spirální šnekový dopravník, šnekovnice, žlab, pohonná jednotka, slad, konstrukce dopravníku

Podobné dokumenty
ŠNEKOVÝ DOPRAVNÍK PRO DOPRAVU ZRNA

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY ŠNEKOVÝ DOPRAVNÍK WORM CONVEYOR

bezosý spirálový dopravník, spirála, pohonná jednotka, pružná bezvůlová spojka, žlab, ložisko, konstrukce dopravníku

FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

VYSOKÉ U ENÍ TECHNICKÉ V BRN BRNO UNIVERSITY OF TECHNOLOGY ŠNEKOVÝ DOPRAVNÍK PRO DOPRAVU CEMENTU CEMENT WORM CONVEYOR

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY ŠNEKOVÝ DOPRAVNÍK

BAKALÁŘSKÁ PRÁCE. Návrh rozměru čelních ozubených kol je proveden podle ČSN ČÁST 4 PEVNOSTNÍ VÝPOČET ČELNÍCH A OZUBENÝCH KOL.

Pomocné výpočty. Geometrické veličiny rovinných útvarů. Strojírenské výpočty (verze 1.1) Strojírenské výpočty. Michal Kolesa

Plán přednášek a úkolů z předmětu /01

ŠNEKOVÝ DOPRAVNÍK PRO DOPRAVU ZRNA

19 21 DETAIL C MĚŘÍTKO 1 : H7/n a5 632 ŠNEKOVÝ DOPRAVNÍK ÚADI 0-SD-00. 4x2670 D x

VODOROVNÝ ŠNEKOVÝ DOPRAVNÍK

POJEZDOVÝ MECHANISMUS JEŘÁBOVÉ KOČKY NOSNOST 32 T

Podavače šnekové PSC 315 (dále jen podavače) se používají k dopravě odprašků z filtrů a odlučovačů v horizontální rovině.

ŠNEKOVÝ DOPRAVNÍK DRCENÉHO KAMENIVA

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

MODERNÍ TECHNOLOGIE A DLOUHOLETÁ ZKUŠENOST

strol. s.ucasl. Joseph E. Shigley The Iowa State University of Science and Technology Richard G. Budynas Institute of Technology

Obr. 1 Schéma pohonu řezného kotouče

KA 19 - UKÁZKOVÝ PROJEKT 2.3 VÝSTUPNÍ ŽLAB VÝPOČTOVÁ ZPRÁVA

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí Analýza deformací 185

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

KATALOGOVÝ LIST KM VENTILÁTORY RADIÁLNÍ STŘEDOTLAKÉ Vydání: 12/10 RSM 1600 a 2000 Strana: 1 jednostranně sací Stran: 6

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Strojní součásti ČÁSTI STROJŮ R

MODERNÍ TECHNOLOGIE A DLOUHOLETÁ ZKUŠENOST

VYSOKÉ UČENÍ TECHNICKÉ

Názvosloví. VENTILÁTORY RADIÁLNÍ STŘEDOTLAKÉ RSB 500 až Hlavní části ventilátorů - pohon na přímo. 1. Rám ventilátoru. 2.

Různé druhy spojů a spojovací součásti (rozebíratelné spoje)

Přednáška č.8 Hřídele, osy, pera, klíny

KATALOGOVÝ LIST. VENTILÁTORY AXIÁLNÍ PŘETLAKOVÉ APMB 1600 a 2400 pro mikrochladiče

Energeticky účinná kuličková ložiska SKF. Snížením tření k vyšším úsporám energie

ŽELEZOBETONOVÁ SKELETOVÁ KONSTRUKCE

Kreslení strojních součástí. 1. Čepy. Rozdělení čepů: a) normalizované kreslení dle norem b) nenormalizované nutno nakreslit výrobní výkres

FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

E-03 A. CHARAKTERISTIKA VÝROBA FABRIKOVANÝCH SYSTÉMŮ KATALOGOVÝ LIST

Inovace a zkvalitnění výuky prostřednictvím ICT Převody a mechanizmy. Ing. Magdalena Svobodová Číslo: VY_32_INOVACE_ Anotace:

Šnekové soukolí nekorigované se šnekem válcovým a globoidním kolem.

Řetězové převody Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Hynek Palát

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

KATALOGOVÝ LIST KM b PODAVAČ ROTAČNÍ PRD 400 Vydání: 5/02 Strana: 1 Stran: 5

Lineární jednotky MTV s pohonem kuličkovým šroubem

Katalog K CZ. nízkonapěťové. Trojfázové asynchronní motory nakrátko 1LA9 osová výška 56 až 160 výkon 0,14 až 24,5 kw

PM23 OBSAH. Katalog zubových čerpadel Obsah

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT

FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Projekt realizovaný na SPŠ Nové Město nad Metují

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

2.2 VÁLEČKOVÝ DOPRAVNÍK

Axiální kuličková ložiska

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ HŘÍDELE A ČEPY

POHÁNĚNÁ HORIZONTÁLNÍ VÁLEČKOVÁ DRÁHA

Řemenový převod (cvičení)

STROJNÍ SOUČÁSTI. Podle účelu a použití se strojní součásti rozdělují na:

UZAVÍRACÍ KLAPKA. dvojitě excentrická, DN , PN 10 PN 16. Konstrukční charakteristiky

Výpočtová dokumentace pro montážní přípravek oběžného kola Peltonovy turbíny

Inovace a zkvalitnění výuky prostřednictvím ICT Převody a mechanizmy. Ing. Magdalena Svobodová Číslo: VY_32_INOVACE_ Anotace:

VY_32_INOVACE_C 07 03

TŘENÍ A PASIVNÍ ODPORY

DOPRAVNÍKY. objemový průtok sypkého materiálu. Q V = S. v (m 3.s -1 )

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ

Tiskové chyby vyhrazeny. Obrázky mají informativní charakter.

Projection, completation and realisation. MVH Vertikální odstředivá kondenzátní článková čerpadla

Inovace a zkvalitnění výuky prostřednictvím ICT Převody a mechanizmy Řetězové převody Ing. Magdalena Svobodová Číslo: VY_32_INOVACE_ Anotace:

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PÁSOVÝ DOPRAVNÍK FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ

UPÍNACÍ DESKA KONÍKU SOUSTRUHU ŘADY SR SVOČ FST Bc. Milan Kušnír Západočeská univerzita v Plzni Univerzitní 8, Plzeň Česká republika

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Elektromobil s bateriemi Li-pol

metodika sešit formátu A4, rýsovací potřeby , 3. A

Zvyšování kvality výuky technických oborů

VY_32_INOVACE_C 07 17

VYSOKÉ U ENÍ TECHNICKÉ V BRN BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

ŘETĚZOVÉ PŘEVODY Vysoká škola technická a ekonomická v Českých Budějovicích

Katalog K CZ. nízkonapěťové. Trojfázové asynchronní motory nakrátko 1LA9 osová výška 56 až 160 výkon 0,14 až 24,5 kw

Hřídelové klouby, kloubové hřídele / Drážkové hřídele a náboje

MODERNÍ TECHNOLOGIE A DLOUHOLETÁ ZKUŠENOST

Řemenové převody Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Hynek Palát

VY_32_INOVACE_C hřídele na kinetickou a tlakovou energii kapaliny. Poháněny bývají nejčastěji elektromotorem.

SPIRÁLNÍ ČERPADLA SUPERNOVA

ČÁSTI A MECHANISMY STROJŮ III

KONSTRUKČNÍ NÁVRH PRŮBĚŽNÉHO MÍSIČE O VÝKONU 1-3 TUN/HOD THE DESIGN OF SAND MIXER WITH OUTPUT RANGE 1-3 TPH

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

SEZNAM TÉMAT K ÚSTNÍ PROFILOVÉ ZKOUŠCE ZE STROJNICTVÍ

Projection, completation and realisation. MHH Horizontální odstředivá kondenzátní článková čerpadla

OKRUHY K MATURITNÍ ZKOUŠCE - STROJNICTVÍ

Pevnostní výpočty náprav pro běžný a hnací podvozek vozu M 27.0

i Lineární moduly MRJ se dodávají pouze s dlouhými vozíky. Lineární modul MRJ s pohonem ozubeným řemenem 03 > Lineární jednotky serie MRJ

VALIVÁ LOŽISKA Vysoká škola technická a ekonomická v Českých Budějovicích

FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

14.5 Převody řetězové

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Hřídelové klouby a kloubové hřídele Drážkové hřídele a náboje

Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport.

QHD1 OBSAH. Katalog zubových čerpadel Obsah

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY NOSNÁ ŽELEZOBETONOVÁ KONSTRUKCE OBCHODNÍHO DOMU REINFORCED CONCRETE STRUCTURE

Transkript:

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING SPIRÁLNÍ ŠNEKOVÝ DOPRAVNÍK SPIRAL CONVEYOR BAKALÁŘSKÁ PRÁCE BACHELOR S THESIS AUTOR PRÁCE AUTHOR VEDOUCÍ PRÁCE SUPERVISOR PAVEL NEKOKSA doc. Ing. JIŘÍ MALÁŠEK, Ph.D. BRNO 2013

ABSTRAKT, KLÍČOVÁ SLOVA ABSTRAKT Tato bakalářská práce se zabývá návrhem a konstrukčním řešením spirálního šnekového dopravníku. V textové části je proveden návrhový výpočet hlavních částí spirálního šnekového dopravníku, návrh pohonné jednotky, uložení šnekovnice, pevnostní kontrola funkčních částí a volba vhodného přepravovaného materiálu. Výkresová dokumentace vychází z textové části a skládá se ze sestavného výkresu dopravníku, seznamu položek a výkresu šnekovnice. KLÍČOVÁ SLOVA spirální šnekový dopravník, šnekovnice, žlab, pohonná jednotka, slad, konstrukce dopravníku ABSTRACT This bachelor thesis deals with the design and construction design spiral conveyor. In the text part is performed design calculation of the major parts of spiral screw conveyor, drive unit design, storage worm screw, strength check of functional parts and an appropriate choice of material transported. Design documentation based on text part and consists of a conveyor assembly drawing, a list of items and drawing worm screw. KEYWORDS spiral conveyor, worm screw, trough, drive unit, malt, the conveyor structure BRNO 2013

BIBLIOGRAFICKÁ CITACE BIBLIOGRAFICKÁ CITACE Nekoksa, P. Spirální šnekový dopravník. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2013. 46 s. Vedoucí bakalářské práce doc. Ing. Jiří Malášek, Ph.D.. BRNO 2013

ČESTNÉ PROHLÁŠENÍ ČESTNÉ PROHLÁŠENÍ Prohlašuji, že tato práce je mým původním dílem, zpracoval jsem ji samostatně pod vedením doc. Ing. Jiřího Maláška, Ph.D. a s použitím literatury uvedené v seznamu. V Brně dne 24. května 2013..... Pavel Nekoksa BRNO 2013

PODĚKOVÁNÍ PODĚKOVÁNÍ Rád bych touto cestou poděkoval svému vedoucímu bakalářské práce panu doc. Ing. Jiřímu Maláškovi, Ph.D. za udělení cenných rad a odbornou pomoc. Poděkování také patří mé rodině za podporu při studiu na vysoké škole. BRNO 2013

OBSAH OBSAH Úvod... 15 1 Hlavní části... 16 1.1 Hnací ústrojí... 16 1.2 Dopravní žlab... 16 1.3 Šnekovnice... 17 2 Použití a dopravované materiály... 18 3 Výpočet základních rozměrů dopravníku... 19 3.1 Výpočet objemového dopravního výkonu... 19 3.2 Návrh průměru šnekovnice... 19 4 Návrh pohonné jednotky... 22 4.1 Příkon dopravníku... 22 4.2 Příkon elektromotoru... 22 4.3 Volba elektromotoru... 22 4.4 Volba převodovky... 23 4.5 Kontrola dopravovaného množství materiálu... 24 4.6 Volba spojky... 25 5 Hmotnost dopravníku... 26 5.1 Hmotnost šnekovnice... 26 5.2 Hmotnost čepů... 27 5.3 Hmotnost žlabu... 27 5.4 Hmotnost výstelky žlabu... 28 5.5 Hmotnost pohonné jednotky... 28 5.6 Hmotnost přepravovaného materiálu... 28 5.7 Celková hmotnost... 29 6 Uložení šnekovnice... 30 6.1 Určení reakcí v ložiskách... 30 6.2 Maximální ohybový moment... 31 6.3 Výpočet axiální síly F A... 32 6.4 Volba koncového ložiska... 33 6.5 Volba ložiska pohonu... 34 7 Pevnostní výpočet... 37 7.1 Minimální průměr čepu... 37 7.2 Pero... 37 7.2.1 Kontrola pera na střih... 37 7.2.2 Kontrola pera na otlačení... 38 BRNO 2013 13

OBSAH Závěr... 40 Seznam použitých zkratek a symbolů... 43 Seznam příloh... 46 BRNO 2013 14

ÚVOD ÚVOD Spirální šnekové dopravníky jsou zařízení určená k plynulé přepravě nebo promíchávání různorodých materiálů ve vodorovném nebo mírně nakloněném směru. Spirální dopravníky patří do skupiny přepravních zařízení bez tažného elementu. Materiál je přepravován pomocí vysokopevné bezosé spirální šnekovnice (bez centrálního hřídele). Podmínkou pohybu materiálu je, aby tření mezi materiálem a stěnou žlabu bylo větší než tření mezi rotujícím povrchem šnekovnice a přepravovaným materiálem. Absence centrálního hřídele nabízí možnost vysokých objemových výkonů, při úplném zaplnění žlabu a malých otáčkách, dále dopravu materiálu se sklonem k namotávání se, spěchování se a pro materiály s rozdílnou velikostí částic. Spirální dopravníky mají jednoduchou konstrukci a minimální zastavitelnou plochu, což zajišťuje vysokou spolehlivost, snadnou obslužnost a poměrně malé nároky na údržbu. Konstrukce dále umožňuje více násypných a výsypných míst, hermetické utěsnění a snadné čistění. Mezi nevýhody patří poměrně rychlé opotřebení šnekovnice působením abrazivních částic a dotýkání se stěn žlabu a spirály. Toto opotřebení se dá částečně eliminovat správnou volbou přepravovaného materiálu a použití plastové výstelky žlabu. Své uplatnění naleznou v celé řadě oborů lidské činnosti, jako je potravinářský průmysl, masný průmysl, chemický průmysl, v papírnách, ale i v náročnějších podmínkách jako je zpracování obecního odpadu, jatka, ve spalovnách čí při dopravě znečistěných vod. Obr. 1 Spirální šnekový dopravník [3] BRNO 2013 15

HLAVNÍ ČÁSTI 1 HLAVNÍ ČÁSTI Dopravník má tyto tři základní části: a) Hnací ústrojí b) Dopravní žlab c) Šnekovnici Obr. 1.1 Hlavní části spirálního šnekového dopravníku [3] 1 pohonná jednotka, 2 spojka, 3 žlab, 4 šnekovnice, 5 násypka, 6 výsypka, 7 koncová deska, 8 ložisko pohonu, 9 výstelka žlabu, 10 závěsná oka, 11 štítek 1.1 HNACÍ ÚSTROJÍ Pro pohon spirálního dopravníku se nejčastěji používá převodový motor nebo elektromotor s frekvenčním měničem. Podle umístění motoru, můžeme dopravníky rozdělit: a) tlačné materiál se pohybuje směrem od pohonu (pro kratší dopravníky) b) tažné materiál se pohybuje směrem k pohonu Celé hnací ústrojí je složeno z motoru, převodovky a spojky. V závislosti na velikosti je hnacího ústrojí uloženo buď na konzoly spojené s čelem žlabu, nebo přírubovým spojem přímo na čelo žlabu. U větších jednotek se používá samostatná základna. [2] 1.2 DOPRAVNÍ ŽLAB Dopravní žlab tvoří nosnou část dopravníku. Nejčastěji má tvar U nebo je tvořen trubkou kruhového průřezu. Rozměry jsou dány rozměrem šnekovice a charakterem přepravovaného materiálu. Žlab tvaru U bývá nejčastěji vyroben z ocelového plechu o tloušťce 2 až 10 mm, který je v horní části ohraněn. Tento vytvořený lem zvyšuje tuhost BRNO 2013 16

HLAVNÍ ČÁSTI žlabu a umožňuje upevnění víka. [2] Pro zvýšení tuhosti se u delších žlabů používají příčné výztuhy nebo je žlab rozdělen na více částí. Ve žlabu je také často umístněna plastová výstelka, která zvyšuje otěruvzdornost oproti klasickému ocelovému potrubí. Podle druhu přepravovaného materiálu a konstrukce se liší i tvar výstelky, jak je možno vidět na Obr. 1.2. Obr. 1.2 Konstrukční řešení výstelky žlabu [3] A) vyložení polymerem, B) lišty pro kaly, C) základové desky 6-10 mm 1.3 ŠNEKOVNICE Šnekovnice je nejdůležitější částí spirálního dopravníku. Směr dopravy materiálu závisí na smyslu stoupání šnekovnice a smyslu jejího otáčení. Je tvořena plochým závitem nejčastěji lichoběžníkového průřezu, který bývá vyroben z uhlíkové, nerezové nebo pružinové oceli. U méně výkonných dopravníků lze použít i šnekovnici vyrobenou z plastu. Šnekovnice z ocelového plechu bývají vyrobeny buď válcováním z pásu, nebo svařováním mezikruhových výstřižků, které jsou v jednom místě radiálně rozstřiženy a roztaženy na příslušné stoupání. [2] Šnekovnice velkých rozměrů lze realizovat i jako odlitek. Obr. 1.3 Šnekovnice [3] BRNO 2013 17

POUŽITÍ A DOPRAVOVANÉ MATERIÁLY 2 POUŽITÍ A DOPRAVOVANÉ MATERIÁLY Spirální dopravníky mají širokou škálu uplatnění. Jejich univerzálnost je možná díky možnosti přepravovat různorodé materiály. Dle přepravovaného materiálu je nutné dbát při návrhu na správnou konstrukci a volbu konstrukčních materiálů, bezpečnostní a hygienické nařízení. Dopravníky mohou přepravovat jak jemné, neabrazivní materiály, jako je například cement, cukrová kaše, sušené mléko či obilniny, ale i heterogenní materiály, jako jsou občanské a průmyslové odpady, odpady ze zpracování masa, kosti či kaly. Dále je možno přepravovat i hrubé a velice abrazivní materiály jako je štěrk či sklo. Použití bychom mohli hledat například ve sladovnách či lihovarech pro přepravu sladu a zrnitých směsí, ve spalovnách pro zpracování občanského odpadu, na jatkách či v rybárnách pro přepravu vnitřností a odpadů z kůže. Tato technologie se dá využít i pro čištění odpadních vod, filtrování, dehydrataci a zahuštění kalů. Výčet používaných materiálů a jejich základní charakteristiky jsou uvedeny v Tab. 2.1 Tab. 2.1 Materiálové charakteristiky přepravovaných materiálů [4] Materiál Objemová hmotnost Měrný odpor v [kg.m -3 ] w [-] Cement 960-1200 1,85-3,20 Cukrová kaše 800-900 2,15-3,20 Hnojivo, 3 mm a méně 1088 2,50 Ječmen, celá zrna 576-768 1,85-2,50 Kal, odpadní 720-880 3,00-5,00 Kompost 480-800 2,15 Kosti, drcené 560-800 2,15 Kůra, drcená 880 2,15 Maso, s kostmi 640 2,15 Mléko práškové 320-720 1,85 Močovina, granule 688-736 2,15 Odpadky kuchyňské 800 3,00 Papírová kaše 992 2,15 Pšenice 720-768 1,85-2,50 Rašelina 450-600 2,15-3,20 Rýže, loupaná 720-784 1,85-2,00 Skořápky, lískové 560-720 1,85 Slad, suchý, celý 320-480 1,85-2,50 Střepy, skleněné jemné 1280-1920 2,15 Štěrk 1440-1660 3,00-5,00 Vápenec, drcený 1360-1440 2,15-5,00 Zemina s jílem, vlhká 1200-1280 3,00 Žito 672-768 1,85-2,50 BRNO 2013 18

VÝPOČET ZÁKLADNÍCH ROZMĚRŮ DOPRAVNÍKU 3 VÝPOČET ZÁKLADNÍCH ROZMĚRŮ DOPRAVNÍKU Navrhovaný spirální šnekový dopravník bude sloužit pro přepravu sladu v pivovaru. Konkrétně půjde o přepravu ze sila, kde už bude připraven čistý a suchý slad do sladového šrotovníku. Místo sladu by bylo možné použít i jiné materiály, které se svými vlastnostmi blíží vlastnostem sladu, viz. Tab. 2.1 (například žito či ječmen). Muselo by se ovšem ověřit novým výpočtem, jestli tyto materiály splňují zadané parametry. Jelikož se jedná o přepravu materiálu v potravinářském průmyslu, je třeba dbát na přísná hygienická nařízení. Proto bude ve žlabu umístněna výstelka, která zabrání přímému styku sladu s ocelí. Šnekovnice bude vyrobena z nerezové oceli. 3.1 VÝPOČET OBJEMOVÉHO DOPRAVNÍHO VÝKONU Pro výpočet objemového dopravního výkonu platí vztah (1) (1) Vztah (1) dle [1] str. 208 Kde: Q v [m 3.h -1 ] počet objemových jednotek dopravených za jednotku času Q m [kg.h -1 ] počet hmotnostních jednotek dopravených za jednotku času, ze zadání bakalářské práce je dáno Q m = 2500 kg.h -1 v [kg.m -3 ] objemová hmotnost materiálu udává v potaz mezery mezi zrny, póry a dutiny, dle [4] je průměrná objemová hmotnost sladu v = 400 kg.m -3 Pro objemový dopravní výkon, také platí vztah (2) (2) Vztah (2) dle [5], str. 92 3.2 NÁVRH PRŮMĚRU ŠNEKOVNICE Ze vztahu (2) vyjádříme výpočtový průměr šnekovnice (3) Kde: s [m] stoupání šnekovnice, dle [5] str. 92 je pro menší průměry s = D v BRNO 2013 19

Úhel sklonu dopravníku [ ] VÝPOČET ZÁKLADNÍCH ROZMĚRŮ DOPRAVNÍKU c H [-] součinitel snižující dopravované množství vzhledem ke sklonu dopravníku při dopravě vzhůru. Pro vodorovný dopravník je dle Grafu 3.1 c H = 1 25 20 15 10 5 0 0,5 0,6 0,7 0,8 0,9 1 Korekční součinitel ch [-] Graf 3.1 Diagram pro volbu součinitele c H [5] [-] součinitel plnění, pro úplné zaplnění žlabu je = 1 n [s -1 ] otáčky šneku závisí na druhu dopravovaného materiálu a průměru šnekovnice, dle [5] pro lehké a neabrazivní materiály jsou otáčky 2 až 4 s -1, voleno n = 2,5 s -1 Po dosazení neznámých parametrů do rovnice (2) dostáváme Z katalogu firmy RATAJ a. s. [6] je zvolen nejbližší vyšší jmenovitý průměr robustní šnekovnice D = 100 mm. Firma RATAJ a. s. je jedna z mála firem v České Republice, která se zabývá výrobou a dodávkou robustních spirál. Tato firma splňuje nejvyšší jakostní požadavky, používá nejnovější technologie a proto je tou nejlepší volbou pro koupi šnekovnice. Robustní spirála je obdélníkového průřezu. Je vyrobena z nerezové oceli 17 240 a má tyto základní parametry: Obr. 3.1 Rozměry šnekovnice BRNO 2013 20

VÝPOČET ZÁKLADNÍCH ROZMĚRŮ DOPRAVNÍKU Tab. 3.1 Základní rozměry šnekovnici D [mm] d [mm] s [mm] l š [m] t š [mm] m š [kg] 100 34 100 6,9 5 20,95 Šnekovnice bude uložena vůči ose žlabu excentricky. Tím je dosaženo, že se mezera mezi šnekovnicí a žlabem ve směru otáčení postupně zvětšuje a zamezuje se zadrhávání a drcení dopravovaného materiálu. Obr. 3.2 Excentricita uložení šnekovnice [5] BRNO 2013 21

NÁVRH POHONNÉ JEDNOTKY 4 NÁVRH POHONNÉ JEDNOTKY 4.1 PŘÍKON DOPRAVNÍKU (4) Vztah (4) dle [5], str. 93 Kde: l v [m] vodorovná dopravní vzdálenost, ze zadání bakalářské práce l v = 6,5m h [m] dopravní výška, pro vodorovný dopravník h = 0 w [-] celkový součinitel odporu tento součinitel vyjadřuje řadu odporů, které působí při dopravě materiálu, dle [4] je součinitel odporu sladu w = 2,5 4.2 PŘÍKON ELEKTROMOTORU Při výpočtu příkonu elektromotoru je nutno brát v potaz přetížení vzniklé přehlcením dopravníku materiálem a na přetížení vzniklé při rozběhu z klidové polohy, kdy je nutné překonat záběrný moment. (5) Vztah (5) dle [2], str. 62 Kde: e [-] celková účinnost pohonu, dle [8] je e = 0,67 4.3 VOLBA ELEKTROMOTORU Z vypočítaného příkonu elektromotoru je z katalogu firmy SIEMENS [8] volen čtyř pólový trojfázový nízkonapěťový asynchronní elektromotor s kotvou nakrátko s označením SIEMENS 1LA7 080-4AA3. Firma SIEMENS byla vybrána na základě dlouholeté tradice výroby elektromotorů, nabízí prodejní servis a cena je oproti konkurenci nižší. Elektromotor bude připojen k převodovce pomocí příruby, je zvoleno tedy provedení IM B14 s větší přírubou. Hmotnost elektromotoru m e = 8 kg. BRNO 2013 22

NÁVRH POHONNÉ JEDNOTKY Základní parametry: Výkon P = 0,55 kw Otáčky n e = 1395 min -1 Účinnost e = 67 % Obr. 4.1 Asynchronní elektromotor SIEMENS 1LA7 073-4AB1 [8] Tab. 4.1 Rozměry elektromotoru rozměry v mm [8] AC HF HG L LA LB LC LD LF LG LK M N Z 156,5 95,5 120 272,5 10 232,5 324 63,5 262,5 75 32 130 110 4 P S T GD GF D DA E EA F FA G GB - 160 8 3,5 6 6 19 19 40 40 6 6 15,5 15,5-4.4 VOLBA PŘEVODOVKY Ke zvolenému elektromotoru byla navrhnuta dvoustupňová čelní převodovka od firmy TOS Znojmo [9] MTC 32EC91/1LA7 (vel. 80). Převodovka bude připojena ke konstrukci dopravníku pomocí patek. Tato firma byla zvolena záměrně, protože firmy SIEMENS a TOS Znojmo spolu navzájem spolupracují a tudíž připojovací rozměry jsou identické. Základní parametry: Převodový poměr i = 9,91 Výstupní otáčky n 2 = 141 min -1 = 2,35 s -1 Hmotnost převodovky m p = 8 kg BRNO 2013 23

NÁVRH POHONNÉ JEDNOTKY Obr. 4.2 Převodovka MTC 32EC91/1LA7 (vel. 80) [9] Tab. 4.2 Rozměry převodovky rozměry v mm [9] A AB B BB CA CB DM ød k6 E F G H 110 158 130 160 19 6 174 25 50 8 28 90 HA HG K M N j7 T S2 S V1 V2 J - 18 128 9 85 70 3 M10 M6x12 151 178 10-4.5 KONTROLA DOPRAVOVANÉHO MNOŽSTVÍ MATERIÁLU Po návrhu elektromotoru a převodovky, kdy byly zvoleny nové parametry, je nutno zkontrolovat, jestli skutečné dopravované množství materiálu Q vs je větší nebo rovno požadovanému množství dopravovaného materiálu Q v. (6) Procentuální rozdíl mezi skutečným a požadovaným dopravním množstvím materiálu (7) Skutečné dopravované množství materiálu je o 6,24 % vyšší, než je požadovaná hodnota, což představuje 0,39 m 3.h -1. Tato odchylka je přijatelná a proto návrh elektromotoru a převodovky je vyhovující. V případě nutnosti dosáhnout přesného množství dopravovaného materiálu, by bylo možné navrhnout vlastní převodovku nebo použít elektromotor BRNO 2013 24

NÁVRH POHONNÉ JEDNOTKY s frekvenčním měničem, který může regulovat otáčky elektromotoru a tím i hodnotu dopravovaného množství materiálu. 4.6 VOLBA SPOJKY Pro přenos krouticího momentu mezi výstupním hřídelem převodovky a šnekovnicí, je použita pružná zubová spojka GAS M1L od firmy OPIS Engineering [10]. Tato spojka zajišťuje klidný chod soustrojí a tlumí nerovnoměrný průběh otáček při přenosu krouticího momentu. Dalšími výhodami jsou malé rozměry, nízká hmotnost a dlouhá životnost. Hmotnost spojky m s = 1,33 kg. Obr. 4.3 Pružná zubová spojka GAS [10] Tab. 4.3 Rozměry pružné spojky rozměry v mm [10] øe øa øb L M H øfa øfb 80 66 80 114 24 45 25 25 BRNO 2013 25

HMOTNOST DOPRAVNÍKU 5 HMOTNOST DOPRAVNÍKU Hmotnost spirálního dopravníku je dána hmotností přepravovaného materiálu a dílčími hmotnostmi jednotlivých dílců, z nichž je dopravník sestaven. 5.1 HMOTNOST ŠNEKOVNICE Pro výpočet budeme vycházet z hodnot uvedených v Tab. 3.1 Průměr mezikruží šnekovnice (8) Rozvinutá délka jednoho závitu šnekovnice (9) Počet závitů na šnekovnici Obr. 5.1 Rozvinutá délka jednoho závitu šnekovnice (10) Kde: l š [m] celková délka šnekovnice, je dána konstrukčním řešením dopravníku BRNO 2013 26

HMOTNOST DOPRAVNÍKU Celková délka rozvinuté šnekovnice (11) Hmotnost šnekovnice (12) Kde: š [kg.m -3 ] hustota materiálu šnekovnice, dle [7] je pro nerezovou ocel 17 024 je š = 7900 kg.m -3 5.2 HMOTNOST ČEPŮ Oba čepy jsou uloženy v ložiscích a svarovým spojem připevněny ke šnekovnici. Polotovarem čepu je ocelová kruhová tyč válcovaná za tepla z materiálu 11 423 a následně opracována. Hmotnost obou čepů m č = 3,4 kg Pro výpočty reakcí v ložiscích bude potřeba znát celkovou hmotnost čepů a šnekovnice. (13) 5.3 HMOTNOST ŽLABU Žlab tvoří dvě ocelové bezešvé trubky hladké kruhové vybrané z katalogu firmy FERONA [12] z materiálu 11 353.0 a délce 3,5 metru. Na konce těchto trubek budou přivařeny příruby, které umožní spojení jednotlivých dílců pomocí šroubového spoje. Vnější průměr trubky Tloušťka stěny trubky Délka trubky D TR = 127 mm t TR = 4 mm l TR = 3,5 m Dle [12] je hmotnost trubky m TR1m = 12,1 kg/m 5.2 Rozměry bezešvé trubky BRNO 2013 27

HMOTNOST DOPRAVNÍKU Celková hmotnost trubky (14) 5.4 HMOTNOST VÝSTELKY ŽLABU Výstelka žlabu chrání vnitřní povrch potrubí před obrušováním, korozí a přímým kontaktem sladu s ocelí. Mezi výstelkou žlabu a šnekovnicí musí být minimálně 6 mm vůle, která je určena výrobními tolerancemi a druhem přepravovaného materiálu. Z katalogu firmy AB Technology [13] je volena Polyuretanová vložka Kryptane 90A, která se vyznačuje vysokou pevností na otěr, tlumí hluk a má dobré kluzné vlastnosti. Hmotnost polyuretanové výstelky m PV = 20,52 kg 5.5 HMOTNOST POHONNÉ JEDNOTKY Hmotnost pohonné jednotky je dána dílčími hmotnostmi jednotlivých dílců, jejichž hmotnost byla uvedena v kapitole 4. (15) 5.6 HMOTNOST PŘEPRAVOVANÉHO MATERIÁLU Výpočet hmotnosti přepravovaného materiálu vychází z rovnice pro výpočet součinitele plnění (16) Vztah (16) dle [5], str. 86 Kde: S [m 2 ] plocha průřezu materiálu ve žlabu Ze vztahu (16) je vyjádřeno S (17) BRNO 2013 28

HMOTNOST DOPRAVNÍKU Hmotnost materiálu ve žlabu (18) 5.7 CELKOVÁ HMOTNOST Celková hmotnost je dána součtem dílčích hmotností jednotlivých komponentů a přepravovaného materiálu. V předchozích podkapitolách, ale nebyly propočítány všechny dílčí hmotnosti, jako jsou ložiska, šrouby, příruby, úchyt elektromotoru, atd. a proto je váha navýšena ještě o 20 %. (19) BRNO 2013 29

ULOŽENÍ ŠNEKOVNICE 6 ULOŽENÍ ŠNEKOVNICE Šnekovnice je svarovým spojem připevněna na dva čepy, přičemž každý z čepů je uložen ve valivém ložisku. Tyto ložiska zachycují jak radiální sílu, která je dána vlastní tíhou šnekovnice a čepů, tak i axiální sílu, která je dána odporem materiálu působícího na šnekovnici. 6.1 URČENÍ REAKCÍ V LOŽISKÁCH Vzhledem k tomu, že průměr šnekovnice je výrazně menší než délka, může být zaveden pro výpočet model prutu. Obr. 6.1 Zatížení šnekovnice Velikost rovnoměrného liniového zatížení vyvolaného vlastní tíhou (20) Kde: l lož [m] vzdálenost mezi ložisky Obr. 6.2 Úplné uvolnění BRNO 2013 30

ULOŽENÍ ŠNEKOVNICE Stupeň statické neurčitosti (21) Kde: [-] množina neznámých nezávislých parametrů [-] počet použitelných podmínek statické rovnováhy, pro obecnou rovinnou soustavu sil = 3 Určení sil v podporách vychází z podmínek statické rovnováhy. (22) ž (23) ž (24) Řešením soustavy rovnic dostáváme výsledné reakce v podporách. (25) (26) (27) 6.2 MAXIMÁLNÍ OHYBOVÝ MOMENT Z podmínek statické rovnováhy uvolněného prvku je vyjádřen maximální ohybový moment. Obr. 6.3 Uvolněný prvek BRNO 2013 31

ULOŽENÍ ŠNEKOVNICE (28) Pro zjištění místa maximálního průhybu šnekovnice je položena parciální derivace ohybového momentu M o (x) nule. (29) Z rovnice (30) plyne, že nejkritičtější místo bude v polovině délky šnekovnice. V tomto místě bude docházet k největšímu průhybu. Maximální ohybový moment je získán dosazením rovnice (30) do rovnice (28) (30) (31) 6.3 VÝPOČET AXIÁLNÍ SÍLY F A Axiální síla vzniká působením materiálu na šnekovnici. Platí pro ni vztah (32) (32) Vztah (32) dle [5], str. 93 Kde: M k [N.m] krouticí moment na výstupním hřídeli převodovky (33) R s [m] účinný poloměr, vztah (34) dle [5], str. 93 (34) BRNO 2013 32

ULOŽENÍ ŠNEKOVNICE [ ] úhel stoupání šnekovnice (35) tření [ ] třecí úhel mezi materiálem a šnekovnicí při výpočtu vychází ze součinitele (36) f m [-] součinitel tření mezi dopravovaným materiálem a šnekovnicí, dle [11] je pro kombinaci ocel slad suchý f m = 0,4 Po dosazení neznámých parametrů do rovnice (32) dostáváme 6.4 VOLBA KONCOVÉHO LOŽISKA Toto ložisko bude umístněno na koncové straně dopravníku a bude zachytávat pouze radiální sílu, proto je zvoleno jednořadé radiální kuličkové ložisko. Z katalogu firmy SKF [14] je voleno ložisko 6005-2RSL MT 33. Obr. 6.4 Ložisko s těsněním typu RSL [14] Vnitřní kroužek ložiska se z jedné strany opírá o osazení hřídele. Z druhé strany je zabezpečen proti axiálnímu posunutí pomocí pojistné podložky s přímým ozubem a pojistnou maticí se čtyřmi drážkami. Vnější kroužek není v ložiskovém tělese zajištěn a zůstává volný. A to z důvodu dilatace materiálu způsobené změnou teploty okolí. K ochraně ložiskového tělesa proti vniku nečistot a vlhkosti je použit plstěný těsnící kroužek. Ložisko typu 6005-2RSL MT 33 je dodáváno s náplní maziva, které postačuje na celou dobu trvanlivosti ložiska a nevyžaduje domazávání. Ložisko typu RSL má těsnění po obou stranách, viz obr. 6.4. Ložisko by nemělo být vymýváno a ani ohříváno na teplotu vyšší jak 120 C. Základní charakteristiky ložiska [14]: C B = 11900 N C ob = 6550 N BRNO 2013 33

ULOŽENÍ ŠNEKOVNICE Dané hodnoty (27): F Bx = 0 N F By = 119,42 N Dynamické ekvivalentní zatížení (37) Vztah (37) dle [16], str. 619 Kde: X B [-] součinitel dynamického radiálního zatížení Y B [-] součinitel dynamického axiálního zatížení Trvanlivost ložiska (38) Vztah (38) dle [16], str. 626 Kde: p B [-] exponent rovnice trvanlivosti, pro ložiska s bodovým stykem p = 3 6.5 VOLBA LOŽISKA POHONU Toto ložisko bude umístněno u pohonu a bude zachytávat radiální i axiální sílu, proto je zvoleno dvouřadé soudečkové ložisko. Z katalogu firmy SKF [18] je voleno ložisko BS2-2206-2CS. Ložiska jsou naklopitelná a mohou tedy vyrovnávat průhyb a nesouosost hřídele vůči tělesu. Ložiska s těsněním nemusí být domazávána, pokud provozní teplota nepřesáhne 70 C a otáčky nejsou vyšší než 50% mezních otáček. V případě, že je ložiska nutno domazávat, tak je vhodné použít stejné plastické mazivo. Mazivo se do ložiska dostane pomocí maznice. Mazivo nesmí být vtlačováno pod velkým tlakem, jinak hrozí poškození těsnění. Z finančního hlediska je výhodnější koupit ložiskové těleso než vyrábět vlastní. Firma SKF taktéž vyrábí ložisková tělesa, která jsou vyráběna přímo k různým řadám ložisek. Z katalogu [17] je zvoleno ložiskové těleso FNL 506 B. BRNO 2013 34

ULOŽENÍ ŠNEKOVNICE Obr. 6.5 Ložiskové těleso FNL 506 B [17] Základní charakteristiky ložiska [18]: C A = 64000 N C oa = 60000 N Y 2 = 2,9 e = 0,31 Dané hodnoty (25, 26): F Ax = 1206,49 N F Ay = 119,42 N Výpočet trvanlivosti je proveden podle katalogu SKF [18] Poměr axiální a radiální síly (39) Vztah (39) dle [18], str. 709 Pokud platí nerovnice (39) může být použita rovnice (40) pro výpočet dynamického ekvivalentního zatížení (40) BRNO 2013 35

ULOŽENÍ ŠNEKOVNICE Vztah (40) dle [18], str. 709 Trvanlivost ložiska (41) Vztah (41) dle [16], str. 626 Kde: p A [-] exponent rovnice trvanlivosti, pro ložiska s čárovým stykem p = 10 / 3 BRNO 2013 36

PEVNOSTNÍ VÝPOČET 7 PEVNOSTNÍ VÝPOČET 7.1 MINIMÁLNÍ PRŮMĚR ČEPU Návrh minimálního průměru čepu, který je vyroben z materiálu 11 423 a je usazen do spojky. (42) Kde: D [MPa] dovolené napětí v krutu, dle [15] str. 53 je pro materiál 11 423 D = 50 MPa Toto je pouze minimální průměr čepu. Jelikož bude na tomto průměru umístněna drážka pro těsné pero, která se bude chovat jako lokální koncentrátor napětí a čep bude v některých místech namáhána kombinovaným napětím, je volen průměr čepu d H = 25 mm. 7.2 PERO Kontrola těsného pera na otlačení v náboji a na střih. Dle [15] je voleno PERO 8e7 x 7 x 25 ČSN 02 2562, které má tyto základní parametry: Obr. 7.1 Pero b = 8 mm t 1 = 2,9 mm t = 4,1 mm l p = 25 mm Materiál 11 600 7.2.1 KONTROLA PERA NA STŘIH Obvodová síla působící na povrchu hřídele (43) BRNO 2013 37

PEVNOSTNÍ VÝPOČET Mez kluzu ve smyku se stanoví podle teorie měrné energie napjatosti změny tvaru (44) Vztah (44) dle [16], str. 279 Kde: R e [MPa] mez kluz, dle [15] str. 52 pro materiál 11 600 je Re = 325 MPa Střižné napětí (45) Vztah (45) dle [16], str. 1080 kontrola pera na střih vyhovuje (46) Kde: S stř [mm 2 ] plocha střihu (47) 7.2.2 KONTROLA PERA NA OTLAČENÍ Základní hodnota tlaku pro ocel p o = 150 MPa [16] Dovolený tlak na bocích drážky v náboji záleží na způsobu zatěžování. Pro jednosměrné otáčení a malé rázy je dovolený tlak (48) Vztah (48) dle [16], str. 1081 BRNO 2013 38

PEVNOSTNÍ VÝPOČET Tlak na bocích drážky v náboji (49) Vztah (49) dle [16], str. 1080 kontrola pera na otlačení vyhovuje. (50) BRNO 2013 39

ZÁVĚR ZÁVĚR Cílem této bakalářské práce bylo provést výpočet základních konstrukčních uzlů a návrh konstrukčního řešení spirálního šnekového dopravníku s volbou vhodného přepravovaného materiálu. Tento typ dopravníku byl navrhnut pro přepravu sladu v pivovaru. Nejprve byly navrženy základní parametry šnekovnice a zvolen dodavatel. Šnekovnice bude ve žlabu uložena excentricky vůči ose žlabu, aby nedocházelo k zadrhávání materiálu. Následně je navrhnuta pohonná jednotka, která se skládá z asynchronního elektromotoru, dvoustupňové čelní převodovky a pružné zubové spojky. Všechny tyto komponenty jsou pro finanční úsporu a servisní služby zakoupeny u tradičních dodavatelů. Po tomto návrhu musela být provedena kontrola, zda skutečné dopravované množství odpovídá zadanému. Uložení šnekovnice je řešeno pomocí valivých ložisek umístěných na koncích dopravníku. Na straně motoru je umístněno soudečkové ložisko, které je uloženo v zakoupeném ložiskovém tělese. Na koncové straně je použito jednořadé kuličkové ložisko. Obě tyto ložiska jsou naplněna plastickým mazivem, které vydrží po celou dobu trvanlivosti ložiska, což zaručuje takřka bezúdržbový provoz dopravníku. V průběhu celé bakalářské práce byl kladen velký důraz na jednoduchost, cenu, unifikaci a spolehlivost. Přiložená výkresová dokumentace vychází z technické zprávy a je složena ze sestavného výkresu dopravníku, seznamu položek, podsestavy šnekovnice a výrobních výkresů čepů. BRNO 2013 40

POUŽITÉ INFORMAČNÍ ZDROJE POUŽITÉ INFORMAČNÍ ZDROJE [1] GAJDŮŠEK, Jaroslav; ŠKOPÁN, Miroslav. Teorie dopravních a manipulačních zařízení. 1. vyd. Brno: rektorát Vysokého učení technického v Brně, 1988. 277 s. [2] POLÁK, Jaromír. Dopravní a manipulační zařízení II. 1. vyd. Ostrava: VŠB - Technická univerzita, 2003, 104 s. ISBN 80-248-0493-X. [3] HAS CZ a.s. [online]. c2013 [cit. 2013-04-20]. Dostupné z: <http://www.has.cz/produkty/preprava-sypkych-materialu/ssc-spiralni-snekove-dopravniky/ > [4] ČSN 26 0070. Klasifikace a označování sypkých hmot dopravovaných na dopravních zařízeních. Praha: Český normalizační institut, 2001. [5] DRAŽAN, František a Karel JEŘÁBEK. Manipulace s materiálem: vysokoškolská učebnice. 1. vyd. Praha: SNTL, 1979, 454 s. [6] RATAJ, a.s. [online]. c2012 [cit. 2013-04-20]. Dostupné z: < http://eshoprataj.webnode.cz/robustni-spiraly-nerezove/ > [7] REDHILL [online]. c2005 [cit. 2013-04-22]. Dostupné z: < http://www.redhillballs.cz/cz/netvrzena_ocel.html > [8] SIEMENS, s. r. o.: Katalog: Elektromotory nízkonapěťové [online]. [cit. 2013-05-20]. Dostupné z: <http://www.elektromotory-siemens.cz/upload/file/katalog-elektromotoru-1la7-0605-k02-cz.pdf > [9] TOS ZNOJMO [online]. c2013 [cit. 2013-04-20]. Dostupné z: < http://www.tosznojmo.cz/produkce/mtc/cz/index_h.htm > [10] OPIS ENGINEERING, k. s.: Katalog: Pružné zubové spojky [online]. [cit. 2013-05-20]. Dostupné z: < http://www.opis.cz/omc/pdf/gas.pdf > [11] KOVOS: Volba dopravního řetězu [online]. [cit. 2013-04-21]. Dostupné z: <http://www.kovos-retezy.cz/data/volba_dopravniho.pdf > [12] FERONA a.s [online]. c2013 [cit. 2013-05-20]. Dostupné z: <http://www.ferona.cz/cze/katalog/search.php> [13] AB TECHNOLOGY, s.r.o.: Katalog: Otěruvzdorné výsteleky [online]. [cit. 2013-05-20]. Dostupné z: < http://files.abtech.webnode.cz/200000335- d3975d491b/kryptane%20ot%c4%9bruvzdorn%c3%bd%20materi%c3%a1l.pdf > [14] SKF GROUP: Katalog: Kuličková ložiska [online]. [cit. 2013-04-21]. Dostupné z: <http://www.skf.com/files/515051.pdf > [15] LEINVEBER, Jan a Pavel VÁVRA. Strojnické tabulky: pomocná učebnice pro školy technického zaměření. 2., dopl. vyd. Úvaly: Albra, 2005, 907 s. ISBN 80-7361-011-6. BRNO 2013 41

POUŽITÉ INFORMAČNÍ ZDROJE [16] SHIGLEY, Joseph Edward, Charles R MISCHKE, Richard G BUDYNAS a Miloš VLK. Konstruování strojních součástí. 1. vyd. V Brně: VUTIUM, 2010, xxv, 1159 s. ISBN 978-80- 214-2629-0. [17] SKF GROUP: Katalog: Ložiskové domky [online]. [cit. 2013-04-21]. Dostupné z: <http://www.skf.com/files/518262.pdf> [18] SKF GROUP: Katalog: Soudečková ložiska [online]. [cit. 2013-04-21]. Dostupné z: <http://www.skf.com/files/515077.pdf> BRNO 2013 42

SEZNAM POUŽITÝCH ZKRATEK A SYMBOLŮ SEZNAM POUŽITÝCH ZKRATEK A SYMBOLŮ b [m] šířka pera C B, C A [N] základní dynamická únosnost ložiska c H [-] součinitel snižující dopravované množství C ob, C oa [N] základní statická únosnost D [m] jmenovitý (vnější) průměr šnekovnice d [m] vnitřní průměr šnekovnice d H [m] skutečný průměr čepu d Hmin [m] minimální průměr čepu D t [m] průměr mezikruží šnekovnice D TR [m] vnější průměr trubky žlabu D v [m] výpočtový průměr šnekovnice e [-] součinitel pro určení X, Y F [N] obvodová sílá F A [N] axiální síla působící na šnekovnici F Ax, F Ay [N] reakce v místě ložiska pohonu F By [N] reakce v místě koncového ložiska f m [-] součinitel tření mezí dopravovaným materiálem a šnekovnicí g [m.s -2 ] gravitační zrychlení i [-] převodový poměr převodovky L 10B, L 10A [hod] trvanlivost ložiska l 1z [m] rozvinutá délka jednoho závitu šnekovnice l lož [m] vzdálenost mezi ložisky l p [m] délka pera l rozš [m] celková délka rozvinuté šnekovnice l š [m] délka šnekovnice l TR [m] délka segmentu trubky žlabu l v [m] vodorovná dopravní vzdálenost m č [kg] hmotnost čepů m d [kg] celková hmotnost dopravníku m e [kg] hmotnost elektromotoru M k [N.m] krouticí moment na výstupním hřídeli převodovky m m [kg] hmotnost materiálu ve žlabu BRNO 2013 43

SEZNAM POUŽITÝCH ZKRATEK A SYMBOLŮ M o (x) [N.m] ohybový moment uvolněného prvku M omax [N.m] maximální ohybový moment šnekovnice m p [kg] hmotnost převodovky m PJ [kg] hmotnost pohonné jednotky m PV [kg] hmotnost polyuretanové výstelky m s [kg] hmotnost spojky m š [kg] hmotnost šnekovnice m šč [kg] hmotnost čepů a šnekovnice m TR [kg] hmotnost trubky žlabu m TR1m [kg/m] hmotnost trubky žlabu na jeden metr n [s -1 ] otáčky šneku n 2 [s -1 ] výstupní otáčky převodovky n e [s -1 ] otáčky elektromotoru P [W] výkon elektromotoru P B, P A [N] dynamické ekvivalentní zatížení p B, p A [-] exponent rovnice trvanlivosti p D [MPa] dovolená hodnota tlaku P k [W] příkon dopravníku p o [MPa] základní hodnota tlaku p s [MPa] tlak na bocích drážky v náboji P v [W] výpočtový příkon elektromotoru q [N.m -1 ] rovnoměrné liniové zatížení vyvolané vlastní tíhou Q m [kg.s -1 ] počet hmotnostních jednotek dopravených za jednotku času Q v [m 3.s -1 ] počet objemových jednotek dopravených za jednotku času Q vs [m 3.s -1 ] skutečné dopravované množství materiálu R s [m] účinný poloměr R se [MPa] mez kluzu s [m] stoupání šnekovnice S [m 2 ] plocha průřezu materiálu ve žlabu s s [-] stupeň statické neurčitosti S otl [mm 2 ] plocha otlačení pera S stř [mm 2 ] plocha střihu pera t [m] výška pera v hřídeli BRNO 2013 44

SEZNAM POUŽITÝCH ZKRATEK A SYMBOLŮ t 1 [m] výška pera v náboji t š [m] tloušťka plechu šnekovnice t TR [m] tloušťka stěny trubky žlabu w [-] celkový součinitel odporu X B [-] součinitel dynamického radiálního zatížení x max [m] místo maximálního průhybu šnekovnice Y B, Y 2 [-] součinitel dynamického axiálního zatížení z [-] počet závitů šnekovnice [ ] úhel stoupání šnekovnice procentuální rozdíl mezi skutečným a požadovaným dopravním [%] množstvím materiálu c [-] celková účinnost pohonu [-] množina neznámých nezávislých parametrů [-] počet použitelných podmínek statické rovnováhy š [kg.m -3 ] hustota materiálu šnekovnice v [kg.m -3 ] objemová hmotnost materiálu DK [MPa] dovolené napětí v krutu s [MPa] střižné napětí [ ] třecí úhel mezi materiálem a šnekovnicí [-] součinitel plnění BRNO 2013 45

SEZNAM PŘÍLOH SEZNAM PŘÍLOH VÝKRESOVÁ DOKUMENTACE: Výkres sestavy SPIRÁLNÍ DOPRAVNÍK BP-SSD-00/00 Seznam položek SPIRÁLNÍ DOPRAVNÍK BP-SSD-00/00 Výkres svařence ŠNEKOVNICE BP-SSD-01/00 Výkres součásti ČEP-VSTUPNÍ BP-SSD-02/00 Výkres součásti ČEP-KONCOVÝ BP-SSD-03/00 CD-ROM BRNO 2013 46