MOŽNOSTI VYUŽITÍ GEOPOLYMER PRO HLUBINNÉ ÚLOŽIŠT
|
|
- Lubomír Zeman
- před 9 lety
- Počet zobrazení:
Transkript
1 MOŽNOSTI VYUŽITÍ GEOPOLYMER PRO HLUBINNÉ ÚLOŽIŠT Abstrakt T. ernoušek, P. Kovaík, P. Votava, P. Polivka Centrum výzkumu ež s.r.o., Hlavní 130,Husinec ež, Základní požadavkem návrhu technického ešení hlubinného úložišt je jeho bezpenost, kterou zajišuje multibariérový systém. Rozsah použití betonu v HÚ není v souasnosti znám, ale uvažuje se jeho využití pro aplikace v oblastech uzavení vrtu ocelovo-betonovou zátkou, betonových píek a pístupových chodeb a jiných aplikací. Z dlouhodobého hlediska se beton nepovažuje za dostaten stabilní materiál pro HÚ. Degradace betonu vede ke vzniku nových minerál a alkalických roztok. Tyto alkalické roztoky mohou následn ovlivnit stabilitu bentonitové geotechnické ochrany. Pro zajištní dlouhodobé životnosti a bezpenosti hlubinného úložišt se jeví velice výhodné nahradit uvažovaný beton za geopolymerní beton, který se vyznauje vysokou pevností, chemickou odolností, svou stabilitou se blíží pírodnímu kameni a je kompatibilní s bentonitem. Abstract The basic requirement for technical design of deep geological repository is the safety that is ensured by the multi-barrier system. Scope of application of concrete in deep geological repository is currently unknown, but its use is being considered for applications in the fields of borehole closure of steel-concrete plug, concrete walls and access corridors and other applications. In the long term, concrete is not considered stable enough material for deep geological repository. Degradation of concrete is dependent on the presence of water, which leads to the formation of new minerals and alkaline solutions. These alkaline solutions may adversely affect the stability of bentonite geotechnical protection. To ensure a long service life and safety of a deep geological repository seems very appropriate to the candidate for geopolymer concrete, which is characterized by high strength, chemical resistance, its stability is approaching natural stone and is compatible with bentonite. Úvod V souasné dob je považováno za jedno z pijatelných ešení pro ukonení palivového cyklu z hlediska koneného zneškodnní vyhoelého jaderného paliva a vysoceaktivních radioaktivních odpad hlubinné úložišt (HÚ). Základním požadavkem návrhu technického ešení HÚ na obr. 1 je jeho bezpenost, kterou zajišuje multibariérový systém sloužící proti úniku radioaktivních látek do životního prostedí. Obr.1: Hlubinné úložišt (
2 Plánovaný multibariérový systém se v R má skládat z inženýrské bariérové ochrany (úložný obalový soubor, geotechnická vícevrstvá ochrana bentonitem a jiné) a pírodní bariérové ochrany (geologické prostedí granitických hornin) na obr. 2. Obr.2: Multibariérový systém Geotechnickou ochranu zajišuje materiál na bázi bentonitu, který utsuje, tlumí a vypluje okolí úložného obalového souboru. Její funknost závisí na dlouhodob stabilních vlastnostech minerálního prostedí bentonitu. Na základ souasného konceptu hlubinného úložišt v R pedstavují bentonit a beton základní prvky pi budování hlubinného úložišt, které však nejsou úpln kompatibilní, vzhledem k možnému ovlivnní stability bentonitu pi kontaktu s betonem a vlivem možných korozních napadení betonu spolu s jeho stárnutím. Souasný stav Rozsah použití betonu v HÚ není v souasnosti znám, ale uvažuje se jeho využití pro aplikace v oblastech uzavení vrtu ocelovo-betonovou zátkou, betonových píek, pístupových chodeb, spárování a utsnní trhlin v horninové formaci a pro rzné pomocné konstrukce potebné pro innost úložišt. V aplikaci týkající se skalní podpory se pedpokládá použití technologie nanášení pomocí stíkaného betonu, která je z hlediska asu a ceny velice úinná. V pípad španlského konceptu hlubinného úložišt (granitické horninové prostedí) se pedpokládá, že bude poteba m 3 betonu pro konstrukní úely a ve švédském a finském konceptu hlubinného úložišt (granitické horninové prostedí) je množství betonu, které zstane v hlubinném úložišti odhadováno na tun[1]. Beton je kompozitní materiál, který se skládá ze tech hlavních ástí: cementu, kameniva a vody. Nejbžnji používaný druh cementu pi výrob standardního betonu je portlandský cement, který v betonu vytváí alkalickou pórovou vodu v rozsahu ph od 12,6 do 13,5. Z dlouhodobého hlediska se beton nepovažuje za dostaten stabilní materiál pro HÚ, vzhledem k psobení mnoha korozních vliv (hydrolytická koroze, síranové narušení beton, karbonatace a další), které výrazn zvyšují mocnost betonu a mohou negativn ovlivnit stabilitu bentonitu[2, 3]. V pípad kontaktu bentonitu s betonem, za psobení spodních vod, dochází k narušení stability bentonitu vlivem loužení alkalických roztok z betonu dosahujících hodnot ph=13,5 (k omezenému poškození bentonitu dochází teprve pod hodnotou ph=11). Pro zajištní dlouhodobé stability bariérové ochrany bylo navrženo nahradit beton, který je v kontaktu s bentonitem, nízkoalkalickým betonem (nap. fosfovápenaté cementy, hoenato fosfátové cementy a vápenato síranohlinité cementy), který by ml dosahovat alkality ph 11. Toto ešení se v souasnosti rozsáhle zkoumá a je ve stádiu výzkumu[4]. Nevýhodou nízkoalkalických beton oproti bžným betonm je napíklad
3 vyšší korozní rychlost železobetonových výztuh, vyšší poréznost, horší zpracovatelnost betonu a vyšší dimenzionální nestabilita (významné smrštní v raném vku)[5]. Geopolymery a geopolymerový beton Geopolymery (tzv. anorganické polymery, minerální polymery, alkalicky aktivovaná pojiva, a jiné) jsou pevný a stabilní hlinitokemiitanový materiál, který vzniká alkalickou aktivací pomocí hydroxidového nebo kemiitanového prekurzoru. Základními složkami geopolymer jsou alkalické roztoky a výchozí materiál. Výchozím materiálem pro geopolymery jsou hlinitokemiitany bohaté na kemík a hliník, které jsou tvoeny pírodními minerály (kaolinit, jíl, slída, analusit a jiné) nebo vedlejším materiálem (nap. popílek, vysokopecní struska, ervený kal). V závislosti na výbru použitých surovin a podmínek zpracování vznikají geopolymery s mnoha rozdílnými vlastnostmi[6]. Zkušenosti s tímto materiálem prokázaly, že geopolymery mají vysokou poátení pevnost, nízké smrštní, žáruvzdornost, mrazuvzdornost, korozivzdornost a odolnosti proti kyselinám[7-10]. Z hlediska ceny výroby geopolymer bylo vypoteno, že cena náklad výroby geopolymeru mže být až dvakrát vyšší než výroba Portlandského cementu. Tato cena je uskutenitelná pouze s ohledem na nejvhodnjší zdroj vstupních surovin a nejnižší náklady dopravy[11]. Geopolymerní beton pedstavuje nový alternativní stavební materiál nahrazující standardní beton, ve kterém je pojivo zcela nahrazeno anorganickým polymerem bez využití cementu. Tento materiál má zárove potenciál snížit emise CO 2 o %[12] nebo 70% [13] v porovnání s emisemi vznikající pi výrob cementu, kdy z 1000 kg cementu vzniká pibližn 1000 kg CO 2 (0,55 t se uvolní pi kalcinaci vápence a 0,40 t vzniká spalováním paliva). Pi výrob geopolymeru se jedná pouze o emise CO 2, které vznikají z produkce vstupních surovin (hydroxid sodný, kemiitan sodný, popílek). V porovnání s portlandským cementovým betonem mají vyrábné geopolymerové betony relativn vyšší pevnost, vynikající objemovou stálost, lepší trvanlivost, vysokou tepelnou odolnost a nevykazují nebezpené alkalické reakce kameniva. Geopolymerní beton mže být nanášen technologií stíkaného betonu a nebo se mže kombinovat s ocelovými prvky pedstavující vyztužený beton[14, 15]. Alkalita pórového roztoku geopolymerového betonu se mže pohybovat v závislosti na složení smsi v rzném rozsahu (ph = nebo ph = 11,5 12, a jiné)[16, 17]. Tato alkalita je souasn závislá na teplot tepelné úpravy (teplota zrání) geopolymeru, která se stoupající teplotou klesá (nap. pvodní hodnota ph=10,5 pi teplotní úprav t=85 C klesá na hodnotu ph = 9,5 pi teplotní úprav t = 300 C). Použití vyšší teploty bhem zrání zárove zvyšuje výslednou mechanickou odolnost geopolymeru[18]. Uvedené vlastnosti geopolymerního betonu naznaují, že lze nahradit dosud uvažovaný standardní a nízkoalkalický beton za geopolymerní beton pro výstavbu hlubinného úložišt. Vzhledem k vyšším požadavkm na bezpenost je ale nutné získat dlouhodobá data týkající se jeho životnosti. Dosavadní výzkumy zabývající se životností geopolymerního betonu ukazují, že základní geopolymerní pojivo se jeví odolné a reakní produkty jsou stabilní v prbhu asu[19]. Závr Pro zajištní dlouhodobé životnosti a bezpenosti HÚ se jeví geopolymer jako ideální náhrada za standardní a nízkoalkalický beton, vzhledem k jeho vlastnostem, vlivm na životní prostedí a kompatibilit s bentonitem. V pípad použití geopolymer vyvstává mnoho výzkumných úkol, které bude poteba v budoucnu uskutenit, aby bylo možné aplikovat geopolymer v hlubinném úložišti. Jedná se napíklad o stanovením obecných zásad a doporuených postup pro použití geopolymeru, navržení geopolymeru o alkalit ph11,
4 ekonomický rozbor geopolymeru, studium dlouhodobé životnosti geopolymeru, studium interakcí mezi bentonitem a geopolymerem a další. Tyto a další výzkumné innosti mohou zárove podpoit rozvoj prmyslové výroby geopolymeru v R, vedoucí ke snížení emisí CO 2. Literatura [1] Ahn, J., and Apted, M. J., 2010, Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive waste, Taylor & Francis Group. [2] Romer, M., Holzer, L., and Pfiffner, M., 2003, "Swiss tunnel structures: concrete damage by formation of thaumasite," Cement and Concrete Composites, 25(8), pp [3] Glasser, F. P., Marchand, J., and Samson, E., 2008, "Durability of concrete Degradation phenomena involving detrimental chemical reactions," Cement and Concrete Research, 38(2), pp [4] García Calvo, J. L., Hidalgo, A., Alonso, C., and Fernández Luco, L., 2010, "Development of low-ph cementitious materials for HLRW repositories: Resistance against ground waters aggression," Cement and Concrete Research, 40(8), pp [5] Coumes, C. C. d., 2008, "Low ph cements for waste repositories a review," 2nd International Workshop Mechanisms and modelling of waste/cement interactionsle Croisic/France. [6] Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., and van Deventer, J. S., 2007, "Geopolymer technology: the current state of the art," Journal of Materials Science, 42(9), pp [7] Sata, V., Sathonsaowaphak, A., and Chindaprasirt, P., 2012, "Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack," Cement and Concrete Composites, 34(5), pp [8] Zhao, R., and Sanjayan, J. G., 2011, "Geopolymer and Portland cement concretes in simulated fire," Magazine of Concrete Research, pp [9] Miranda, J. M., Fernández-Jiménez, A., González, J. A., and Palomo, A., 2005, "Corrosion resistance in activated fly ash mortars," Cement and Concrete Research, 35(6), pp [10] Bakharev, T., 2005, "Durability of geopolymer materials in sodium and magnesium sulfate solutions," Cement and Concrete Research, 35(6), pp [11] McLellan, B. C., Williams, R. P., Lay, J., van Riessen, A., and Corder, G. D., 2011, "Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement," Journal of Cleaner Production, 19(9 10), pp [12] Lloyd, N. A., and Rangan, B. V., 2009, "Geopolymer Concrete: A review of development and opportunities," CI Premier PTE LTD. [13] Weil, M., Dombrowski, K., and Buchwald, A., "Development of Geopolymers Supported by Systems Analysis." [14] Sakulich, A. R., 2011, "Reinforced geopolymer composites for enhanced material greenness and durability," Sustainable Cities and Society, 1(4), pp [15] Provis, J. L., and Van Deventer, J. S. J., 2009, Geopolymers: Structure, Processing, Properties and Industrial Applications, CRC Press. [16] Wang, Q., Ding, Z. Y., Zhang, J., Qiu, L. G., and Sui, Z. T., 2011, "Study on Slag-Based Geopolymer Hydration Process," Key Engineering Materials, 477, pp [17] Álvarez-Ayuso, E., Querol, X., Plana, F., Alastuey, A., Moreno, N., Izquierdo, M., Font, O., Moreno, T., Diez, S., Vázquez, E., and Barra, M., 2008, "Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes," Journal of Hazardous Materials, 154(1 3), pp
5 [18] Davidovits, J., 2008, Geopolymer: Chemistry & Applications, Geopolymer Institute. [19] Xu, H., Provis, J. L., van Deventer, J. S. J., and Krivenko, P. V., 2008, "Characterization of aged slag concretes," ACI Materials Journal, 105(2). Tato práce vznikla za podpory projektu SUSEN CZ.1.05/2.1.00/ (ERDF)
Oblasti vlivu mikroorganismů na hlubinné úložiště radioaktivních odpadů ODPADOVÉ FÓRUM 2015
Oblasti vlivu mikroorganismů na hlubinné úložiště radioaktivních odpadů Ing. Petr Polívka, RNDr. Alena Ševců, Ph.D. 19.března 2015 Centrum výzkumu Řež s.r.o. Technická universita v Liberci ODPADOVÉ FÓRUM
VLIV MLETÍ ÚLETOVÉHO POPÍLKU NA PRŮBĚH ALKALICKÉ AKTIVACE
VLIV MLETÍ ÚLETOVÉHO POPÍLKU NA PRŮBĚH ALKALICKÉ AKTIVACE INFLUENCE OF GRINDING OF FLY-ASH ON ALKALI ACTIVATION PROCESS Rostislav Šulc 1 Abstract This paper describes influence of grinding of fly - ash
Možnosti zvýšení trvanlivosti a sanace železobetonových konstrukcí. Ing. Pavel Fidranský, Ph.D. ČVUT v Praze - Fakulta stavební
Možnosti zvýšení trvanlivosti a sanace železobetonových konstrukcí Ing. Pavel Fidranský, Ph.D. ČVUT v Praze - Fakulta stavební Zlepšování trvanlivosti železobetonu Chemické přísady do betonu Příměsi do
Geopolymerní materiály
Geopolymerní materiály Doc.RNDr. František Škvára DrSc Ústav skla a keramiky Vysoká škola chemicko-technologická v Praze Počátky geopolymerů Prof. V.D.Gluchovskij 1958 Popsány principy alkalické aktivace
POTĚROVÉ BETONY S VEDLEJŠÍM ENERGETICKÝM PRODUKTEM ELEKTRÁRENSKÝM POPÍLKEM A JEJICH ZÁKLADNÍ VLASTNOSTI
Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad POTĚROVÉ BETONY S VEDLEJŠÍM ENERGETICKÝM PRODUKTEM ELEKTRÁRENSKÝM POPÍLKEM A JEJICH ZÁKLADNÍ VLASTNOSTI
Trhliny v betonu. Bc. Vendula Davidová
Trhliny v betonu Bc. Vendula Davidová Obsah Proč vadí trhliny v betonu Z jakého důvodu trhliny v betonu vznikají Jak jim předcházet Negativní vliv přítomnosti trhlin Snížení životnosti: Vnikání a transport
Alkalická aktivace - slibná možnost využití odpadního obrazovkového skla
Alkalická aktivace - slibná možnost využití odpadního obrazovkového skla RNDr. Petr Sulovský, Ph.D. 1, Bc. Tomáš Opletal 1 1 Katedra geologie Pírodovdecké fakulty Univerzity Palackého v Olomouci, tída
RECYKLACE TVRDOKOVOVÉHO ODPADU HMZ PROCESEM. HMZ,a.s., Zahradní 46, 792 01 Bruntál, ČR, E-mail: Kalcos@hmz.cz
RECYKLACE TVRDOKOVOVÉHO ODPADU HMZ PROCESEM Vasil Kalčos Rostislav Šosták Libor Hák HMZ,a.s., Zahradní 46, 792 01 Bruntál, ČR, E-mail: Kalcos@hmz.cz Abstract Recycling of Hardmetal scrap by HMZ-process
Concrete based on Fly ash Geopolymer
Concrete based on Fly ash Geopolymer Josef Doležal 1, František Škvára 3, Pavel Svoboda 2, Lubomír Kopecký 2, Simona Pawlasová 2, Martin Lucuk 2, Kamil Dvořáček 2, Martin Beksa 2, Lenka Myšková 3, Rostislav
Zpracování cementáských odprašk v rámci metody stabilizace/solidifikace
Zpracování cementáských odprašk v rámci metody stabilizace/solidifikace Jií Hendrych, Radka Novotná, Jií Kroužek, Daniel Randula Vysoká škola chemicko-technologická v Praze, Fakulta technologie ochrany
Problémy spojené s použitím pozinkované výztuže v betonu
Obsah Problémy spojené s použitím pozinkované výztuže v betonu Rovnaníková P. Stavební fakulta VUT v Brně Použití pozinkované výztuže do betonu je doporučováno normou ČSN 731214, jako jedna z možností
Je uložení radioaktivních odpadů do horninového prostředí bezpečné?
Je uložení radioaktivních odpadů do horninového prostředí bezpečné? Co víme o chování radioaktivních a dalších prvků v horninách Josef Zeman Masarykova univerzita, Přírodovědecká fakulta, Ústav geologických
BETON V ENVIRONMENTÁLNÍCH SOUVISLOSTECH
ACTA ENVIRONMENTALICA UNIVERSITATIS COMENIANAE (BRATISLAVA) Vol. 20, Suppl. 1(2012): 11-16 ISSN 1335-0285 BETON V ENVIRONMENTÁLNÍCH SOUVISLOSTECH Ctislav Fiala & Magdaléna Kynčlová Katedra konstrukcí pozemních
Alena Hynková 1, Petra Bednářová 2 Vysoká škola technická a ekonomická v Českých Budějovicích
Koroze betonu Alena Hynková 1, Petra Bednářová 2 Vysoká škola technická a ekonomická v Českých Budějovicích Abstrakt Koroze betonu není jednoduchou záležitostí, ale je složitým problémem zahrnujícím chemické
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STAVEBNÍ Ústav stavebního zkušebnictví
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Ústav stavebního zkušebnictví Kámen a kamenivo Kámen Třída Pevnost v tlaku min. [MPa] Nasákavost max. [% hm.] I. 110 1,5 II. 80 3,0 III. 40 5,0 Vybrané druhy
HODNOCENÍ POVRCHOVÝCH ZMEN MECHANICKÝCH VLASTNOSTÍ PO ELEKTROCHEMICKÝCH ZKOUŠKÁCH. Klára Jacková, Ivo Štepánek
HODNOCENÍ POVRCHOVÝCH ZMEN MECHANICKÝCH VLASTNOSTÍ PO ELEKTROCHEMICKÝCH ZKOUŠKÁCH Klára Jacková, Ivo Štepánek Západoceská univerzita v Plzni, Univerzitní 22, 306 14 Plzen, CR, ivo.stepanek@volny.cz Abstrakt
ZMENY POVRCHOVÝCH MECHANICKÝCH VLASTNOSTÍ SYSTÉMU S TENKÝMI VRSTVAMI PO KOMBINOVANÉM NAMÁHÁNÍ. Roman Reindl, Ivo Štepánek
ZMENY POVRCHOVÝCH MECHANICKÝCH VLASTNOSTÍ SYSTÉMU S TENKÝMI VRSTVAMI PO KOMBINOVANÉM NAMÁHÁNÍ Roman Reindl, Ivo Štepánek Západoceská univerzita v Plzni, Univerzitní 22, 306 14 Plzen, CR, ivo.stepanek@volny.cz
VYSOKÉ UENÍ TECHNICKÉ V BRN NOSNÁ KONSTRUKCE ŽB OBJEKTU PRO LEHKÝ PRMYSLOVÝ PROVOZ
VYSOKÉ UENÍ TECHNICKÉ V BRN BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV BETONOVÝCH A ZDNÝCH KONSTRUKCÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF CONCRETE AND MASONRY STRUCTURES NOSNÁ KONSTRUKCE
Karta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Technická petrografie a základy chemie silikátů Číslo předmětu: 541 Garantující institut: Institut geologického inženýrství - 541 Garant předmětu: prof.
Betony pro bytovou výstavbu
Betony pro bytovou výstavbu Robert Coufal, Vladimir Vesely Beton a produkty pro bytovou a občanskou výstavbu Obsah prezentace Parametry betonu Beton a stavební fyzika Specifikace stupně vlivu prostředí
VLASTNOSTI BEZSLÍNKOVÝCH KOMPOZITŮ PO VYSOKOTEPLOTNÍM NAMÁHÁNÍ
P. Rovnaník, P. Rovnaníková, P. Bayer, Fakulta stavební, VUT v Brně, Žižkova 17, 602 00 Brno, tel: 541147636, fax: 541147667, email: rovnanik.p@fce.vutbr.cz VLASTNOSTI BEZSLÍNKOVÝCH KOMPOZITŮ PO VYSOKOTEPLOTNÍM
Trvanlivost a odolnost. Degradace. Vliv fyzikálních činitelů STAVEBNÍ LÁTKA I STAVEBNÍ KONSTRUKCE OD JEJICH POUŽITÍ IHNED ZAČÍNAJÍ DEGRADOVAT
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Ústav stavebního zkušebnictví Trvanlivost a odolnost stavebních materiálů Degradace STAVEBNÍ LÁTKA I STAVEBNÍ KONSTRUKCE OD JEJICH POUŽITÍ IHNED ZAČÍNAJÍ
Koroze betonu. Alena Hynková, Petra Bednářová. Vysoká škola technická a ekonomická v Českých Budějovicích
Koroze betonu Alena Hynková, Petra Bednářová Vysoká škola technická a ekonomická v Českých Budějovicích Abstrakt Koroze betonu není jednoduchou záležitostí, ale je složitým problémem zahrnujícím chemické
Chemické složení (%): SiO 2 6 Al 2 O 3 38 42 Fe 2 O 3 13 17 CaO 36 40 MgO < 1,5 SO 3 < 0,4
Všeobecně je normálně tuhnoucí, ale rychle tvrdnoucí hlinitanový cement s vysokou počáteční pevností. Na základě jeho výrobního postupu, jeho chemického složení a jeho schopnosti tuhnutí se výrazně liší
MECHANISMUS TVORBY PORÉZNÍCH NANOVLÁKEN Z POLYKAPROLAKTONU PŘIPRAVENÝCH ELEKTROSTATICKÝM ZVLÁKŇOVÁNÍM
MECHANISMUS TVORBY PORÉZNÍCH NANOVLÁKEN Z POLYKAPROLAKTONU PŘIPRAVENÝCH ELEKTROSTATICKÝM ZVLÁKŇOVÁNÍM Daniela Lubasová a, Lenka Martinová b a Technická univerzita v Liberci, Katedra netkaných textilií,
Hodnocení korozí odolnosti systémů tenká vrstva substrát v prostředí kompresorů
Hodnocení korozí odolnosti systémů tenká vrstva substrát v prostředí kompresorů Analysis of Corrosion Resistance of Systems Thin Films Substrate in Compressors Environment Jiří Hána, Ivo Štěpánek, Radek
Mechanismy degradace betonu a železobetonu. Ing. Pavel Fidranský, Ph.D. ČVUT v Praze - Fakulta stavební K133, B 733
Mechanismy degradace betonu a železobetonu Ing. Pavel Fidranský, Ph.D. ČVUT v Praze - Fakulta stavební K133, B 733 Degradace železobetonu Degradace zhoršení kvality, znehodnocení Degradovat mohou všechny
ELEKTROCHEMIE NA SYSTÉMECH S TENKÝMI VRSTVAMI ELECTRO-CHEMICAL ANALYSIS ON SYSTEMS THIN FILM SUBSTRATE
ELEKTROCHEMIE NA SYSTÉMECH S TENKÝMI VRSTVAMI ELECTRO-CHEMICAL ANALYSIS ON SYSTEMS THIN FILM SUBSTRATE Klára Jačková Roman Reindl Ivo Štěpánek Katedra materiálu a strojírenské metalurgie, Západočeská univerzita
ZESILOVÁNÍ STAVEBNÍCH KONSTRUKCÍ EXTERNĚ LEPENOU KOMPOZITNÍ VÝZTUŽÍ
Ing.Ondřej Šilhan, Ph.D. Minova Bohemia s.r.o, Lihovarská 10, 716 03 Ostrava Radvanice, tel.: +420 596 232 801, fax: +420 596 232 944, email: silhan@minova.cz ZESILOVÁNÍ STAVEBNÍCH KONSTRUKCÍ EXTERNĚ LEPENOU
PVP Bukov výzkumné pracoviště pro demonstraci bezpečnosti a proveditelnosti úložného systému hlubinného úložiště
6.3.2018 PVP Bukov výzkumné pracoviště pro demonstraci bezpečnosti a proveditelnosti úložného systému hlubinného úložiště Jan Smutek, Jiří Slovák, Lukáš Vondrovic, Jaromír Augusta Obsah Úvod Koncept Hlubinného
Degradační modely. Miroslav Sýkora Kloknerův ústav ČVUT v Praze
Degradační modely Miroslav Sýkora Kloknerův ústav ČVUT v Praze 1. Úvod 2. Degradace železobetonových konstrukcí 3. Degradace ocelových konstrukcí 4. Závěrečné poznámky 1 Motivace 2 Úvod obvykle pravděpodobnostní
HYDROIZOLACE SPODNÍ STAVBY
HYDROIZOLACE SPODNÍ STAVBY OBSAH Úvod do problematiky hydroizolací spodní stavby 2 stránka Rozdlení hydroizolací spodní stavby a popis technických podmínek zpracování asfaltových hydroizolaních pás 2 Hydroizolace
POJIVOVÉ VLASTNOSTI STRUSKY ZE SEKUNDÁRNÍ METALURGIE THE BINDING CHARACTERISTICS OF SLAG FROM SECONDARY METALLURGY
POJIVOVÉ VLASTNOSTI STRUSKY ZE SEKUNDÁRNÍ METALURGIE THE BINDING CHARACTERISTICS OF SLAG FROM SECONDARY METALLURGY Lucie Drongová a Václava Tomková a Milan Raclavský b Tereza Porodová a Pavel Hašek a a
SNIŽOVÁNÍ EMISÍ SKLENÍKOVÝCH PLYNŮ VYUŽÍVÁNÍM SMĚSNÝCH POJIV
SNIŽOVÁNÍ EMISÍ SKLENÍKOVÝCH PLYNŮ VYUŽÍVÁNÍM SMĚSNÝCH POJIV Ing. Jiří Jungmann Výzkumný ústav maltovin Praha s.r.o. Vápno, cement, ekologie - Skalský Dvůr 2011 VÝVOJ LEGISLATIVY Svět Evropa ČR Konference
a)čvut Praha, stavební fakulta, katedra fyziky b)čvut Praha, stavební fakulta, katedra stavební mechaniky
MATERIÁLOVÁ PROBLEMATIKA PŘI POŽÁRECH OCELOVÝCH A ŽELEZOBETONOVÝCH STAVEB The Materials Points at Issue in a Fire of Steel and Reinforced Concrete Structures Jan Toman a Robert Černý b a)čvut Praha, stavební
Centra materiálového výzkumu na FCH VUT v Brně
Název projektu: Centra materiálového výzkumu na FCH VUT v Brně Cíl projektu: Vybudování špičkově vybaveného výzkumného centra s názvem Centrum materiálového výzkumu pro aplikovaný výzkum anorganických
MOŽNOSTI VYUŽITÍ PRŮMYSLOVÝCH ODPADŮ PRO VÝROBU ALKALICKY AKTIVOVANÝCH MATERIÁLŮ
ACTA ENVIRONMENTALICA UNIVERSITATIS COMENIANAE (BRATISLAVA) Vol. 20, Suppl. 1(2012): 130-135 ISSN 1335-0285 MOŽNOSTI VYUŽITÍ PRŮMYSLOVÝCH ODPADŮ PRO VÝROBU ALKALICKY AKTIVOVANÝCH MATERIÁLŮ Jaroslav Válek
VÝZKUM MATERIÁLŮ V NÁRODNÍM PROGRAMU ORIENTOVANÉHO VÝZKUMU A VÝVOJE. Tasilo Prnka
Abstrakt VÝZKUM MATERIÁLŮ V NÁRODNÍM PROGRAMU ORIENTOVANÉHO VÝZKUMU A VÝVOJE Tasilo Prnka TASTECH, Květná 441, 763 21 Slavičín, E-mail: mail.tastech@worldonline.cz V roce 2001 byl zpracován poprvé návrh
VLIV TYPU A MNOŽSTVÍ PŘÍMĚSI NA PRŮBĚH KARBONATACE
ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 11/20011 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach VLIV TYPU A MNOŽSTVÍ PŘÍMĚSI NA PRŮBĚH KARBONATACE Markéta CHROMÁ, Pavla ROVNANÍKOVÁ,
Stanovení složení a míry degradace betonu nosných prvků železobetonové konstrukce budovy nádraží. Ing. Ámos Dufka, Ph.D. Ing. Patrik Bayer, Ph.D.
Stanovení složení a míry degradace betonu nosných prvků železobetonové konstrukce Ing. Ámos Dufka, Ph.D. Ing. Patrik Bayer, Ph.D. 1. Úvod Analyzovány byly betony konstrukčních prvků železobetonového skeletu
BETONY NA BÁZI ALUMOSILIKÁTOVÝCH POLYMERŮ CONCRETE ON THE ALUMOSILICATE POLYMERS BASIS
BETONY NA BÁZI ALUMOSILIKÁTOVÝCH POLYMERŮ CONCRETE ON THE ALUMOSILICATE POLYMERS BASIS Rostislav Šulc, Tomáš Strnad, František Škvára, Pavel Svoboda, Lubomír Kopecký, Vít Šmilauer, Lenka Myšková, Zdeněk
Centrum AdMaS Struktura centra Vývoj pokročilých stavebních materiálů Vývoj pokročilých konstrukcí a technologií
Centrum AdMaS (Advanced Materials, Structures and Technologies) je moderní centrum vědy a komplexní výzkumná instituce v oblasti stavebnictví, která je součástí Fakulty stavební Vysokého učení technického
Trvanlivost betonových konstrukcí. Prof. Ing. Jaroslav Procházka, CSc. ČVUT - stavební fakulta katedra betonových konstrukcí 1
Trvanlivost betonových konstrukcí Prof. Ing. Jaroslav Procházka, CSc. ČVUT - stavební fakulta katedra betonových konstrukcí 1 Rešerše - témata: 1. Volba materiálů a úpravy detailů z hlediska zvýšení trvanlivosti
BEZCEMENTOVÝ BETON S POJIVEM Z ÚLETOVÉHO POPÍLKU
Sekce X: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx BEZCEMENTOVÝ BETON S POJIVEM Z ÚLETOVÉHO POPÍLKU Rostislav Šulc, Pavel Svoboda 1 Úvod V rámci společného programu Katedry technologie staveb FSv ČVUT a Ústavu skla
NOVÁ METODIKA PŘÍPRAVY 1 MM FÓLIÍ PRO TEM ANALÝZU AUSTENITICKÝCH OCELÍ OZÁŘENÝCH NEUTRONY. Kontaktní e-mail: bui@cvrez.cz
NOVÁ METODIKA PŘÍPRAVY 1 MM FÓLIÍ PRO TEM ANALÝZU AUSTENITICKÝCH OCELÍ OZÁŘENÝCH NEUTRONY Petra Bublíková 1, Vít Rosnecký 1, Jan Michalička 1, Eliška Keilová 2, Jan Kočík 2, Miroslava Ernestová 2 1 Centrum
některých případech byly materiály po doformování nesoudržné).
VYUŽITÍ ORGANICKÝCH ODPADŮ PRO VÝROBU TEPELNĚ IZOLAČNÍCH MALT A OMÍTEK UTILIZATION OF ORGANIC WASTES FOR PRODUCTION OF INSULATING MORTARS AND PLASTERS Jméno autora: Doc. RNDr. Ing. Stanislav Šťastník,
v okolí hlubinného úložiště radioaktivního odpadu Tomáš Kuchovský
Research group for radioactive waste repository and nuclear safety (CZ.1.07/2.3.00/20.0052) Vliv tepla produkovaného vysoce aktivním odpadem na proudění podzemních vod v okolí hlubinného úložiště radioaktivního
JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM
JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM Pavla Rovnaníková, Martin Sedlmajer, Martin Vyšvařil Fakulta stavební VUT v Brně Seminář Vápno, cement, ekologie, Skalský Dvůr 12. 14.
Jiří LUKEŠ 1 KAROTÁŅNÍ MĚŖENÍ VE VRTECH TESTOVACÍ LOKALITY MELECHOV WELL LOGGING MEASUREMENT ON TESTING LOCALITY MELECHOV
Jiří LUKEŠ 1 KAROTÁŅNÍ MĚŖENÍ VE VRTECH TESTOVACÍ LOKALITY MELECHOV WELL LOGGING MEASUREMENT ON TESTING LOCALITY MELECHOV Abstract In the year 2007 research program on test locality Melechov continued
AKTIVACE POPÍLKU V POPBETONU BEZ TEMPEROVÁNÍ
AKTIVACE POPÍLKU V POPBETONU BEZ TEMPEROVÁNÍ ACTIVATION OF FLY-ASH IN POPBETON WITHOUT HEATING Abstract Ing. Rostislav Šulc 1 This paper describes the problem of a cold activation of fly-ash concrete called
TECHNICKÝ POPIS K PROJEKTOVÉ DOKUMENTACI STAVBA ÁSTI OPLOCENÍ HBITOVA NA P.P..199/3, K.Ú. HRADIŠT U CHEBU
TECHNICKÝ POPIS K PROJEKTOVÉ DOKUMENTACI STAVBA ÁSTI OPLOCENÍ HBITOVA NA P.P..199/3, K.Ú. HRADIŠT U CHEBU Název akce : Stupe PD : Místo stavby : Stavební úad : Investor (stavebník): Projektant: Zodpovdný
INTERAKCE NULMOCNÉHO NANOŽELEZA SE SÍRANY. Pavla Filipská, Josef Zeman, Miroslav Černík. Ústav geologických věd Masarykova Univerzita
INTERAKCE NULMOCNÉHO NANOŽELEZA SE SÍRANY Pavla Filipská, Josef Zeman, Miroslav Černík Ústav geologických věd Masarykova Univerzita NANOČÁSTICE NULMOCNÉHO ŽELEZA mohou být používány k čištění důlních vod,
Ovení možnosti uplatnní metody stabilizace/solidifikace pro odpad ze zpracování skládkového výluhu
Ovení možnosti uplatnní metody stabilizace/solidifikace pro odpad ze zpracování skládkového výluhu Radka Novotná, Jií Hendrych, Jií Kroužek, Daniel Randula Vysoká škola chemicko-technologická v Praze,
OBSAH ODOLNOST ENERGOSÁDRY PROTI ZMRAZOVACÍM CYKLŮM THE FROST RESISTANCE OF FLUE GAS DESULFURIZATION (FGD) GYPSUM
ODOLNOST ENERGOSÁDRY PROTI ZMRAZOVACÍM CYKLŮM THE FROST RESISTANCE OF FLUE GAS DESULFURIZATION (FGD) GYPSUM Pavla Rovnaníková, Jitka Meitnerová Stavební fakulta VUT v Brně Abstract: The properties of flue
Plán jakosti procesu
Vysoká škola báňská - Technická univerzita Ostrava Fakulta stavební Zkušebnictví a řízení jakosti staveb Program č. 1 Plán jakosti procesu Jana Boháčová VN1SHD01 2008/2009 Obsah: 1. Cíl zpracování plánu
Vliv olejů po termické depolymerizaci na kovové konstrukční materiály
Vliv olejů po termické depolymerizaci na kovové konstrukční materiály Ing. Libor Baraňák Ph. D, doc. Miroslav Bačiak Ph.D., ENRESS s.r.o., Praha baranak@enress.eu Náš příspěvek na konferenci řeší problematiku
Karta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Odpady z těžby a zpracování surovin Číslo předmětu: 542 Garantující institut: Garant předmětu: Institut hornického inženýrství a bezpečnosti doc. Ing. Jiří
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV CHEMIE FACULTY OF CIVIL ENGINEERING INSTITUTE OF CHEMISTRY SMĚSNÁ ALKALICKY AKTIVOVANÁ ALUMINOSILIKÁTOVÁ POJIVA BLENDED
Planitop Rasa & Ripara R4
Planitop Rasa & Ripara R RYCHLETVRDNOUCÍ CEMENTOVÁ MALTA TŘÍDY R NA OPRAVY A VYHLAZOVÁNÍ BETONOVÝCH POVRCHŮ výrobek na vyhlazení a opravu betonových povrchů Pouze Nanášení Planitop Rasa & Ripara R zednickou
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA CHEMICKÁ ÚSTAV CHEMIE MATERIÁLŮ FACULTY OF CHEMISTRY INSTITUTE OF MATERIALS SCIENCE VLIV ANORGANICKÝCH PŘÍMĚSÍ NA REDUKCI SMRŠTĚNÍ ALKALICKY
Geopolymery - využití pro restaurování kamene a souvisejících materiálů
Univerzita Pardubice Fakulta restaurování Geopolymery - využití pro restaurování kamene a souvisejících materiálů Josef Červinka, DiS Bakalářská práce 2008 Fakulta restaurování Katedra humanitních věd
Geopolymery. doc. Ing. Milena Pavlíková, Ph.D. K123, D
Geopolymery doc. Ing. Milena Pavlíková, Ph.D. K123, D1045 224 354 688 milena.pavlikova@fsv.cvut.cz www.tpm.fsv.cvut.cz Geopolymery nový typ anorganických materiálů rozšíření sortimentu materiálů alkalicky
Recyklace stavebního odpadu
Recyklace stavebního odpadu Stavební odpad Stavební odpad, který vzniká při budování staveb nebo při jejich demolicích, představuje významný podíl lidské společnosti. Recyklace se stává novým environmentálním
OVĚŘOVACÍ PRŮZKUM VLIVU PŘÍSAD A PŘÍMĚSÍ NA BETON BEZ CEMENTU S NÁZVEM POPBETON
OVĚŘOVACÍ PRŮZKUM VLIVU PŘÍSAD A PŘÍMĚSÍ NA BETON BEZ CEMENTU S NÁZVEM POPBETON Rostislav Šulc, Pavel Svoboda Vliv přísad a příměsí v POPbetonu na jeho hodnoty zejména fyzikálně mechanických a chemických
High Volume Fly Ash Concrete - HVFAC
REFERATY XXIV Międzynarodowa Konferencja POPIOŁY Z ENERGETYKI 2017 Vysoké učení technické v Brně Fakulta stavební, Ústav technologie stavebních hmot a dílců High Volume Fly Ash Concrete - HVFAC Betony
NÁTĚROVÉ SYSTÉMY NA BÁZI SILOXANU PAINT SYSTEMS ON SILOXANE BASE. SIOSTRZONEK René, FILIPOVÁ Marcela, PODJUKLOVÁ Jitka
NÁTĚROVÉ SYSTÉMY NA BÁZI SILOXANU PAINT SYSTEMS ON SILOXANE BASE SIOSTRZONEK René, FILIPOVÁ Marcela, PODJUKLOVÁ Jitka VŠB Technická univerzita Ostrava, Fakulta strojní, Katedra mechanické technologie Abstrakt
Beton je umělé stavivo (umělý kámen) složené z cementu, hrubého a jemného kameniva a vody.
1 Beton je umělé stavivo (umělý kámen) složené z cementu, hrubého a jemného kameniva a vody. Může obsahovat povolené množství přísad a příměsí, které upravují jeho vlastnosti. 2 SPECIFIKACE BETONU 3 Rozdělení
Sledování koroze kovů měřením elektrochemického šumu a měřením akustické emise
Sledování koroze kovů měřením elektrochemického šumu a měřením akustické emise Miroslav Varner, ČKD Blansko Strojírny, a. s., Blansko Abstrakt Poškozování kovů obvyklými typy koroze (celková, bodová, štěrbinová,
Umělý kámen užití a vlastnosti
Umělý kámen užití a vlastnosti 1. 2. 2010 Při obnově nebo restaurování kamenných objektů sochařských děl, architektonických prvků apod. se často setkáváme s potřebou doplnění chybějících částí. Jsou v
Jak v R využíváme slunení energii. Doc.Ing. Karel Brož, CSc.
Jak v R využíváme slunení energii Doc.Ing. Karel Brož, CSc. Dnes tžíme na našem území pouze uhlí a zásoby tohoto fosilního paliva byly vymezeny na následujících 30 rok. Potom budeme nuceni veškerá paliva
JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK)
JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) Ing. Jan Závitkovský e-mail: jan.zavitkovsky@centrum.cz
LICÍ PÁNVE V OCELÁRNĚ ARCELORMITTAL OSTRAVA POUŽITÍ NOVÉ IZOLAČNÍ VRSTVY
LICÍ PÁNVE V OCELÁRNĚ ARCELORMITTAL OSTRAVA POUŽITÍ NOVÉ IZOLAČNÍ VRSTVY POURING LADLES IN ARCELORMITTAL OSTRAVA STEEL PLANT - UTILIZATION OF NEW INSULATION LAYER Dalibor Jančar a Petr Tvardek b Pavel
EU ETS 2020 a pohlcování oxidu uhličitého v procesu karbonatace cementu v betonu
EU ETS 2020 a pohlcování oxidu uhličitého v procesu karbonatace cementu v betonu Vápno, Cement, Ekologie 2017 Gemrich Jan Ing. Svaz výrobců cementu České republiky EU ETS 2020 a nové návrhy 1. Ohrožení
KOMPOZITNÍ TYČE NA VYZTUŽENÍ BETONU
KOMPOZITNÍ TYČE NA VYZTUŽENÍ BETONU kompozitní tyče ARMASTEK dokonalá alternativa tradičního vyztužení betonu ocelovými tyčemi - - - + + + ŽELEZOBETON beton vyztužený ocelovými tyčemi základní chybou železobetonu
4 Výsledky řešení a diskuse
4 Výsledky řešení a diskuse V první části experimentální části této práce bylo ověřeno pozitivní chování betonové matrice s přidáním mikromletých částic v podobě mikromletého vápence a redukce spotřeby
SIMULACE DLOUHODOBÉHO ULOŽENÍ SKLOVLÁKNOBETONU S OBSAHEM ODPAD A VLIV NA EKOTOXICKÉ VLASTNOSTI
SIMULACE DLOUHODOBÉHO ULOŽENÍ SKLOVLÁKNOBETONU S OBSAHEM ODPAD A VLIV NA EKOTOXICKÉ VLASTNOSTI INFLUENCE OF LONG-TERM AGEING SIMULATION OF GLASS-FIBRE REINFORCED CONCRETE COMPOSITES WITH WASTE CONTENT
Studium vlastností betonů pro vodonepropustná tunelová ostění
Studium vlastností betonů pro vodonepropustná tunelová ostění Autor: Adam Hubáček, VUT, WP4 Příspěvek byl zpracován za podpory programu Centra kompetence Technologické agentury České republiky (TAČR) v
Pojednání ke státní doktorské zkoušce. Hodnocení mechanických vlastností slitin na bázi Al a Mg s využitím metody AE
Pojednání ke státní doktorské zkoušce Hodnocení mechanických vlastností slitin na bázi Al a Mg s využitím metody AE autor: Ing. školitel: doc. Ing. Pavel MAZAL CSc. 2 /18 OBSAH Úvod Vymezení řešení problematiky
Nauka o materiálu. Přednáška č.14 Kompozity
Nauka o materiálu Úvod Technické materiály, které jsou určeny k dalšímu technologickému zpracování zahrnují širokou škálu možného chemického složení, různou vnitřní stavbu a různé vlastnosti. Je nutno
STAVEBNÍ LÁTKY. Definice ČSN EN 206 1. Beton I. Ing. Lubomír Vítek. Ústav stavebního zkušebnictví Středisko radiační defektoskopie
Ústav stavebního zkušebnictví Středisko radiační defektoskopie STVEBNÍ LÁTKY Beton I. Ing. Lubomír Vítek Definice ČSN EN 206 1 Beton je materiál ze směsi cementu, hrubého a drobného kameniva a vody, s
Ing. Simona Psotná, Ing. Taťána Barabášová V 10 APLIKACE PYROLÝZNÍCH OLEJŮ VE FLOTACI UHLÍ
Ing. Simona Psotná, Ing. Taťána Barabášová V 10 Ing. Eva Schmidtová, Ing. Monika Podešvová APLIKACE PYROLÝZNÍCH OLEJŮ VE FLOTACI UHLÍ Abstrakt Práce se zabývá výzkumem flotačních činidel vhodných pro flotaci
V Praze Příklady pro využití:
Geopolymerní kompozity Ústav struktury a mechaniky hornin AVČR, v.v.i.; V Holešovičkách 41, 182 09 Praha 8 Michaela Vondráčková, steinerova@irsm.cas.cz; tel.:+420742120191 V Praze 24.10.2016 Co je geopolymer:
Inovativní výrobky a environmentální technologie (reg. č. CZ.1.05/3.1.00/14.0306) ENVITECH
Inovativní výrobky a environmentální technologie (reg. č. CZ.1.05/3.1.00/14.0306) ENVITECH Zpráva o řešení č. 2 IA 04 Kompozity na bázi geopolymerů s krátkovlákennou a nanopartikulární výztuží Vedoucí
PRODUKTIVNÍ OBRÁBĚNÍ OCELI P91
PRODUKTIVNÍ OBRÁBĚNÍ OCELI P91 Ing. Jan Řehoř, Ph.D. Ing. Tomáš Nikl ZČU v Plzni Fakulta strojní, Katedra technologie obrábění ZČU v Plzni, Univerzitní 22, Plzeň e-mail: rehor4@kto.zcu.cz Abstract The
VLASTNOSTI ALKALICKY AKTIVOVANÝCH ALUMINOSILIKÁTŮ ZATÍŽENÝCH VYSOKÝMI TEPLOTAMI
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV CHEMIE FACULTY OF CIVIL ENGINEERING INSTITUTE OF CHEMISTRY VLASTNOSTI ALKALICKY AKTIVOVANÝCH ALUMINOSILIKÁTŮ ZATÍŽENÝCH
ÚLOHA INŽENÝRSKÝCH BARIÉR PŘI UKLÁDÁNÍ VYHOŘELÉHO PALIVA
CZ9827376 Ing. Antonín Vokál, CSc.^ U 7 Ústav jaderného výzkiunu Že2 a. s. ÚLOHA INŽENÝRSKÝCH BARIÉR PŘI UKLÁDÁNÍ VYHOŘELÉHO PALIVA Úvod Cíl hlubinného úložiště radioaktivních odpadů - trvalé oddělení
D TECHNICKÁ ZPRÁVA
Ing. Václav Pechouš Praha 8, Rajmonova 1197 tel. 252540214 IO 41699343 poet stran -4- Zak..: 03/14 Investor: Správa pražských hbitov Stavba: OPRAVA HBITOVNÍHO ZDIVA Hbitov áblice Praha 8 - Stížkov, áblická
Přednášky: Prof. Ing. Milan Holický, DrSc. FA, Ústav nosných konstrukcí, Kloknerův ústav. Ing. Jana Markova, Ph.D.
Přednášky: Prof. Ing. Milan Holický, DrSc. FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa ď Holická, CSc., Fakulta stavební Ing. Jana Markova, Ph.D., Kloknerův ústav - Technologie, mechanické
STUDIUM ELEKTROCHEMICKÝCH KOROZNÍCH JEVŮ DVOUFÁZOVÝCH OCELÍ ZA POUŽITÍ METODY SRET.
STUDIUM ELEKTROCHEMICKÝCH KOROZNÍCH JEVŮ DVOUFÁZOVÝCH OCELÍ ZA POUŽITÍ METODY SRET. STUDY OF ELECTROCHEMICAL CORROSION PHENOMENA OF DUPLEX STAINLESS STEELS BY USE OF SRET METHODS Petr Kubečka a Vladimír
Vedlejší energetické produkty a jejich využití
Vedlejší energetické produkty a jejich využití Ing. Pavel Sokol Praha prosinec 2012 Energetické produkty (VEP) Produkty vznikající při spalování tuhých paliv nebo během procesu čištění spalin - výroba
VLIV MECHANICKÉHO PORUŠENÍ NA CHOVÁNÍ POVRCHU S TIN VRSTVOU PŘI TEPELNÉM A KOROZNÍM NAMÁHÁNÍ. Roman Reindl, Ivo Štěpánek, Martin Hrdý, Klára Jačková
VLIV MECHANICKÉHO PORUŠENÍ NA CHOVÁNÍ POVRCHU S TIN VRSTVOU PŘI TEPELNÉM A KOROZNÍM NAMÁHÁNÍ Roman Reindl, Ivo Štěpánek, Martin Hrdý, Klára Jačková Západočeská univerzita v Plzni, Univerzitní 22, 306 14
EXPERIMENTÁLNÍ A ENVIRONMENTÁLNÍ VYHODNOCENÍ POUŽITÍ RECYKLOVANÉHO KAMENIVA DO BETONU
Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad EXPERIMENTÁLNÍ A ENVIRONMENTÁLNÍ VYHODNOCENÍ POUŽITÍ RECYKLOVANÉHO KAMENIVA DO BETONU Tereza Pavlů
Jana Stachová, Marcela Fridrichová, Dominik Gazdič, Karel Dvořák.
STUDIUM VÝPALU PORTLANDSKÉHO SLINKU NA BÁZI FLUIDNÍHO POPÍLKU Jana Stachová, Marcela Fridrichová, Dominik Gazdič, Karel Dvořák. Snižování CO 2 1990- se poprvé začalo celosvětově hovořit o problematice
Analýza ztráty stability sendvičových kompozitních panelů při zatížení tlakem
Analýza ztráty stability sendvičových kompozitních panelů při zatížení tlakem Ing. Jaromír Kučera, Ústav letadlové techniky, FS ČVUT v Praze Vedoucí práce: doc. Ing. Svatomír Slavík, CSc. Abstrakt Analýza
KOROZE KONSTRUKCÍ. Ing. Zdeněk Vávra
KOROZE KONSTRUKCÍ Ing. Zdeněk Vávra www.betosan.cz, vavra.z@betosan.cz +420 602 145 570 Skladba betonu Cement Kamenivo Voda Přísady a příměsi Cementový kámen (tmel) Kamenivo vzduch Návrhové parametry betonu
SANAČNÍ A VÝPLŇOVÉ SMĚSI PŘIPRAVENÉ PRO KOMPLEXNÍ ŘEŠENÍ PROBLEMATIKY METANU VE VAZBĚ NA STARÁ DŮLNÍ DÍLA
Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut čistých technologií těžby a užití energetických surovin SANAČNÍ A VÝPLŇOVÉ SMĚSI PŘIPRAVENÉ PRO KOMPLEXNÍ ŘEŠENÍ PROBLEMATIKY
P. Verner, V. Chrást
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročník LIII 13 Číslo 2, 2005 Chování konverzních vrstev v laboratorních
Pojednání ke státní doktorské zkoušce. Hodnocení mechanických vlastností slitin na bázi Al a Mg s využitím metody AE
Pojednání ke státní doktorské zkoušce Hodnocení mechanických vlastností slitin na bázi Al a Mg s využitím metody AE autor: Ing. školitel: doc. Ing. Pavel MAZAL CSc. 2 /18 OBSAH Úvod Vymezení řešení problematiky
Materiálové inženýrství na FSv ČVUT v Praze. doc. Ing. Milena Pavlíková, Ph.D. Katedra materiálového inženýrství a chemie
Materiálové inženýrství na FSv ČVUT v Praze doc. Ing. Milena Pavlíková, Ph.D. VVVV 2016, PRAHA, 10.-11.5. 2016 1993 1999 VŠCHT Praha, FCHT, Chemie a technologie anorganických materiálů, Stipendium Nadace