výfukových plynů ze spalovacích motorů 3. Zachycování oxidů síry ve spalinách 4. Výroba paliv pro

Více

Laboratorní cvičení z kinetiky chemických reakcí

Laboratorní cvičení z kinetiky chemických reakcí Laboratorní cvičení z kinetiky chemických reakcí LABORATORNÍ CVIČENÍ 1. Téma: Ovlivňování průběhu reakce změnou koncentrace látek. podmínek průběhu reakce. Jednou z nich je změna koncentrace výchozích

Více

Tepelné zdroje soustav CZT. Plynová turbína. Zásobovaní z tepláren s velkými spalovacími (plynovými) turbínami

Tepelné zdroje soustav CZT. Plynová turbína. Zásobovaní z tepláren s velkými spalovacími (plynovými) turbínami Zásobovaní z tepláren s velkými spalovacími (plynovými) turbínami Tepelné zdroje soustav CZT tepelná část kombinovaného oběhu neovlivňuje silovou (mechanickou) část oběhu teplo se odvádí ze silové části

Více

Doc. Ing. Michal KOLOVRATNÍK, CSc. Doc. Ing. Tomáš DLOUHÝ, CSc.

Doc. Ing. Michal KOLOVRATNÍK, CSc. Doc. Ing. Tomáš DLOUHÝ, CSc. Doc. Ing. Michal KOLOVRATNÍK, CSc. Doc. Ing. Tomáš DLOUHÝ, CSc. ČVUT v PRAZE, Fakulta strojní Ústav mechaniky tekutin a energetiky Odbor tepelných a jaderných energetických zařízení pro energetiku 1 optimalizace

Více

KOMPRESORY F 1 F 2. F 3 V 1 p 1. V 2 p 2 V 3 p 3

KOMPRESORY F 1 F 2. F 3 V 1 p 1. V 2 p 2 V 3 p 3 KOMPRESORY F 1 F 2 F 3 V 1 p 1 V 2 p 2 V 3 p 3 1 KOMPRESORY V kompresorech se mění mechanická nebo kinetická energie v energii tlakovou, při čemž se vyvíjí teplo. Kompresory jsou stroje tepelné, se zřetelem

Více

TOSHIBA ESTIA TEPELNÁ ČERPADLA VZDUCH-VODA

TOSHIBA ESTIA TEPELNÁ ČERPADLA VZDUCH-VODA TOSHIBA ESTIA TEPELNÁ ČERPADLA VZDUCH-VODA Systém Estia představuje tepelná čerpadla vzduch-voda s extrémně vysokou účinností, která přinášejí do vaší domácnosti velmi nízké náklady na topení, na ohřev

Více

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala ÚPRAVA VODY V ENERGETICE Ing. Jiří Tomčala Úvod Voda je v elektrárnách po palivu nejdůležitější surovinou Její množství v provozních systémech elektráren je mnohonásobně větší než množství spotřebovaného

Více

VIESMANN VITOTRANS 100. List technických údajů Obj. č. aceny:vizceník VITOTRANS 100. Deskový výměník tepla. Pokyny pro uložení:

VIESMANN VITOTRANS 100. List technických údajů Obj. č. aceny:vizceník VITOTRANS 100. Deskový výměník tepla. Pokyny pro uložení: VIESMANN VITOTRANS 100 Deskový výměník tepla List technických údajů Obj. č. aceny:vizceník Pokyny pro uložení: Složka Vitotec, registr 17 VITOTRANS 100 Typ PWT Pro předávací stanice zásobovacích tepelných

Více

zadání příkladů 10. výsledky příkladů 7. 3,543 litru kyslíku

zadání příkladů 10. výsledky příkladů 7. 3,543 litru kyslíku zadání Jaký bude objem vodíku při tlaku 105 kpa a teplotě 15 stupňů Celsia, který vznikne reakcí 8 gramů zinku s nadbytkem kyseliny trihydrogenfosforečné? Jaký bude objem vodíku při tlaku 97 kpa a teplotě

Více

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. Kotle Emisní zátěž Praktický příklad porovnání emisní zátěže a dalších

Více

PRVNÍ REALIZACE SCR REAKTORU V ČR. NA BLOCÍCH K3 a K4 ELEKTRÁRNY DĚTMAROVICE NA ČERNÉ UHLÍ

PRVNÍ REALIZACE SCR REAKTORU V ČR. NA BLOCÍCH K3 a K4 ELEKTRÁRNY DĚTMAROVICE NA ČERNÉ UHLÍ PRVNÍ REALIZACE SCR REAKTORU V ČR NA BLOCÍCH K3 a K4 ELEKTRÁRNY DĚTMAROVICE NA ČERNÉ UHLÍ ELEKTRÁRNA DĚTMAROVICE a.s. Výstavba v letech 1972-1976 Instalovaný výkon 800 MWe bloky o výkonu 4 x 200 MWe K1

Více

10. Chemické reaktory

10. Chemické reaktory 10. Chemické reaktory V každé chemické technologii je základní/nejvýznamnější zařízení pro provedení chemické reakce chemický reaktor. Celý technologický proces se skládá v podstatě ze tří typů zařízení:

Více

Tvorba škodlivin při spalování

Tvorba škodlivin při spalování Tvorba škodlivin při spalování - Při spalování dochází ke vzniku řady škodlivin - Je třeba spalovací proces vést tak, aby se minimalizoval vznik škodlivin (byly dodrženy emisní limity) - Emisní limity

Více

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/ Výpočty z chemických vzorců

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/ Výpočty z chemických vzorců Výpočty z chemických vzorců 1. Hmotnost kyslíku je 80 g. Vypočítejte : a) počet atomů kyslíku ( 3,011 10 atomů) b) počet molů kyslíku (2,5 mol) c) počet molekul kyslíku (1,505 10 24 molekul) d) objem (dm

Více

Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy

Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy obsah Prezentace cíl společnosti Odpadní komodity a jejich složení Nakládání s komunálním odpadem Thermo-katalitická

Více

Parní turbíny Rovnotlaký stupeň

Parní turbíny Rovnotlaký stupeň Parní turbíny Dominanci parních turbín v energetickém průmyslu vyvolaly provozní a ekonomické výhody,zejména: Menší investiční náklady, hmotnost a obestavěný prostor, vztažený na jednotku výkonu. Možnost

Více

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku. Elektroenergetika 1 (A1B15EN1) 4. cvičení Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak

Více

Biologické odsiřování bioplynu. Ing. Dana Pokorná, CSc.

Biologické odsiřování bioplynu. Ing. Dana Pokorná, CSc. Biologické odsiřování bioplynu Ing. Dana Pokorná, CSc. Sulfan problematická složka bioplynu Odkud se sulfan v bioplynu bere? Organická síra proteiny s inkorporovanou sírou Odpady a odpadní vody z průmyslu

Více

integrované povolení

integrované povolení V rámci aktuálního znění výrokové části integrovaného povolení jsou zapracovány dosud vydané změny příslušného integrovaného povolení. Uvedený dokument má pouze informativní charakter a není závazný. Aktuální

Více

Expert na zelenou energii

Expert na zelenou energii Expert na zelenou energii Člen podnikatelské skupiny LUKA & BRAMER GROUP se sídlem v Brně Zaměřená na: dodávku technologií pro využití a zpracování odpadů dodávku a servis technologických celků a zařízení

Více

Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI. Pavel Žitek

Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI. Pavel Žitek Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI 1 Zvyšování účinnosti R-C cyklu ZÁKLADNÍ POJMY Tepelná účinnost udává, jaké množství vloženého tepla se podaří přeměnit na užitečnou práci či elektrický výkon; vypovídá

Více

Kolik energie by se uvolnilo, kdyby spalování ethanolu probíhalo při teplotě o 20 vyšší? Je tato energie menší nebo větší než při teplotě 37 C?

Kolik energie by se uvolnilo, kdyby spalování ethanolu probíhalo při teplotě o 20 vyšší? Je tato energie menší nebo větší než při teplotě 37 C? TERMOCHEMIE Reakční entalpie při izotermním průběhu reakce, rozsah reakce 1 Kolik tepla se uvolní (nebo spotřebuje) při výrobě 2,2 kg acetaldehydu C 2 H 5 OH(g) = CH 3 CHO(g) + H 2 (g) (a) při teplotě

Více

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví páry Pro správné pochopení funkce parních systémů musíme znát základní pojmy spojené s párou. Entalpie Celková energie, příslušná danému

Více

OBSAH. ZVU Engineering a.s., člen skupiny ZVU, UTILIZAČNÍ KOTLE strana 2

OBSAH. ZVU Engineering a.s., člen skupiny ZVU, UTILIZAČNÍ KOTLE strana 2 UTILIZAČNÍ KOTLE OBSAH 1 ÚVOD...3 2 KONCEPCE UTILIZAČNÍCH KOTLŮ...4 2.1 Komplexní řešení... 4 2.2 Druh tepelné výměny... 4 2.3 Utilizační jednotky a jejich využití... 5 2.4 Konstrukční materiály, normy...

Více

H H C C C C C C H CH 3 H C C H H H H H H

H H C C C C C C H CH 3 H C C H H H H H H Alkany a cykloalkany sexta Martin Dojiva uhlovodíky obsahující pouze jednoduché vazby obecný vzorec alkanů: C n 2n+2 cykloalkanů: C n 2n homologický přírůstek C 2 Dělení alkanů přímé větvené u větvených

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO TECHNOLOGICKÁ. Bc. Veronika Krejčíková

UNIVERZITA PARDUBICE FAKULTA CHEMICKO TECHNOLOGICKÁ. Bc. Veronika Krejčíková UNIVERZITA PARDUBICE FAKULTA CHEMICKO TECHNOLOGICKÁ Studium laboratorních metod přípravy perovskitových sloučenin pro katalytické účely Bc. Veronika Krejčíková Diplomová práce 2018 Prohlašuji: Tuto práci

Více

Tematický blok 2 Zdroje znečišťování ovzduší Chemický průmysl Ing. Miroslav Richter, Ph.D., EUR ING miroslav.richter@ujep.cz

Tematický blok 2 Zdroje znečišťování ovzduší Chemický průmysl Ing. Miroslav Richter, Ph.D., EUR ING miroslav.richter@ujep.cz ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Tematický blok 2 Zdroje znečišťování ovzduší Chemický průmysl Ing. Miroslav Richter, Ph.D., EUR ING miroslav.richter@ujep.cz

Více

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku. Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak páry po expanzi ve vysokotlaké části turbíny

Více

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová Vícefázové reaktory Probublávaný reaktor plyn kapalina katalyzátor Zuzana Tomešová 2008 Probublávaný reaktor plyn - kapalina - katalyzátor Hydrogenace méně těkavých látek za vyššího tlaku Kolony naplněné

Více

kde k c(no 2) = 2, m 6 mol 2 s 1. Jaká je hodnota rychlostní konstanty v rychlostní rovnici ? V [k = 1, m 6 mol 2 s 1 ]

kde k c(no 2) = 2, m 6 mol 2 s 1. Jaká je hodnota rychlostní konstanty v rychlostní rovnici ? V [k = 1, m 6 mol 2 s 1 ] KINETIKA JEDNODUCHÝCH REAKCÍ Různé vyjádření reakční rychlosti a rychlostní konstanty 1 Rychlost reakce, rychlosti přírůstku a úbytku jednotlivých složek Rozklad kyseliny dusité je popsán stechiometrickou

Více

TECHNOLOGIE OCHRANY OVZDUŠÍ

TECHNOLOGIE OCHRANY OVZDUŠÍ TECHNOLOGIE OCHRANY OVZDUŠÍ Přednáška č. 9 Snímek 1. Osnova přednášky Základní údaje o automobilové dopravě Princip funkce spalovacího motoru Přehled emisí ze spalovacích motorů Metody omezování emisí

Více

Co udělaly (a musí udělat) teplárny pro splnění limitů? Co přinesla ekologizace?

Co udělaly (a musí udělat) teplárny pro splnění limitů? Co přinesla ekologizace? Co udělaly (a musí udělat) teplárny pro splnění limitů? Co přinesla ekologizace? Petr Matuszek XXIX. SEMINÁŘ ENERGETIKŮ Luhačovice 22. 24. 1. 2019 1. Obsah Charakteristika společnosti Teplárna E2 Teplárna

Více

Ochrana ovzduší ve státní správě. Sezimovo Ústí, 14. - 16. listopadu 2006

Ochrana ovzduší ve státní správě. Sezimovo Ústí, 14. - 16. listopadu 2006 Ochrana ovzduší ve státní správě Sezimovo Ústí, 14. - 16. listopadu 2006 Emise škodlivých látek kog. jednotek při spalování alternativních paliv Ing. Jiří Štochl TEDOM-VKS s.r.o. KVET = kombinovaná výroba

Více

TECHNOLOGIE OCHRANY OVZDUŠÍ

TECHNOLOGIE OCHRANY OVZDUŠÍ TECHNOLOGIE OCHRANY OVZDUŠÍ Přednáška č. 7 Přednášející: Ing. Marek Staf, Ph.D. tel. 220 444 458; e-mail marek.staf@vscht.cz budova A, ústav 216, č. dveří 162 Snímek 1. Osnova přednášky Původ emisí N 2

Více

TECHNOLOGIE OCHRANY OVZDUŠÍ

TECHNOLOGIE OCHRANY OVZDUŠÍ TECHNOLOGIE OCHRANY OVZDUŠÍ Přednáška č. 7 Přednášející: Ing. Marek Staf, Ph.D. tel. 220 444 458; e-mail marek.staf@vscht.cz budova A, ústav 216, č. dveří 162 Snímek 1. Osnova přednášky Původ emisí N 2

Více

VIESMANN VITOTRANS 100 Deskový výměník tepla

VIESMANN VITOTRANS 100 Deskový výměník tepla VIESMANN VITOTRANS 100 Deskový výměník tepla List technických údajů Obj. čísla a ceny: viz ceník VITOTRANS 100 Typ PWT Pro předávací stanice zásobovacích tepelných sítí, k oddělování systémů v topných

Více

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv Spalovací turbíny Ing. Jan Andreovský Ph.D.

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv Spalovací turbíny Ing. Jan Andreovský Ph.D. ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv Spalovací turbíny Ing. Jan Andreovský Ph.D. Spalovací turbíny Základní informace Historie a vývoj Spalovací

Více

PRODUKT POPIS PARAMETRY. Napájecí modul Kondenzátní modul Chemická úprava vody Expandér odluhu a odkalu Parní/ teplovodní rozdělovač/ sběrač atd.

PRODUKT POPIS PARAMETRY. Napájecí modul Kondenzátní modul Chemická úprava vody Expandér odluhu a odkalu Parní/ teplovodní rozdělovač/ sběrač atd. PRODUKTOVÝ LIST PRODUKT POPIS PARAMETRY Parní kotle PB-P PB-PP PB-NP Parní středotlaké třítahové kotle na plynná a kapalná paliva v provedení na sytou nebo přehřátou páru. Parní nízkotlaké třítahové kotle

Více

zpracování těžkých frakcí na motorová paliva (mazut i vakuový zbytek)

zpracování těžkých frakcí na motorová paliva (mazut i vakuový zbytek) Ropa štěpné procesy zpracování těžkých frakcí na motorová paliva (mazut i vakuový zbytek) typy štěpných procesů: - termické krakování - katalytické krakování - hydrogenační krakování (hydrokrakování) podmínky

Více

Základní anorganické výroby PRŮMYSLVÁ ANRGANICKÁ CHEMIE Voda Výroba Filtrace Úprava dstraňování nečistot Vodík Výroba vodíku Petrochemie Elektrochemie Peroxid vodíku a anorganické peroxosloučeniny Dusík

Více

Základy chemických technologií

Základy chemických technologií 6. Přednáška Výměníky tepla Odpařování, odparky Výměníky tepla: zařízení, které slouží k výměně tepla mezi dvěma fázemi ( obvykle kapalné) z tepejší se teplo odebírá do studenější se převádí technologické

Více

Moderní energetické stoje

Moderní energetické stoje Moderní energetické stoje Jedná se o zdroje, které spojuje několik charakteristických vlastností. Jedná se hlavně o tyto: + vysoká účinnost + nízká produkce škodlivých látek - vysoká pořizovací cena! -

Více

Tepelnáčerpadla, pracovní látky, principy, zdroje, zapojení, příklady využití 1. Pracovní látky - chladiva

Tepelnáčerpadla, pracovní látky, principy, zdroje, zapojení, příklady využití 1. Pracovní látky - chladiva Tepelnáčerpadla, pracovní látky, principy, zdroje, zapojení, příklady využití 1. Pracovní látky - chladiva Pracovní látkou tepelného čerpadla je látka, která v oběhu tepelného čerpadla přijímá teplo při

Více

1/79 Teplárenské zdroje

1/79 Teplárenské zdroje 1/79 Teplárenské zdroje parní protitlakové turbíny parní odběrové turbíny plynové turbíny s rekuperací paroplynový cyklus Teplárenské zdroje 2/79 parní protitlaké turbíny parní odběrové turbíny plynové

Více

TOSHIBA ESTIA UNIKÁTNÍ KVALITA TEPELNÝCH ČERPADEL VZDUCH-VODA

TOSHIBA ESTIA UNIKÁTNÍ KVALITA TEPELNÝCH ČERPADEL VZDUCH-VODA TOSHIBA ESTIA UNIKÁTNÍ KVALITA TEPELNÝCH ČERPADEL VZDUCH-VODA Systém Estia představuje tepelná čerpadla vzduch-voda s extrémně vysokou účinností, která přinášejí do vaší domácnosti velmi nízké náklady

Více

ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo,

ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo, ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo, sluneční energie, termální teplo apod.). Nejčastější je kotelna.

Více

POKYNY FAKTORY OVLIVŇUJÍCÍ RYCHLOST REAKCÍ

POKYNY FAKTORY OVLIVŇUJÍCÍ RYCHLOST REAKCÍ POKYNY Prostuduj si teoretický úvod a následně vypracuj postupně všechny zadané úkoly zkontroluj si správné řešení úkolů podle řešení FAKTORY OVLIVŇUJÍCÍ RYCHLOST REAKCÍ 1) Vliv koncentrace reaktantů čím

Více