Metody studia mechanických vlastností kovů
|
|
- Richard Říha
- před 10 lety
- Počet zobrazení:
Transkript
1 Metody studia mechanických vlastností kovů 1. Zkouška tahem Zkouška tahem při pomalém zatěžování a za tzv. okolní teploty (10 C 35 C) je zcela základní a nejběžněji prováděnou zkouškou mechanických vlastností u většiny konstrukčních materiálů (nejen kovových). Výsledky zkoušky tahem do lomu představují tzv. základní mechanické vlastnosti. Obr. X: Teoretická tahová křivka, [1]. Základními mechanickými vlastnostmi konstrukčních materiálu jsou: statická pevnost, mez kluzu, modul pružnosti, houževnatost a křehkost, tvrdost, odolnost proti opotřebení a jiné. Mechanické zatěžování materiálu má za následek jeho deformaci. Podle stavu, ke kterému dojde po odlehčení, jsou deformace v zásadě pružné (elastické) či trvalé (plastické). Při nepřiměřeně vysokém namáhání dojde obvykle k nepřípustným deformacím, případně k porušení celistvosti (lomu). Působení síly na těleso se vyjadřuje mechanickým napětím, tedy zatížením na jednotku plochy průřezu tělesa. Pokud síla působí kolmo na daný průřez, jedná se o normálové napětí, vyjádřené F σ = (1.1) S 0 1
2 2. Světelná mikroskopie Světelná mikroskopie je nejrozšířenější metoda přímého pozorování vnitřní stavby kovů a slitin. Využíváme ji ke studiu a kontrole struktury materiálů. V metalografii využíváme tzv. metalografický mikroskop. Existují dvojího typu: normální-a) a tzv. převrácený-b), viz obr. 1. Obr. X: Schéma optických mikroskopů. Většinou se používá druhá možnost, protože vzorek můžeme dobře nasvítit. Při použití prvního způsobu se musí přistavit lampa, protože vzorek není průhledný, tudíž ho musíme nasvětlovat, ne prosvětlovat. Uvnitř mikroskopu je systém čoček, které tvoří objektiv a okulár. Celkové zvětšení získáme, když dosadíme do vztahu: Zv celkové =Zv objektivu x Zv okuláru Metalografický mikroskop má několik dalších funkcí, jako je například několik intenzit osvětlení, několik druhů barevných filtrů, několik druhů clon atd. Clony využíváme pro přechod ze světlého pole (light field) do tmavého pole (dark field). Světlé pole používáme při pozorování jednotlivých složek materiálu. Naopak tmavé pole zvýrazňuje hranice zrn, viz obr. 2. Obr. X: Schéma odrazu světelných paprsků. 2
3 3. Elektronová mikroskopie Dva základní typy mikroskopů, které se v elektronové mikroskopii vyskytují jsou SEM - Scanning Electron Microscopy v češtině znamená Rastrovací (řádkovací) Elektronová Mikroskopie a TEM Transmition Electron Microscopy v češtině Transmisní Elektronová Mikroskopie. Jak už z názvu vyplívá bude se zde pracovat s elektrony. První metoda funguje na principu ostřelování vzorku elektrony a sledování výsledků. Jednotlivé části si popíšeme na následujícím obrázku SEM Metoda funguje na principu ostřelování vzorku elektrony a sledování výsledků pomocí detektorů. Jednotlivé části si popíšeme na následujícím obrázku (obr. X). Schéma SEM Obr. X: Schéma SEMu. Elektronové dělo Uvnitř elektronového děla je žhavená katoda (wolframové vlákno), která emituje elektrony Technické materiály na bázi železa (ocele, litiny) 4
4 1. Diagram Fe-C Čisté železo se vyskytuje ve dvou krystalických modifikacích: Při teplotě pod 911 C je stabilní železo s kubickou prostorově centrovanou mřížkou (BCC), které označujeme jako α-fe. Při teplotách v intervalu C má železo kubickou plošně centrovanou mřížku (FCC) a označuje se γ-fe. Nad teplotu 1392 C je stabilní opět modifikace s kubickou prostorově centrovanou mřížkou a nazývá se δ-fe. Bod tání čistého železa je 1539 C. Hlavním příměsovým prvkem ve slitinách železa je uhlík, který tvoří se železem intersticiální tuhý roztok. Tuhý roztok uhlíku v α-fe se nazývá ferit. Rozpustnost uhlíku v α- Fe je velmi nízká (max. 0,018% při teplotě 723 C). Tuhý roztok uhlíku v γ-fe se nazývá austenit. Rozpustnost uhlíku v γ-fe je podstatně vyšší (max. 2,11% při teplotě 1147 C). Tuhý roztok uhlíku v δ-fe se označuje jako δ-ferit. Při vyšším obsahu uhlíku než udává uvedená rozpustnost dochází k vylučování karbidu železa Fe 3 C (cementitu), případně grafitu. Oblasti stability jednotlivých strukturních složek za rovnovážných podmínek znázorňuje rovnovážný fázový diagram železo uhlík. Podle toho, zda se při krystalizaci vylučuje cementit nebo grafit, rozlišujeme tzv. stabilní systém Fe-C (železo grafit) a metastabilní systém Fe-Fe 3 C (železo cementit). Ke krystalizaci podle stabilního rovnovážného diagramu Fe-C dochází u slitin železa s obsahem C vyšším než 2,11% při velmi nízkých rychlostech ochlazování. Slitiny železa s méně než 2,11% uhlíku krystalizují prakticky vždy podle metastabilního diagramu Fe-Fe 3 C (Obr. 1). Obr. 1: Diagram Fe-C, Chyba! Nenalezen zdroj odkazů.. 5
5 Obr. 2: Binární rovnovážný diagram Fe Fe 3 C (strukturní popis), Chyba! Nenalezen zdroj odkazů.. Obr. 3: Binární rovnovážný diagram Fe Fe 3 C (fázový popis), Chyba! Nenalezen zdroj odkazů.. 6
6 1.1. Popis diagramu Diagram Fe Fe 3 C na obr. X-X slouží ke zjišťování struktury zkoumané slitiny při určité teplotě. V následujícím textu se blíže seznámíme se změnami, které se ve struktuře materiálu odehrávají při poklesu teploty z oblasti taveniny, až do pokojové teploty 20 C. Budeme-li materiál ohřívat, budou v něm probíhat stejné procesy, avšak v opačném pořadí. Diagram Fe Fe 3 C můžeme rozdělit na několik typických oblastí a studovat je postupně: Oblast peritektické přeměny (Obr. 4) v levé horní části diagramu: Obr. 4: Oblast peritektické přeměny, Chyba! Nenalezen zdroj odkazů.. V koncentračním rozmezí do 0,08% C krystalizuje tavenina přes směs taveniny a ά feritu přímo na ά ferit. Od 0,08 do 0,16% C krystalizuje tavenina na směs taveniny a ά feritu. Ta při peritektické teplotě 1499 C prodělá peritektickou reakci na směs ά feritu a austenitu a poté překrystalizuje na austenit. Od 0,16 do 0,53% C krystalizuje tavenina na směs taveniny a ά feritu. Při 1499 C proběhne peritektická reakce a vznikne směs taveniny a austenitu. Krystalizace je dokončena vznikem austenitu. Při koncentraci uhlíku více než 0,53hm.% dochází k přímé krystalizaci taveniny na směs taveniny a austenitu a na samotný austenit. Obr. 5: Oblast eutektické transformace, Chyba! Nenalezen zdroj odkazů.. Oblast eutektické transformace (Chyba! Nenalezen zdroj odkazů.). Eutektická transformace probíhá při teplotě eutektické 1148 C v materiálech, které obsahují 2,14 až 6,687hm.% C. Její podstatou je transformace taveniny na eutektikum - ledeburit. K přímé přeměně 100% taveniny na 100% eutektika dochází pouze při koncentraci 4,30% C. Je-li v materiálu méně než 4,30% C, krystalizuje nejdříve tavenina na austenit (primární krystalizace). Přitom se tavenina obohacuje o uhlík až na eutektickou koncentraci 4,30% C a 7
7 při dosažení eutektické teploty se její zbytek mění na eutektikum. Proto je ve struktuře takového materiálu těsně pod teplotou 1148 C austenit a ledeburit. U nadeutektických litin, které obsahují více než 4,30% C, dochází nejprve ke krystalizaci primárního cementitu. Přitom se zbývající tavenina ochuzuje o uhlík až na 4,30% C a při 1148 C se mění na ledeburit. Po ukončení eutektické transformace je v materiálu primární cementit a ledeburit. Obr. 6: Oblast sekundárního cementitu, Chyba! Nenalezen zdroj odkazů.. Oblast vzniku sekundárního cementitu (Obr. 6). Maximální rozpustnost uhlíku v austenitu je 2,14% při teplotě 1148 C, minimální je 0,765% při teplotě 723 C. V důsledku tohoto poklesu rozpustnosti se s klesající teplotou uvolňuje z austenitu uhlík a tvoří sekundární cementit. Tak austenit vyrovnává své složení na rovnovážné odpovídající okamžité teplotě (v diagramu je toto složení dáno průsečíkem křivky vzniku cem II a čáry teploty). Cem II je vylučován z každého austenitu, který se vyskytne v celé oblasti od křivky vzniku cem II až do 6,687% C v teplotním rozmezí 1148 C až 723 C. Obr. 7: Oblast eutektoidní transformace, Chyba! Nenalezen zdroj odkazů.. Oblast eutektoidní transformace (Obr. 7). Tato reakce probíhá při eutektoidní teplotě 723 C v materiálech obsahujících 0,018 až 6,687hm.% C. Podstatou přeměny je transformace austenitu na eutektoid perlit. K přímé přeměně 100% austenitu na 100% perlitu dochází pouze při koncentraci 0,765% C. Je-li v materiálu méně než 0,765% C, překrystalizuje austenit nejdříve na ferit. Přitom se austenit obohacuje o uhlík až na eutektoidní koncentraci 8
8 0,765% C a při dosažení eutektoidní teploty se jeho zbytek mění na eutektoid. Proto je ve struktuře takového materiálu těsně pod teplotou 723 C ferit a perlit. U ocelí, které obsahují více než 0,765% C, dochází v důsledku změny rozpustnosti uhlíku v austenitu nejprve ke vzniku cem II. Tím se zbývající austenit ochuzuje o uhlík až na 0,765% C a při 723 C se mění na perlit. Po ukončení eutektoidní transformace obsahuje materiál sekundární cementit a perlit. Obr. 8: Oblast vzniku terciárního cementitu, Chyba! Nenalezen zdroj odkazů.. Oblast vzniku terciárního cementitu (Obr. 8). Maximální rozpustnost uhlíku ve feritu je 0,018% při teplotě 723 C, minimální je uváděna v řádu 10-7 % při teplotě 20 C. V důsledku tohoto poklesu rozpustnosti se z feritu při klesající teplotě uvolňuje uhlík a tvoří terciární cementit. Ferit tak vyrovnává své složení na rovnovážný stav odpovídající okamžité teplotě (v diagramu je toto složení dáno průsečíkem křivky vzniku cem III a čáry teploty). Cem III je vylučován z každého feritu, který se vyskytne v celé oblasti od křivky vzniku cem III až do 6,687% C a v teplotním rozmezí 723 C až 20 C Složky diagramu železo-uhlík: tuhé roztoky, směsi, sloučeniny 1) Tuhé roztoky ά ferit: má atomovou mřížku kubickou prostorově centrovanou. Existuje pod teplotou 911 C (G). Fáze α je magnetická. Maximální rozpustnost uhlíku je 0,02 %. austenit: je přesycený tuhý roztok uhlíku v železe γ (gama). Je to jedna to ze strukturních složek slitin železa (ocelí i litin). Krystalizuje v krychlové plošně centrované (středěné) mřížce. Při tuhnutí se vyskytuje v rozmezí teplot C C a při tavení 911 C C. δ ferit: má atomovou mřížku kubickou plošně centrovanou. Existuje v intervalu teplot od 910 C do C. Fáze γ je nemagnetická. Martenzit vzniká prudkým ochlazením austenitu; zakalení nad kritickou rychlostí ochlazování; metastabilní, přesycený tuhý roztok uhlíku v alfa-železe; kalením se austenit s kubickou plošně centrovanou mřížkou změní na martenzit s tetragonální prostorově centrovanou mřížkou, uhlík zadržený v mřížce vyvolává pnutí, které je příčinnou tvrdosti martenzitu; martenzit je po cementitu nejtvrdší a nejkřehčí složkou oceli, má jehlicovitou strukturu. 9
9 2)Chemické sloučeniny cementit Fe 3 C Cementit Fe 3 C má kosočtverečnou (rhombickou) krystalickou mřížku, je to tvrdá magnetická struktura. Podle způsobu vzniku rozlišujeme cementit na primární - vyloučený z taveniny, sekundární vyloučený při ochlazování z austenitu a terciární vyloučený při ochlazování z feritu a dále perlitický a ledeburitický. 3) Směsi perlit: eutektoidní směs feritu a cementitu; sestává z 88 % feritu a 12 % cementitu. Existuje při teplotách pod 723 C; perlit je struktura volně chlazených ocelí, vzniká rozpadem austenitu; obsahuje dvě fáze - ferit a cementit; v základní feritické struktuře tvoří cementit buď rovnoběžné lamely (lamelární p.), nebo zrna (globulární p.); globulární perlit je měkčí a houževnatější než lamelární perlit, globulární perlit se připravuje popouštěním lamelárního perlitu ledeburit: eutektická směs austenitu a cementitu, resp. perlitu a cementitu; sestává z 51,4 % austenitu/feritu a 48,6 % cementitu Bainit je nerovnovážná strukturní složka oceli složená ze směsi feritu a cementitu; vzniká rozpadem austenitu mezi 500 a 723 C, ferit má jehlicovitou strukturu; bainit je tvrdý, tvárný, houževnatý. 4) Ocel x litina Oceli: železo + cementit s obsahem uhlíku do 2,14 % (dále mohou být obsaženy další doprovodné a legující příměsi) Litiny: železo + uhlík s obsahem nad 2,14%. Uhlík je nejčastěji ve formě grafitu, potom může mít litina menší obsah uhlíku než 2,14%, nebo ve formě cementitu, potom musí být obsah uhlíku větší než 2,14 (jinak by šlo o ocel) 1.3. Značení oceli Obr. 9: Značení oceli, Chyba! Nenalezen zdroj odkazů.. 10
10 3.1. Kvantitativní metalografie 3. Stereologie Používá se k detailní analýze struktury a k přesnému hodnocení vztahů mezi strukturou a mechanickými, popř. fyzikálními vlastnostmi materiálu. Např. výskyt oxidických nečistot v oceli ovlivňuje pevnost. Kvantitativní metalografií lze stanovit množství nečistot a stanovit pak hodnotu, o kterou se pevnost jejich vlivem sníží. Stanovuje se tak množství jednotlivých fází ve struktuře, rozložení a množství armujících složek v kompozitních materiálech, velikost zrna aj. Tato metoda je již plně automatizována a využívá obecných zásad stereologie, tj. matematické metodiky k převodu obrazu získaného pozorováním v rovině na tvar a rozměr prostorový. Stereologie se zabývá odhadem geometrických charakteristik trojrozměrných struktur na základě pozorování sond nižší dimenze (rovin řezu, projekcí). Ve stereologii se rozlišuje klasický a modelový přístup. V prvním z nich je struktura považována za deterministickou a pouze sondy jsou náhodné, v druhém přístupu se již struktura 11
Krystalizace ocelí a litin
Moderní technologie ve studiu aplikované fyziky reg. č.: CZ.1.07/2.2.00/07.0018. Krystalizace ocelí a litin Hana Šebestová,, Petr Schovánek Společná laboratoř optiky Univerzity Palackého a Fyzikáln lního
Fe Fe 3 C. Metastabilní soustava
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 v návaznosti na platnost norem. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D.
- zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin
2. Metalografie - zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin Vnitřní stavba kovů a slitin ATOM protony, neutrony v jádře elektrony v obalu atomu ve vrstvách
METALOGRAFIE II. Oceli a litiny
METALOGRAFIE II Oceli a litiny Slitiny železa, uhlíku a popřípadě dalších prvků se nazývají oceli a litiny. Oceli jsou slitiny železa obsahující do 2,14 hm. % uhlíku, litiny s obsahem uhlíku nad 2,14 hm.
Metalografie ocelí a litin
Metalografie ocelí a litin Metalografie se zabývá pozorováním a zkoumáním vnitřní stavby neboli struktury kovů a slitin. Dále také stanoví, jak tato struktura souvisí s chemickým složením, teplotou a tepelným
Nauka o materiálu. Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny
Nauka o materiálu Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny Difuze v tuhých látkách Difuzí nazýváme přesun atomů nebo iontů na vzdálenost větší než je meziatomová vzdálenost. Hnací
Uhlík a jeho alotropy
Uhlík Uhlík a jeho alotropy V přírodě se uhlík nachází zejména v karbonátových usazeninách, naftě, uhlí, a to jako směs grafitu a amorfní formy C. Rozeznáváme dvě základní krystalické formy uhlíku: a)
1. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger
1. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Základní návrhové předpisy: - ČSN 73 1401/98 Navrhování ocelových
FÁZOVÉ PŘEMĚNY. Hlediska: termodynamika (velikost energie k přeměně) kinetika (rychlost nukleace a rychlost růstu = celková rychlost přeměny)
FÁZOVÉ PŘEMĚNY Hlediska: termodynamika (velikost energie k přeměně) kinetika (rychlost nukleace a rychlost růstu = celková rychlost přeměny) mechanismus difúzní bezdifúzní Austenitizace Vliv: parametry
Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení
Metalografie Praktické příklady z materiálových expertíz 4. cvičení Obsah Protahovací trn Povrchově kalená součást Fréza Karbidické vyřádkování Cementovaná součást Pozinkovaná součást Pivní korunky Klíč
5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN
5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN Metody zkoumání fázových přeměn v kovech a slitinách jsou založeny na využití změn převážně fyzikálních vlastností, které fázovou přeměnu a s ní spojenou změnu struktury
Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení
Metalografie Praktické příklady z materiálových expertíz 4. cvičení Příprava metalografických výbrusů Odběr vzorků nesmí dojít k změně struktury (deformace, ohřev) světelný mikroskop pro dosažení požadovaných
42 28XX nízko středně legované oceli na odlitky odlévané jiným způsobem než do pískových forem 42 29XX vysoko legované oceli na odlitky
Oceli na odlitky Oceli třídy 26: do 0,6 % C součásti elektrických strojů, ložiska vozidel, armatury a součásti parních kotlů a turbín, na součásti spalovacích motorů Oceli tříd 27 a 28: legovány Mn a Si,
ŽÍHÁNÍ 1. ŽÍHÁNÍ OCELÍ
1 ŽÍHÁNÍ Žíhání je způsob tepelného zpracování, kterým chceme u součásti dosáhnout stavu blízkého stavu rovnovážnému. Podstatou je rovnoměrný ohřev součásti na teplotu žíhání, setrvání na této teplotě
TEPELNÉ ZPRACOVÁNÍ. Ing. V. Kraus, CSc. Opakování z Nauky o materiálu
TEPELNÉ ZPRACOVÁNÍ Ing. V. Kraus, CSc. 1 TEPELNÉ ZPRACOVÁNÍ záměrné využívání fázových a strukturních přeměn v tuhém stavu ke změně struktury a tím k získání požadovaných mechanických nebo strukturních
NTI/USM Úvod do studia materiálů Ocel a slitiny železa
NTI/USM Úvod do studia materiálů Ocel a slitiny železa Petr Šidlof Připraveno s využitím skript Úvod do studia materiálů, Prof. RNDr. Bohumil Kratochvíl, DSc., Prof. Ing. Václav Švorčík, DrSc., Doc. Dr.
4. KOVOVÉ MATERIÁLY A JEJICH ZPRACOVÁNÍ. 4.1 Technické slitiny železa. 4.1.1 Slitiny železa s uhlíkem a vliv dalších prvků
4. KOVOVÉ MATERIÁLY A JEJICH ZPRACOVÁNÍ 4.1 Technické slitiny železa 4.1.1 Slitiny železa s uhlíkem a vliv dalších prvků Železo je přechodový kov s atomovým číslem 26, atomovou hmotností 55,85, měrnou
RELATIONSHIP BETWEEN UNIVERSAL CONSTITUTION DIAGRAMS AND DIAGRAMS IRON WITH CARBON
RELATIONSHIP BETWEEN UNIVERSAL CONSTITUTION DIAGRAMS AND DIAGRAMS IRON WITH CARBON VZTAH MEZI OBECNÝMI ROVNOVÁŽNÝMI DIAGRAMY A DIAGRAMY ŽELEZA S UHLÍKEM Novotný K., Filípek J. Ústav techniky a automobilové
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2. Obor CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Strojírenská technologie, vy_32_inovace_ma_22_14
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Číslo projektu CZ.1.07/1.5.00/34.0514 Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast Strojírenská technologie, vy_32_inovace_ma_22_16 Autor
SMA 2. přednáška. Nauka o materiálu NÁVRHY NA OPAKOVÁNÍ
SMA 2. přednáška Nauka o materiálu NÁVRHY NA OPAKOVÁNÍ Millerovy indexy rovin (h k l) nesoudělné převrácené hodnoty úseků, které vytíná rovina na osách x, y, z Millerovy indexy této roviny jsou : (1 1
2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí.
2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí. Struktura oceli Železo (Fe), uhlík (C), "nečistoty". nevyhnutelné
Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice
6. FÁZOVÉ PŘEMĚNY KOVOVÝCH SOUSTAVÁCH Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace
Požadavky na technické materiály
Základní pojmy Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Základy materiálového inženýrství pro 1. r. Fakulty architektury Doc. Ing. Karel Daďourek, 2010 Rozdělení materiálů Požadavky
Projekt: 1.5, Registrační číslo: CZ.1.07/1.5.00/ Tepelné zpracování
Druhy tepelného zpracování: Tepelné zpracování 1. Žíhání (ochlazení je tak pomalé, že nevzniká zákalná struktura) 2. Kalení (ohřev nad překrystalizační teplotu a ochlazení je tak prudké, aby vznikla zákalná
Tepelné a chemickotepelné zpracování slitin Fe-C. Žíhání, kalení, cementace, nitridace
Tepelné a chemickotepelné zpracování slitin Fe-C Žíhání, kalení, cementace, nitridace Tepelné zpracování Tepelné zpracování je pochod, při kterém je součást podrobena jednomu nebo několika tepelným cyklům,
Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.
Henry Kaiser, Hoover Dam 1 Henry Kaiser, 2 Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti
ϑ 0 čas [ s, min, h ]
TEPELNÉ ZPRACOVÁNÍ 1 KOVOVÝCH MATERIÁLŮ Obsah: 1. Účel a základní rozdělení způsobů tepelného zpracování 2. Teorie tepelného zpracování 2.1 Ohřev 2.2 Ochlazování 2.2.1 Vliv rychlosti ochlazování na segregaci
Tepelné a chemickotepelné zpracování slitin Fe-C. Žíhání, kalení, cementace, nitridace
Tepelné a chemickotepelné zpracování slitin Fe-C Žíhání, kalení, cementace, nitridace Tepelné zpracování Tepelné zpracování je pochod, při kterém je součást podrobena jednomu nebo několika tepelným cyklům,
Tepelné zpracování ocelí. Kalení a popouštění. Chemicko-tepelné zpracování. Tepelné zpracování litin.
Tepelné zpracování ocelí. Kalení a popouštění. Chemicko-tepelné zpracování. Tepelné zpracování litin. Tomáš Doktor K618 - Materiály 1 26. listopadu 2013 Tomáš Doktor (18MRI1) Kalení a popouštění 26. listopadu
2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí.
2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí. Struktura oceli Železo (Fe), uhlík (C), "nečistoty". nevyhnutelné
MENDELOVA UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA BAKALÁŘSKÁ PRÁCE
MENDELOVA UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA BAKALÁŘSKÁ PRÁCE BRNO 2010 PETR DOSKOČIL Mendelova univerzita v Brně Agronomická fakulta Ústav techniky a automobilové dopravy Tepelné zpracování oceli Bakalářská
ŽÍHÁNÍ. Tepelné zpracování kovových materiálů
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 vnávaznosti na platnost norem. Zákaz šířěnía modifikace těchto materiálů. Děkuji Ing. D. Kavková
18MTY 1. Ing. Jaroslav Valach, Ph.D.
18MTY 1. Ing. Jaroslav Valach, Ph.D. valach@fd.cvut.cz Informace o předmětu http://mech.fd.cvut.cz/education/bachelor/18mty Popis předmětu Témata přednášek Pokyny k provádění cvičení Informace ke zkoušce
ŽELEZO A JEHO SLITINY
ŽELEZO A JEHO SLITINY Ing. V. Kraus, CSc. Opakování z Nauky o materiálu 1 ČISTÉ ŽELEZO Atomové číslo 26 hmotnost 55,874 hustota 7,87 g.cm-3 vodivé, houževnaté, měkké A 50 %, Z 90 % pevnost 180 až 250 MPa,
Možnosti Impact testu při posuzování správnosti tepelného zpracování ocelí. Ing. Petr Beneš
Možnosti Impact testu při posuzování správnosti tepelného zpracování ocelí Vedoucí: Konzultanti: Vypracoval: Doc. Dr. Ing. Antonín Kříž Ing. Jiří Hájek Ph.D Ing. Petr Beneš Martin Vadlejch Impact test
Zkoušky rázem. Vliv deformační rychlosti
Zkoušky rázem V provozu působí často na strojní součásti síla, která se cyklicky mění, popř. Její působení je dynamického charakteru. Rázové působení síly je velmi nebezpečné, neboť to může iniciovat náhlou
LITINY. Slitiny železa na odlitky
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 v návaznosti na platnost norem. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D.
Fázové přeměny v ocelích
Rozpad austenitu Fázové přeměny v ocelích Vlastnosti ocelí závisí nejen na chemickém složení, ale i na struktuře. Požadovanou strukturu lze dosáhnout tepelným zpracováním, tj.řízenými tepelnými cykly.
VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI VYSOCEPEVNÉ NÍZKOLEGOVANÉ OCELI. David Aišman
VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI VYSOCEPEVNÉ NÍZKOLEGOVANÉ OCELI David Aišman D.Aisman@seznam.cz ABSTRACT Tato práce se zabývá možnostmi tepelného zpracování pro experimentální ocel 42SiCr. Jedná
Otázky ke zkoušce BUM LS 2006/07 Požaduji pouze tučně zvýrazněné otázky.
Otázky ke zkoušce BUM LS 2006/07 Požaduji pouze tučně zvýrazněné otázky. 1. Stavba atomu a čísla charakterizující strukturu atomu 2. Valenční elektrony co to je, proč jsou důležité, maximální počet a proč
TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ - 2008. Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika
TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ - 2008 Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT Práce obsahuje charakteristiku konstrukčních ocelí
2. Molekulová stavba pevných látek
2. Molekulová stavba pevných látek 2.1 Vznik tuhého tělesa krystalizace Při přeměně kapaliny v tuhou látku vzniknou nejprve krystalizační jádra, v nichž nastává tuhnutí kapaliny. Ochlazování kapaliny se
Nauka o materiálu. Krystalizace, difúze
Nauka o materiálu Krystalizace, difúze Krystalizace je difúzní fázová přeměna, při níž kov přechází ze skupenství kapalného do tuhého, tzn., že se tavenina přemění na krystaly. Přeměna taveniny v krystaly
A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ 1 3 0 4 _ T E P E L N É Z P R A C O V Á N Í _ P W
A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ 1 3 0 4 _ T E P E L N É Z P R A C O V Á N Í _ P W P Název školy: Číslo a název projektu: Číslo a název
ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické
ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ Mechanické zkoušky statické a dynamické Úvod Vlastnosti materiálu, lze rozdělit na: fyzikální a fyzikálně-chemické; mechanické; technologické. I. Mechanické vlastnosti
HLINÍK A JEHO SLITINY
HLINÍK A JEHO SLITINY Označování hliníku a jeho slitin dle ČSN EN a) Označování hliníku a slitin hliníku pro tváření dle ČSN EN 573-1 až 3 Tyto normy platí pro tvářené výrobky a ingoty určené ke tváření
LOGO. Struktura a vlastnosti pevných látek
Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.3 k prezentaci Křivky chladnutí a ohřevu kovů
Číslo projektu CZ.1.07/1.5.00/34.0514 Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast Strojírenská technologie, vy_32_inovace_ma_22_06 Autor
TEORIE TVÁŘENÍ. Lisování
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA, Praha 10, Na Třebešíně 2299 příspěvková organizace zřízená HMP Lisování TEORIE TVÁŘENÍ TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM, STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení:
BUM - 6 Zkouška rázem v ohybu Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer Jméno: St. skupina: Datum cvičení: Úvodní přednáška: 1) Vysvětlete pojem houževnatost. 2) Popište princip zkoušky
Chemie železa, výroba oceli a litiny
MASARYKOVA UNIVERZITA Pedagogická fakulta Katedra chemie Chemie železa, výroba oceli a litiny Bakalářská práce Hana Šťastná Brno 2009 Prohlášení Prohlašuji, že jsem bakalářskou práci zpracovala sama s
Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.
Test A 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. 2. Co je to µ? - Poissonův poměr µ poměr poměrného příčného zkrácení k poměrnému podélnému prodloužení v oblasti pružných
Výroba surového železa, výroba ocelí, výroba litin
Výroba surového železa, výroba ocelí, výroba litin Výroba surového železa surové železo se vyrábí ve vysokých pecích (výška cca 80m, průměr cca 15m) z kyslíkatých rud shora se pec neustále plní železnou
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.6 k prezentaci Kalení
Číslo projektu CZ.1.07/1.5.00/34.0514 Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast Strojírenská technologie, vy_32_inovace_ma_22_13 Autor
1 Druhy litiny. 2 Skupina šedých litin. 2.1 Šedá litina
1 Litina je nekujné technické železo obsahující více než 2% C a další příměsi, např. Mn, Si, P, S. Vyrábí se v kuplovnách ze surového železa, ocelového a litinového šrotu, koksu (palivo) a vápence (struskotvorná
KRYSTALICKÁ STAVBA KOVOVÝCH SLITIN
KRYSTALICKÁ STAVBA KOVOVÝCH SLITIN Krystalická stavba kovových slitin 1. MECHANICKÉ SMĚSI SI Mech. směs s dvou a více v fází f (složek) vzniká tehdy, jestliže e složky se vzájemn jemně nerozpouští ani
Precipitace. Změna rozpustnosti je základním předpokladem pro precipitační proces
Precipitace Čisté kovy s ohledem na své mechanické parametry nemají většinou pro praktická použití vhodné užitné vlastnosti. Je proto snaha využít všech možností ke zlepší těchto parametrů, zejména pak
Žíhání druhého druhu. Teorie tepelného zpracování Katedra materiálu Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2007
Žíhání druhého druhu Teorie tepelného zpracování Katedra materiálu Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2007 Rozdělení Žíhání 2. druhu oceli litiny Neželezné kovy austenitizace Rozpad
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING ÚSTAV STROJÍRENSKÉ TECHNOLOGIE INSTITUTE OF MANUFACTURING TECHNOLOGY VÝROBA A
FYZIKÁLNA PODSTATA A MECHANIZMUS PLASTICKEJ DEFORMÁCIE
FYZIKÁLNA PODSTATA A MECHANIZMUS PLASTICKEJ DEFORMÁCIE Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v
Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů
Vlastnosti a zkoušení materiálů Přednáška č.3 Pevnost krystalických materiálů Zpevnění monokrystalu a polykrystalického kovu Monokrystal Atomy jsou pravidelně uspořádány, tvoří trojrozměrné útvary, které
Jominiho zkouška prokalitelnosti
Jominiho zkouška prokalitelnosti Zakalitelnost je schopnost materiálu při ochlazování nad kritickou rychlost přejít a setrvat v metastabilním stavu, tj. u ocelí získat martenzitickou strukturu. Protože
MIKROŠTRUKTÚRA OCELÍ
MIKROŠTRUKTÚRA OCELÍ Uhlíkové ocele je možné podľa RBD Fe C metastabilná sústava rozdeliť: I. Podeutektoidné (do 0,77%C) II. Eutektoidné (0,77%C) III. Nadeutektoidné (0,77-2,16%C) I. Podeutektoidné ocele:
VÝROBA TEMPEROVANÉ LITINY
VÝROBA TEMPEROVANÉ LITINY Temperovaná litina (dříve označovaná jako kujná litina anglicky malleable iron) je houževnatý snadno obrobitelný materiál vyráběný tepelným zpracováním odlitků z bílé litiny.
ROZDĚLENÍ, VLASTNOSTI A POUŽITÍ MATERIÁLŮ
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; platnost do r. 2016 v návaznosti na použité normy. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D. Kavková
t-tloušťka materiálu te [mm] C Ce 25 < 0,2 < 0,45 37 < 0,2 < 0,41
NÍZKOUHLÍKOVÉ OCELI Nízkouhlíkové oceli: svařitelné oceli (požadována především vysoká pevnost) oceli hlubokotažné (smíšené pevnostní vlastnosti ve prospěch plastických) Rozdělení svař. ocelí: uhlíkové
Technologie I. Část svařování. Kontakt : E-mail : michal.vslib@seznam.cz Kancelář : budova E, 2. patro, laboratoře
Část svařování cvičící: Ing. Michal Douša Kontakt : E-mail : michal.vslib@seznam.cz Kancelář : budova E, 2. patro, laboratoře Doporučená studijní literatura Novotný, J a kol.:technologie slévání, tváření
NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení)
NAUKA O MATERIÁLU I Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení) Autor přednášky: Ing. Daniela Odehnalová Pracoviště: TUL FS, Katedra materiálu
OCELI A LITINY. Ing. V. Kraus, CSc. Opakování z Nauky o materiálu
OCELI A LITINY Ing. V. Kraus, CSc. 1 OCELI Označování dle ČSN 1 Ocel (tvářená) Jakostní Tř. 10 a 11 - Rm. 10 skupina oceli Tř. 12 a_ 16 (třída) 3 obsah všech leg. prvků /%/ Význačné vlastnosti. Druh tepelného
TEPELNÉ ZPRACOVÁNÍ RYCHLOŘEZNÝCH OCELÍ SVOČ FST 2010 Lukáš Martinec, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika
ABSTRAKT TEPELNÉ ZPRACOVÁNÍ RYCHLOŘEZNÝCH OCELÍ SVOČ FST 2010 Lukáš Martinec, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika Hlavní skupinu materiálů, pouţívanou pro výrobu
Tepelné zpracování ocelí. Doc. Ing. Stanislav Věchet, CSc. ; Ing. Karel Němec, Ph.D.
Tepelné zpracování ocelí Doc. Ing. Stanislav Věchet, CSc. ; Ing. Karel Němec, Ph.D. Schéma průběhu tepelného zpracování 1 ohřev, 2 výdrž na teplotě, 3 ochlazování Diagram Fe-Fe 3 C Základní typy žíhání
Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1
Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické
Elektrická vodivost - testové otázky:
Elektrická vodivost - testové otázky: 1) Elektrický náboj (proud) je přenášen? a) elektrony b) protony c) jádry atomu 2) Elektrický proud prochází pouze kovy? a) ano b) ne 3) Nejlepšími vodiči elektrického
Poruchy krystalové struktury
Tomáš Doktor K618 - Materiály 1 15. října 2013 Tomáš Doktor (18MRI1) Poruchy krystalové struktury 15. října 2013 1 / 30 Poruchy krystalové struktury nelze vytvořit ideální strukturu krystalu bez poruch
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ INSTITUTE OF MATERIALS SCIENCE AND ENGINEERING
K. Novotný, J. Filípek
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročník LIII 9 Číslo 2, 2005 Dynamické vertikální Sauverovy diagramy metastabilní
Plastická deformace a pevnost
Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových
Požadavky na nástroj při stříhání. Charakteristika. Použití STRUKTURA CHIPPER / VIKING
1 CHIPPER / VIKING 2 Charakteristika VIKING je vysoce legovaná ocel, kalitelná v oleji, na vzduchu a ve vakuu, která vykazuje následující charakteristické znaky: Dobrá rozměrová stálost při tepelném zpracování
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VLIV TEPELNÉHO ZPRACOVÁNÍ NA STRUKTURU A MECHANICKÉ VLASTNOSTI NÁSTROJOVÝCH OCELÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUE OF MATERIALS SCIENCE AND ENGINEERING
KALENÍ A POPOUŠTĚNÍ. 0 0,4 0,8 1,2 1,6 1,8 Obsah C (%) Oblasti vhodných kalících teplot v diagramu Fe - Fe3C
1 KALENÍ A POPOUŠTĚNÍ Účelem kalení je zvýšit tvrdost oceli. Je to ohřev součásti na teplotu nad A c3 popř. A c1, výdrž na této teplotě a ochlazování kritickou rychlostí, čímž se potlačí vznik feritu a
Zkouška u Foreta. Varianty 2. 4,30,64,100,108,116,134,150,153,163. Varianty 3. 20,21,51,100,113,119,126,136,149,160,171
Zkouška u Foreta Dobrá rad uměj 80 % otázek, a pokud ti nejde o A nebo B, tak toho tam napiš tak přiměřeně když budeš chtít dobrou známku tak ti dá třeba odvodit pákové pravidlo přes rovnice :). Dalším
TECHNOLOGIE I (slévání a svařování)
TECHNOLOGIE I (slévání a svařování) Přednáška č. 3: Slévárenské slitiny pro výrobu odlitků, vlastnosti slévárenských slitin, faktory ovlivňující slévárenské vlastnosti, rovnovážné diagramy. Autoři přednášky:
3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).
PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost
Metody charakterizace
Metody y strukturní analýzy Metody charakterizace nanomateriálů I Význam strukturní analýzy pro studium vlastností materiálů Experimentáln lní metody využívan vané v materiálov lovém m inženýrstv enýrství:
Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky
Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,
VLASTNOSTI RYCHLE ZTUHLÝCH PRÁŠKŮ NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM
VLASTNOSTI RYCHLE ZTUHLÝCH PRÁŠKŮ NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM Markéta Pavlíčková, Dalibor Vojtěch a Pavel Stolař, Peter Jurči b a) Ústav kovových materiálů a korozního inženýrství, VŠCHT Praha, Technická
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2. Obor CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Strojírenská technologie, vy_32_inovace_ma_22_17
Tváření. produktivní metody výroby polotovarů a hotových výrobků, které se dají dobře mechanizovat i automatizovat (velká výkonnost, minimální odpad)
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace materiálů. Děkuji Ing. D. Kavková
Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů
Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů Vedoucí práce: Doc. Ing. Milan Honner, Ph.D. Konzultant: Doc. Dr. Ing. Antonín Kříž Bc. Roman Voch Obsah 1) Cíle diplomové práce
Minule vazebné síly v látkách
MTP-2-kovy Minule vazebné síly v látkách Kuličkový model polykrystalu kovu 1. Vakance 2. Když se povede divakance, je vidět, oč je pohyblivější než jednovakance 3. Nejzávažnější je ovšem prezentování zrn
12. Struktura a vlastnosti pevných látek
12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace
MŘÍŽKY A VADY. Vnitřní stavba materiálu
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 v návaznosti na platnost norem. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D.
Metodika hodnocení strukturních změn v ocelích při tepelném zpracování
Metodika hodnocení strukturních změn v ocelích při tepelném zpracování Bc. Pavel Bílek Ing. Jana Sobotová, Ph.D Abstrakt Předložená práce se zabývá volbou metodiky hodnocení strukturních změn ve vysokolegovaných
Charakteristika. Vlastnosti. Použití NÁSTROJE NA TLAKOVÉ LITÍ NÁSTROJE NA PROTLAČOVÁNÍ NÁSTROJE PRO TVÁŘENÍ ZA TEPLA VYŠŠÍ ŽIVOTNOST NÁSTROJŮ
DIEVAR DIEVAR 2 DIEVAR Charakteristika DIEVAR je Cr-Mo-V legovaná vysoce výkonná ocel pro práci za tepla s vysokou odolností proti vzniku trhlin a prasklin z tepelné únavy a s vysokou odolností proti opotřebení
Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
KALENÍ. Tepelné zpracování kovových materiálů
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 vnávaznosti na platnost norem. Zákaz šířěnía modifikace těchto materiálů. Děkuji Ing. D. Kavková
Metalurgie vysokopevn ch ocelí
Metalurgie vysokopevn ch ocelí Vysokopevné svařitelné oceli jsou podle konvence označovány oceli s hodnotou meze kluzu vyšší než 460 MPa. Vysokopevné svařitelné oceli uváděné v normách pod označením M
Poškození strojních součástí
Poškození strojních součástí Degradace strojních součástí Ve strojích při jejich provozu probíhají děje, které mají za následek změny vlastností součástí. Tyto změny jsou prvotními technickými příčinami
S T R O J N IC K Á P Ř ÍR U Č K A část 10, díl 8, kapitola 6, str. 1 10/8.6 K A L E N Í N A M A R T E N Z IT Kalení na martenzit je ochlazení austenitu nadkritickou rychlostí pod teplotu Ms, kdy se ve