Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport."

Transkript

1 Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport. R. Mendřický, M. Lachman Elektrické pohony a servomechanismy

2 Obsah prezentace Tuhost posuvového mechanismu Model mechanické části posuvu Tuhost soustavy motor šroub - suport Styková tuhost kuličkového šroubu Tuhost axiálního uložení Poddajnost šroubu v tahu tlaku Poddajnost šroubu v krutu Výsledná tuhost soustavy Tlumení soustavy Vlastní frekvence soustavy

3 Tuhost mechanické části posuvu Tuhost je veličina charakterizující závislost deformace daného členu na zatížení. V pohonech se jedná většinou buď o torzní tuhost dm k d nebo o tuhost v tahu (tlaku) k df dx Inverzní veličinou k tuhosti je poddajnost d k Nm rad N m m N

4 Tuhost mechanické části posuvu Tuhost reálných mechanismů zpravidla není konstantní, ale mění se se zatížením viz obrázek Při malém zatížení je tuhost např. axiálního ložiska velmi malá, protože všechny valivé elementy nejsou stejně zatíženy a uplatňuje se menší tzv. styková tuhost. Při dosažení síly F0 již všechny části ložiska přenášejí zátěž a strojní část opouští oblast proměnné tuhosti a přechází do oblasti konstantní tuhosti

5 Tuhost mechanické části posuvu Proměnná tuhost má značný vliv na parametry pohonu: pásmo deformací ± x0 se projevuje jako vůle (viz dále) a se změnou tuhosti se také mění vlastní frekvence mechaniky pohonu f

6 Tuhost mechanické části posuvu Proto se součásti pohonů často předepínají silou F0 a tak se zcela, nebo alespoň zčásti odstraní pásmo proměnné tuhosti při malých zatíženích. U pohonů posuvů se běžně předepíná spojení šroub - matice a axiální uložení šroubu. U axiálně oboustranně uložených šroubů kromě toho také bývá předepnut šroub na tah

7 Ztráta pohybu vlivem konečné tuhosti a pasivních odporů Deformace d je rozdíl mezi teoretickou polohou suportu danou převodem a natočením šroubu ϕ a skutečnou polohou suportu x. Deformace závisí na tuhosti soustavy a tření. Velikost síly F působící na suport je dána velikostí pružných deformací v soustavě šroub matice, tedy F2(d) pro nepředepnuté spojení, resp. funkcí F1(d) pro předepnuté spojení. hs d x 2 FT [N] velikost třecích sil ve vedení suportu d 1,d 2 [mm]... deformace nutná k vyvolání síly F = FT h s [mm/ot]... stoupání posuvového šroubu

8 Ztráta pohybu vlivem konečné tuhosti a pasivních odporů Suport se pohne až tehdy, když síla F bude větší než třecí síly FT. Velikost deformací d1 resp. d2 nutných k vyvolání pohybu suportu je patrná z diagramu. Z hlediska regulátorů pohonu je uvedené chování podobné stavu, kdy je v pohonu vůle o velikosti 2.xt = 2.d1 resp. 2. xt = 2.d2 FT [N] velikost třecích sil ve vedení suportu d 1,d 2 [mm]... deformace nutná k vyvolání síly F = FT h s [mm/ot]... stoupání posuvového šroubu

9 Ztráta pohybu vlivem konečné tuhosti a pasivních odporů Při nepřímém odměřování se ztráta pohybu projevuje jako vůle v pohonu! Při přímém odměřování se příliš velká ztráta pohybu nebo vůle může projevit nelineárními ("pomalými") kmity servopohonu. FT [N] velikost třecích sil ve vedení suportu d 1,d 2 [mm]... deformace nutná k vyvolání síly F = FT h s [mm/ot]... stoupání posuvového šroubu

10 Model mechanické části posuvu Principiální uspořádání pohonu posuvu

11 Model mechanické části posuvu Servopohon nejčastěji uvažujeme jako dvouhmotový systém. Jedna hmota je tvořena rotačními částmi (motor a šroub) a druhá částmi posuvnými (suport s obrobkem) uloženými na pružině, jejíž poddajnost je dána především součtem stykové poddajnosti mezi šroubem a maticí, poddajností axiálního uložení šroubu a poddajností šroubu v tahu tlaku. Tato náhrada není sice zcela přesná, ale protože nejpoddajnějším místem bývá právě styk šroub matice, nejvíce se tedy reálnému modelu přiblížíme umístěním pružiny právě mezi šroub a suport. Model tříhmotový (motor šroub suport) je dobré použít především u velkých strojů s dlouhými závity a těžkými suporty a také u strojů, kde je mezi motor a šroub vložen poddajný převod

12 Model mechanické části posuvu (dvouhmotový)

13 Model mechanické části posuvu Hmota suportu je uložena na pružině o tuhosti k Lm s vnitřním tlumením b Lm, což je tlumení suportu vzhledem k rotačnímu pohybu šroubu. Dále se zde vyskytuje součinitel tlumení posuvných hmot vůči loži b L, který je ovšem při použití valivého vedení výrazně menší než součinitel b Lm, a můžeme ho zanedbat. Veškeré vůle v mechanice suportu přepočtené na jeho posuv vystihuje vůle o velikosti v 0. Dalším nelineárním prvkem je třecí síla F T. Tato třecí síla vystihuje pasivní odpory mechanické části stroje, které jsou dány nejen třecími silami ve vedení suportu, ale také třecími momenty ložisek a kuličkového šroubu (zvýšení tuhosti - předepnutí)

14 Model mechanické části posuvu Na hmotu m L nepůsobí ovšem pouze síly od pružiny k Lm, tlumení b Lm a síly pasivních odporů, ale také síly zátěžné (externí) a síly setrvačné. Předchozí člen o hmotnosti m m, reprezentující hmotu motoru, je zpětně ovlivňován silami od pružiny a tlumení. Pokud tuto zpětnou sílu vynásobíme převodem šroubu k s, získáme zátěžný moment M z, kterým je motor od suportu zatěžován. Provedeme li tedy uvolnění jednotlivých členů, můžeme napsat pro hmotu m L rovnici rovnováhy:

15 Model mechanické části posuvu 2 d xl ml FT Fext klm ( xm xl ) 2 dt b Lm dx dt m dx dt L Na tuto rovnici provedeme Laplaceovu transformaci a vyjádříme si x L tak, abychom mohli podle upravené rovnice vytvořit blokové schéma mechanické části. 2 Též vyjádříme sílu, mls xl FT Fext k Lm ( xm xl ) blms( xm xl ) která zpětně působí 2 mls xl FT Fext ( xm xl )( k Lm sblm ) na hmotu m m : x L ( x m x L )( k Lm sb m L s Lm 2 ) F T F ext F L ( xm xl )( klm sblm)

16 Model mechanické části posuvu Blokové schéma mechanické části posuvu

17 Tuhost soustavy motor šroub - suport Převod kuličkového šroubu vypočítáme z jeho stoupání: k s h s 2 do výpočtu tuhosti soustavy šroub matice uložení zahrnujeme zpravidla tyto deformace: a) deformace ve styku kuliček s oběžnými drahami šroubu a matice b) deformace axiálních nebo kosoúhlých ložisek c) deformace šroubu v tahu tlaku d) deformace v krutu jádra šroubu

18 Tuhost soustavy motor šroub - suport Styková tuhost kuličkového šroubu: Samotná styková tuhost kuličkových šroubů není zcela lineární a nezávisí pouze na počtu nosných závitů nebo průměru kuliček, ale i na velikosti zatížení a u předepnutých matic také výrazně na velikosti předepnutí. Lze použít hrubý empirický vztah: k st = z. 5. D [mm] [N. m -1 ] z počet nosných závitů D průměr šroubu v mm

19 Tuhost soustavy motor šroub - suport Tuhost axiálního uložení: Výpočet tuhosti se provádí podobně jako u kuličkových šroubů. Velikost tuhosti lze dohledat v katalogu výrobců ložisek. Tuhost je nezávislá na zdvihu (poloze suportu). V případě oboustranného uložení kuličkového šroubu jde o paralelní řazení tuhostí a výsledná tuhost obou ložisek bude součtem tuhostí dílčích

20 Tuhost soustavy motor šroub - suport Poddajnost šroubu v tahu tlaku: Na rozdíl od stykové poddajnosti je poddajnost v tahu tlaku nezávislá na předpětí, neboť závislost mezi silou a deformací je lineární. Velikost deformace závislá na místě polohy suportu x. Největší poddajnost je pro případ oboustranného axiálního uložení uprostřed (pro x = l/2)

21 Tuhost soustavy motor šroub - suport Poddajnost šroubu v tahu tlaku: Pro další výpočty nebudeme proměnlivost uvažovat a budeme zjednodušeně počítat s maximální poddajností: l c tah 4ES Tuhost je převrácená hodnota poddajnosti, tedy tuhost šroubu v tahu tlaku bude: k tah 1 c tah

22 Tuhost soustavy motor šroub - suport Poddajnost šroubu v krutu: Pro výpočet poddajnosti šroubu v krutu redukované do osy šroubu použijeme: c krut k 2 s G x J k Kde J k [m 4 ] je polární moment setrvačnosti a G = 0, [N.m -2 ] je modul pružnosti oceli ve smyku. J k 32 4 D

23 Tuhost soustavy motor šroub - suport Poddajnost šroubu v krutu: Poddajnost šroubu v krutu roste lineárně s polohou suportu x. Největší hodnoty tedy nabývá na opačném konci, než působí motor kroutícím momentem. Zde je ovšem minimální poddajnost šroubu v tahu, celková poddajnost zde tedy nebude největší (extrém - derivace = 0 blízko za polovinou zjednodušeně lze počítat pro x = l/2)

24 Tuhost soustavy motor šroub - suport Výsledná tuhost soustavy: Výsledná tuhost mechanické části pohonu redukovaná na posuv suportu je dána stykovou tuhostí mezi šroubem a maticí, tuhostí v axiálním uložení šroubu a tuhostí samotného šroubu v tahu a krutu. Všechny tyto tuhosti jsou řazeny sériově, budeme tedy sčítat jejich převrácené hodnoty (poddajnosti): 1 k Lm 1 k st 1 k lož 1 k tah 1 k krut

25 Tuhost soustavy motor šroub - suport Tlumení soustavy: Výpočet vnitřního tlumení b Lm provedeme podle vztahu: b Lm 2 k Lm m L N s m 1 ξ poměrný útlum

26 Tuhost soustavy motor šroub - suport Vlastní frekvence soustavy: Při návrhu pohonu, kde ovládaná část leží uvnitř polohové smyčky, je nutno kontrolovat vlastní frekvenci ovládané části. Z podmínky pro minimální vlastní frekvenci pak vychází minimální požadovaná tuhost soustavy. Mezi oběma veličinami platí vztah: f 1 2 k m Lm k Lm (k) m.. mechanická tuhost posuvového mechanismu hmotnost ovládané části S ohledem na docílení dobrých parametrů pohonu je třeba dodržet podmínku: f > 50 Hz

27 Literatura [1] Mendřický, R.: Vliv vůlí na vlastnosti pohonu posuvu číslicově řízeného obráběcího stroje. [Diplomová práce]. Liberec TU v Liberci. Fakulta strojní

Dimenzování pohonů. Parametry a vztahy používané při návrhu servopohonů.

Dimenzování pohonů. Parametry a vztahy používané při návrhu servopohonů. Dimenzování pohonů. Parametry a vztahy používané při návrhu servopohonů. M. Lachman, R. Mendřický - Elektrické pohony a servomechanismy 13.4.2015 Požadavky na pohon Dostatečný moment v celém rozsahu rychlostí

Více

Konstrukční zásady návrhu polohových servopohonů

Konstrukční zásady návrhu polohových servopohonů Konstrukční zásady návrhu polohových servopohonů Radomír Mendřický Elektrické pohony a servomechanismy 2.6.2015 Obsah prezentace Kinematika polohových servopohonů Zásady pro návrh polohových servopohonů

Více

Hlavní parametry mající zásadní vliv na přesnost řízení a kvalitu pohonu

Hlavní parametry mající zásadní vliv na přesnost řízení a kvalitu pohonu Hlavní parametry mající zásadní vliv na přesnost řízení a kvalitu pohonu Radomír Mendřický Elektrické pohony a servomechanismy 12.8.2015 Obsah prezentace Požadavky na pohony Hlavní parametry pro posuzování

Více

Odměřovací systémy. Odměřování přímé a nepřímé, přírůstkové a absolutní.

Odměřovací systémy. Odměřování přímé a nepřímé, přírůstkové a absolutní. Odměřovací systémy. Odměřování přímé a nepřímé, přírůstkové a absolutní. Radomír Mendřický Elektrické pohony a servomechanismy 7. 3. 2014 Obsah prezentace Úvod Odměřovací systémy Přímé a nepřímé odměřování

Více

Regulační pohony. Radomír MENDŘICKÝ. Regulační pohony

Regulační pohony. Radomír MENDŘICKÝ. Regulační pohony Radomír MENDŘICKÝ 1 Pohony posuvů obráběcích strojů (rozdělení elektrických pohonů) Elektrické pohony Lineární el. pohon Rotační el. pohon Asynchronní lineární Synchronní lineární Stejnosměrný Asynchronní

Více

Zásady regulace - proudová, rychlostní, polohová smyčka

Zásady regulace - proudová, rychlostní, polohová smyčka Zásady regulace - proudová, rychlostní, polohová smyčka 23.4.2014 Schématické znázornění Posuvová osa s rotačním motorem 3 regulační smyčky Proudová smyčka Rychlostní smyčka Polohová smyčka Blokové schéma

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ HŘÍDELE A ČEPY

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ HŘÍDELE A ČEPY Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 4.1.Hřídele a čepy HŘÍDELE A ČEPY Hřídele jsou základní strojní součástí válcovitého tvaru, která slouží k

Více

Dynamické chyby interpolace. Chyby při lineární a kruhové interpolaci.

Dynamické chyby interpolace. Chyby při lineární a kruhové interpolaci. Dynamické chyby interpolace. Chyby při lineární a kruhové interpolaci. 10.12.2014 Obsah prezentace Chyby interpolace Chyby při lineární interpolaci Vlivem nestejných polohových zesílení interpolujících

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině

Více

Základní parametry a vlastnosti profilu vačky

Základní parametry a vlastnosti profilu vačky A zdvih ventilu B časování při 1mm zdvihu C časování při vymezení ventilové vůle D vůle ventilu Plnost profilu vačky má zásadní vliv na výkonové parametry motoru. V případě symetrického profilu se hodnota

Více

Využití sendvičové struktury pro stojanové těleso obráběcího stroje

Využití sendvičové struktury pro stojanové těleso obráběcího stroje Využití sendvičové struktury pro stojanové těleso obráběcího stroje Ing. Pavel Vrba Vedoucí práce: Prof. Ing. Jaromír Houša, DrSc. Abstrakt Na parametry přesnosti a produktivity stroje na výrazný vliv

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

Dynamika vázaných soustav těles

Dynamika vázaných soustav těles Dynamika vázaných soustav těles Většina strojů a strojních zařízení, s nimiž se setkáváme v praxi, lze považovat za soustavy těles. Složitost dané soustavy závisí na druhu řešeného případu. Základem pro

Více

DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH

DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH VLASTNOSTÍ MECHANISMU TETRASPHERE Vypracoval: Jaroslav Štorkán Vedoucí práce: prof. Ing. Michael Valášek, DrSc. CÍLE PRÁCE Sestavit programy pro kinematické, dynamické

Více

Rotující soustavy, měření kritických otáček, typické projevy dynamiky rotorů.

Rotující soustavy, měření kritických otáček, typické projevy dynamiky rotorů. Rotující soustavy, měření kritických otáček, typické projevy dynamiky rotorů www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Rotující soustavy 2. Základní model rotoru Lavalův rotor 3. Nevyváženost rotoru

Více

úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů,

úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Mechanismy - klasifikace, strukturální analýza, vazby Obsah přednášky : úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Mechanismy - úvod Mechanismus je soustava těles, spojených

Více

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011 OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:

Více

úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů,

úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Pohyb mechanismu Obsah přednášky : úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Doba studia : asi,5 hodiny Cíl přednášky : uvést studenty do problematiky mechanismů, seznámit

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Spoje a spojovací součásti Pevnostní výpočet šroubů

Více

Strojní konstanty řídících systémů

Strojní konstanty řídících systémů Strojní konstanty řídících systémů Radomír Mendřický, Martin Lachman Elektrické pohony a servomechanismy Obsah prezentace zpracování informace k řízení pohonů základní regulační schémata nejpoužívanějších

Více

Stanovení kritických otáček vačkového hřídele Frotoru

Stanovení kritických otáček vačkového hřídele Frotoru Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra mechaniky Stanovení ických otáček vačkového hřídele Frotoru Řešitel: oc. r. Ing. Jan upal Plzeň, březen 7 Úvod: Cílem předložené zprávy je

Více

Téma: Dynamiky - Základní vztahy kmitání

Téma: Dynamiky - Základní vztahy kmitání Počítačová podpora statických výpočtů Téma: Dynamiky - Základní vztahy kmitání 1) Vlastnosti materiálů při dynamickém namáháni ) Základní vztahy teorie kmitání s jedním stupněm volnosti Katedra konstrukcí

Více

Výpočtová dokumentace pro montážní přípravek oběžného kola Peltonovy turbíny

Výpočtová dokumentace pro montážní přípravek oběžného kola Peltonovy turbíny Výpočtová dokumentace pro montážní přípravek oběžného kola Peltonovy turbíny Parametry Jako podklady pro výpočtovou dokumentaci byly zadavatelem dodány parametry: -hmotnost oběžného kola turbíny 2450 kg

Více

TŘENÍ A PASIVNÍ ODPORY

TŘENÍ A PASIVNÍ ODPORY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 3. BŘEZNA 2013 Název zpracovaného celku: TŘENÍ A PASIVNÍ ODPORY A) TŘENÍ SMYKOVÉ PO NAKLONĚNÉ ROVINĚ Pohyb po nakloněné rovině bez

Více

Dynamika soustav hmotných bodů

Dynamika soustav hmotných bodů Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy

Více

KLÍČOVÁ SLOVA Posuvový mechanismus, mechanické předepnutí, master-slave, tuhostní analýza

KLÍČOVÁ SLOVA Posuvový mechanismus, mechanické předepnutí, master-slave, tuhostní analýza SVOČ-FST 2008 APLIKACE PRINCIPU MASTER-SLAVE -PODÉLNÝ POSUV SOUSTRUHŮ ŘADY SR1 Jiří Musil, Západočeská univerzita v Plzni Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT Práce se zabývá konstrukcí

Více

MECHANICKÉ PŘEVODOVKY S KONSTANTNÍM PŘEVODOVÝM POMĚREM

MECHANICKÉ PŘEVODOVKY S KONSTANTNÍM PŘEVODOVÝM POMĚREM MECHANICKÉ PŘEVODOVKY S KONSTANTNÍM PŘEVODOVÝM POMĚREM Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

Lineární jednotky MTV s pohonem kuličkovým šroubem

Lineární jednotky MTV s pohonem kuličkovým šroubem Lineární jednotky MTV s pohonem kuličkovým šroubem Charakteristika MTV Lineární jednotky (moduly) MTV s pohonem kuličkovým šroubem a integrovaným kolejnicovým vedením umožňují díky své kompaktní konstrukci

Více

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky

Více

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS MODIFIKOVANÝ KLIKOVÝ MECHANISMUS Michal HAJŽMAN Tento materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vyšetřování pohybu vybraných mechanismů v systému ADAMS

Více

Příklad 5.3. v 1. u 1 u 2. v 2

Příklad 5.3. v 1. u 1 u 2. v 2 Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt

JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt SIMULAČNÍ MODEL KLIKOVÉ HŘÍDELE KOGENERAČNÍ JEDNOTKY E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze Abstrakt Crankshaft is a part of commonly produced heat engines. It is used for converting

Více

( r ) 2. Měření mechanické hysterezní smyčky a modulu pružnosti ve smyku

( r ) 2. Měření mechanické hysterezní smyčky a modulu pružnosti ve smyku ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku 1 ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku Úkol č.1: Získejte mechanickou hysterezní křivku pro dráty různé tloušťky

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Různé druhy spojů a spojovací součásti (rozebíratelné spoje)

Různé druhy spojů a spojovací součásti (rozebíratelné spoje) Různé druhy spojů a spojovací součásti (rozebíratelné spoje) Kolíky, klíny, pera, pojistné a stavěcí kroužky, drážkování, svěrné spoje, nalisování aj. Nýty, nýtování, příhradové ocelové konstrukce. Ovládací

Více

6 Algebra blokových schémat

6 Algebra blokových schémat 6 Algebra blokových schémat Operátorovým přenosem jsme doposud popisovali chování jednotlivých dynamických členů. Nic nám však nebrání, abychom přenosem popsali dynamické vlastnosti složitějších obvodů,

Více

OBSAH. MODÁLNÍ VLASTNOSTI KLIKOVÉHO ÚSTROJÍ FSI VUT BRNO ČTYŘVÁLCOVÉHO TRAKTOROVÉHO MOTORU Ústav automobilního 1 VSTUPNÍ HODNOTY PRO VÝPOČET...

OBSAH. MODÁLNÍ VLASTNOSTI KLIKOVÉHO ÚSTROJÍ FSI VUT BRNO ČTYŘVÁLCOVÉHO TRAKTOROVÉHO MOTORU Ústav automobilního 1 VSTUPNÍ HODNOTY PRO VÝPOČET... OBSAH 1 VSTUPNÍ HODNOTY PRO VÝPOČET... 3 2 REDUKCE ROTAČNÍCH HMOT... 5 2.1 MOMENT SETRVAČNOSTI ROTAČNÍ HMOTY OJNICE... 5 2.2 MOMENT SETRVAČNOSTI JEDNOTLIVÝCH ZALOMENÍ... 5 3 REDUKCE POSUVNÝCH HMOT... 5

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Spoje a spojovací součásti Pohybové šrouby Ing. Magdalena

Více

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9. 9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce

Více

Předpjatý beton Přednáška 5

Předpjatý beton Přednáška 5 Předpjatý beton Přednáška 5 Obsah Změny předpětí Ztráta předpětí třením Ztráta předpětí pokluzem v kotvě 1 Maximální napětí při předpínání σ p,max = min k 1 f pk, k 2 f p0,1k kde k 1 =0,8 a k 2 =0,9 odpovídající

Více

Základní vztahy v elektrických

Základní vztahy v elektrických Základní vztahy v elektrických obvodech Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Klasifikace elektrických obvodů analogové číslicové lineární

Více

Elektromechanický oscilátor

Elektromechanický oscilátor - 1 - Elektromechanický oscilátor Ing. Ladislav Kopecký, 2002 V tomto článku si ukážeme jeden ze způsobů, jak využít silové účinky cívky s feromagnetickým jádrem v rezonanci. I člověk, který neoplývá technickou

Více

Odpružená sedačka. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Odpružená sedačka. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Petr Školník, Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je spolufinancován

Více

Obchodní akademie, Hotelová škola a Střední odborná škola, Turnov, Zborovská 519, příspěvková organizace,

Obchodní akademie, Hotelová škola a Střední odborná škola, Turnov, Zborovská 519, příspěvková organizace, Obchodní akademie, Hotelová škola a Střední odborná škola, Turnov, Zborovská 519, příspěvková organizace, Zborovská 519, 511 01 Turnov tel.: 481 319 111, www.ohsturnov.cz, e-mail: vedeni@ohsturnov.cz Maturitní

Více

Kapitola vstupních parametrů

Kapitola vstupních parametrů Předepjatý šroubový spoj i ii? 1.0 1.1 1.2 1.3 1.4 1.5 Výpočet bez chyb. Informace o projektu Zatížení spoje, základní parametry výpočtu. Jednotky výpočtu Režim zatížení, typ spoje Provedení šroubového

Více

Přednáška č.8 Hřídele, osy, pera, klíny

Přednáška č.8 Hřídele, osy, pera, klíny Fakulta strojní VŠB-TUO Přednáška č.8 Hřídele, osy, pera, klíny HŘÍDELE A OSY Hřídele jsou obvykle válcové strojní součásti umožňující a přenášející rotační pohyb. Rozdělujeme je podle: 1) typu namáhání

Více

Témata pro zkoušky profilové části maturitní zkoušky. Strojírenství, varianta vzdělávání konstruování s podporou počítače

Témata pro zkoušky profilové části maturitní zkoušky. Strojírenství, varianta vzdělávání konstruování s podporou počítače Témata pro zkoušky profilové části maturitní zkoušky Strojírenství, varianta vzdělávání konstruování s podporou počítače 1. povinná zkouška Stavba a provoz strojů 1. Pružiny 2. Převody ozubenými koly 3.

Více

Návrh a konstrukce pohonu posuvu vřeteníku stroje WHtec 100

Návrh a konstrukce pohonu posuvu vřeteníku stroje WHtec 100 Návrh a konstrukce pohonu posuvu vřeteníku stroje WHtec 100 Bc. Marek Rudolecký Vedoucí práce: Ing. Jan Koubek Abstrakt Práce se zabývá návrhem pohonu svislé osy Y, určené pro posuv vřeteníku horizontálního

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 11

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 11 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ strojní součásti Přednáška 11 Mechanické pružiny http://www.victorpest.com/ I am never content until I have constructed a

Více

( LEVEL 2 něco málo o matematickém popisu, tvorbě simulačního modelu a práci s ním. )

( LEVEL 2 něco málo o matematickém popisu, tvorbě simulačního modelu a práci s ním. ) ( LEVEL 2 něco málo o matematickém popisu, tvorbě simulačního modelu a práci s ním. ) GRATULUJI! Pokud jste se rozhodli pro čtení této části proto, abyste se dostali trochu více na kloub věci, jste zvídaví

Více

Pružné spoje 21.6.2011. Projekt realizovaný na SPŠ Nové Město nad Metují

Pružné spoje 21.6.2011. Projekt realizovaný na SPŠ Nové Město nad Metují Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03-TP ing. Jan Šritr ing. Jan Šritr 2 1 ohybem

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

BEZSTYKOVÁ KOLEJ NA MOSTECH

BEZSTYKOVÁ KOLEJ NA MOSTECH Ústav železničních konstrukcí a staveb 1 BEZSTYKOVÁ KOLEJ NA MOSTECH Otto Plášek Bezstyková kolej na mostech 2 Obsah Vysvětlení rozdílů mezi předpisem SŽDC S3 a ČSN EN 1991-2 Teoretický základ interakce

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

i Lineární moduly MRJ se dodávají pouze s dlouhými vozíky. Lineární modul MRJ s pohonem ozubeným řemenem 03 > Lineární jednotky serie MRJ

i Lineární moduly MRJ se dodávají pouze s dlouhými vozíky. Lineární modul MRJ s pohonem ozubeným řemenem 03 > Lineární jednotky serie MRJ Příslušenství Lineární jednotky Lineární modul MRJ s pohonem ozubeným řemenem 1. hnací příruba s řemenicí 2. krycí pásek (těsnící pásek) z korozivzdorné ocele 3. polyuretanový ozubený řemen AT s ocelovým

Více

Funkce pružiny se posuzuje podle průběhu a velikosti její deformace v závislosti na působícím zatížení.

Funkce pružiny se posuzuje podle průběhu a velikosti její deformace v závislosti na působícím zatížení. Teorie - základy. Pružiny jsou konstrukční součásti určené k zachycení a akumulaci mechanické energie, pracující na principu pružné deformace materiálu. Pružiny patří mezi nejvíce zatížené strojní součásti

Více

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM)

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM) NOSNÍK NA PRUŽNÉ PODLOŽÍ (WINKLEROVSKÉ) Uvažujeme spojitý nosník na pružných podporách. Pružná podpora - odpor je úměrný zatlačení. Pružné podpory velmi blízko sebe - jejich účinek lze nahradit spojitou

Více

Mechanika - síla. Zápisy do sešitu

Mechanika - síla. Zápisy do sešitu Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla

Více

MANUÁL PRO VÝPOČET ZBYTKOVÉHO

MANUÁL PRO VÝPOČET ZBYTKOVÉHO MANUÁL PRO VÝPOČET ZBYTKOVÉHO PRODLOUŽENÍ VE ŠROUBECH 0 25.05.2016 Doporučení pro výpočet potřebného prodloužení šroubu, aby bylo dosaženo požadovaného předpětí ve šroubech předepínaných hydraulickým napínákem

Více

Části a mechanismy strojů 1 KKS/CMS1

Části a mechanismy strojů 1 KKS/CMS1 Katedra konstruování strojů Fakulta strojní Části a mechanismy strojů 1 KKS/CMS1 Podklady k přednáškám část F1 Prof. Ing. Stanislav Hosnedl, CSc. a kol. Tato prezentace je spolufinancována Evropským sociálním

Více

Šroubovaný přípoj konzoly na sloup

Šroubovaný přípoj konzoly na sloup Šroubovaný přípoj konzoly na sloup Připojení konzoly IPE 180 na sloup HEA 220 je realizováno šroubovým spojem přes čelní desku. Sloup má v místě přípoje vyztuženou stojinu plechy tloušťky 10mm. Pro sloup

Více

SPOJE OCELOVÝCH KONSTRUKCÍ

SPOJE OCELOVÝCH KONSTRUKCÍ 2. cvičení SPOJE OCELOVÝCH KONSTRUKCÍ Na spojování prvků ocelových konstrukcí se obvykle používají spoje šroubové (bez předpětí), spoje třecí a spoje svarové. Šroubové spoje Základní pojmy. Návrh spojovacího

Více

Šroubovitá pružina válcová tlačná z drátů a tyčí kruhového průřezu [in] 1.3 Provozní teplota T 200,0 1.4 Provozní prostředí

Šroubovitá pružina válcová tlačná z drátů a tyčí kruhového průřezu [in] 1.3 Provozní teplota T 200,0 1.4 Provozní prostředí Šroubovitá pružina válcová tlačná z drátů a tyčí kruhového průřezu i ii Výpočet bez chyb. Informace o o projektu? 1.0 Kapitola vstupních parametrů Volba režimu zatížení, provozních a výrobních parametrů

Více

Téma 12, modely podloží

Téma 12, modely podloží Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení

Více

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,

Více

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185 Stručný obsah Předmluva xvii Část 1 Základy konstruování 2 1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185 Část 2 Porušování

Více

Maturitní témata ze stavby a provozu strojů školní rok 2015/2016 obor 23-41-M/01 Strojírenství

Maturitní témata ze stavby a provozu strojů školní rok 2015/2016 obor 23-41-M/01 Strojírenství Maturitní témata ze stavby a provozu strojů Spoje se silovým stykem - šroubové spoje Spoje se silovým stykem - svěrné, tlakové, klínové, pružné spoje Spoje s tvarovým stykem Spoje s materiálovým stykem

Více

Výpočet přetvoření a dimenzování pilotové skupiny

Výpočet přetvoření a dimenzování pilotové skupiny Inženýrský manuál č. 18 Aktualizace: 08/2018 Výpočet přetvoření a dimenzování pilotové skupiny Program: Soubor: Skupina pilot Demo_manual_18.gsp Cílem tohoto inženýrského manuálu je vysvětlit použití programu

Více

pneumatiky a kola zavěšení kol odpružení řízení

pneumatiky a kola zavěšení kol odpružení řízení Podvozky motorových vozidel Obsah přednášky : pneumatiky a kola zavěšení kol odpružení řízení Podvozky motorových vozidel Podvozky motorových vozidel - nápravy 1. Pneumatiky a kola. Zavěšení kol 3. Odpružení

Více

HSC obráb ní, tepelné jevy p Definice, popis obráb Nevýhody Otá ky v etena ezné rychlosti pro HSC Strojní vybavení obráb

HSC obráb ní, tepelné jevy p Definice, popis obráb Nevýhody Otá ky v etena ezné rychlosti pro HSC Strojní vybavení obráb HSC, tepelné jevy při Definice, popis Ing. Oskar Zemčík, Ph.D. Základní pojmy Teoretická část Tepelné jevy Vyhodnocení Používané pojmy a odkazy VUT Brno Z anglického překladu vysokorychlostní. Používá

Více

Univerzální CNC soustruhy řady SU

Univerzální CNC soustruhy řady SU Univerzální CNC soustruhy řady SU Jde o nejnovější produkt s dílny M-MOOS s.r.o. Tato série soustruhů řady heavy duty je kompletně montována v České republice. Jde o skutečně tuhé a těžké CNC soustruhy,

Více

Statika. fn,n+1 F = N n,n+1

Statika. fn,n+1 F = N n,n+1 Statika Zkoumá síly a momenty působící na robota v klidu. Uvažuje tíhu jednotlivých ramen a břemene. Uvažuje sílu a moment, kterou působí robot na okolí. Uvažuje konečné tuhosti ramen a kloubů. V našem

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2. 10 Základní části strojů Kapitola 19

Více

I. část - úvod. Iva Petríková

I. část - úvod. Iva Petríková Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,

Více

Rotační pohyb kinematika a dynamika

Rotační pohyb kinematika a dynamika Rotační pohyb kinematika a dynamika Výkon pro rotaci P = M k. ω úhlová rychlost ω = π. n / 30 [ s -1 ] frekvence otáčení n [ min -1 ] výkon P [ W ] pro stanovení krouticího momentu M k = 9550. P / n P

Více

Toroidní generátor. Ing. Ladislav Kopecký, červenec 2017

Toroidní generátor. Ing. Ladislav Kopecký, červenec 2017 1 Toroidní generátor Ing. Ladislav Kopecký, červenec 2017 Běžné generátory lze zpravidla použít i jako motory a naopak. To je důvod, proč u nich nelze dosáhnout účinnosti přesahující 100%. Příčinou je

Více

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární

Více

trubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek 1: Prut namáhaný kroutícím momentem.

trubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek 1: Prut namáhaný kroutícím momentem. Namáhání krutem Uvažujme přímý prut neměnného kruhového průřezu (Obr.2), popřípadě trubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek : Prut namáhaný kroutícím momentem.

Více

Zadání semestrální práce z předmětu Mechanika 2

Zadání semestrální práce z předmětu Mechanika 2 Zadání semestrální práce z předmětu Mechanika 2 Jméno: VITALI DZIAMIDAU Číslo zadání: 7 U zobrazeného mechanismu definujte rozměry, hmotnosti a silové účinky a postupně proveďte: 1. kinematickou analýzu

Více

Lineární jednotky MTJZ s pohonem ozubeným řemenem

Lineární jednotky MTJZ s pohonem ozubeným řemenem Lineární jednotky MTJZ s pohonem ozubeným řemenem Charakteristika MTJZ Lineární moduly řady MTJZ jsou v první řadě určeny pro svislou zástavbu a použití jako osy Z lineárních víceosých X-Y-Z systémů. Lineární

Více

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak. 00001 Definujte mechanické napětí a uved te jednotky. 00002 Definujte normálové napětí a uved te jednotky. 00003 Definujte tečné (tangenciální, smykové) napětí a uved te jednotky. 00004 Definujte absolutní

Více

Úvod do analytické mechaniky

Úvod do analytické mechaniky Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.

Více

Namáhání na tah, tlak

Namáhání na tah, tlak Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále

Více

Sedmé cvičení bude vysvětlovat tuto problematiku:

Sedmé cvičení bude vysvětlovat tuto problematiku: Sedmé cvičení bude vysvětlovat tuto problematiku: Velmi stručně o parciálních derivacích Castiglianova věta k čemu slouží Castiglianova věta jak ji použít Castiglianova věta staticky určité přímé nosníky

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou

Více

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů N pružin i?..7 Vhodnost pro dynamické excelentní 6 [ F].. Dodávané průměry drátu,5 -,25 [in].3 - při pracovní teplotě E 2 [ksi].5 - při pracovní teplotě G 75 [ksi].7 Hustota ρ 4 [lb/ft^3]. Mez pevnosti

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Úloha: 4. Frézování TÉMA 4.2 ZÁKLADNÍ DRUHY FRÉZEK A JEJICH OBSLUHA Obor: Mechanik seřizovač Ročník: I. Zpracoval(a): Jiří Žalmánek Střední odborná škola Josefa

Více

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti

Více

Projection, completation and realisation. MHH Horizontální odstředivá kondenzátní článková čerpadla

Projection, completation and realisation. MHH Horizontální odstředivá kondenzátní článková čerpadla Projection, completation and realisation Horizontální odstředivá kondenzátní článková čerpadla Horizontální kondenzátní čerpadla řady Čerpadla jsou určena k čerpání čistých kondenzátů a horké čisté vody

Více

Experimentální realizace Buquoyovy úlohy

Experimentální realizace Buquoyovy úlohy Experimentální realizace Buquoyovy úlohy ČENĚK KODEJŠKA, JAN ŘÍHA Přírodovědecká fakulta Univerzity Palackého, Olomouc Abstrakt Tato práce se zabývá experimentální realizací Buquoyovy úlohy. Jedná se o

Více

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami:

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: 6. Geometrie břitu, řezné podmínky Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: Základní rovina Z je rovina rovnoběžná nebo totožná s

Více

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky. POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

ZÁKLADNÍ INFORMACE. NC nebo konvenční horizontální soustruh série HL s délkou až 12000 mm, točným průměrem nad ložem až 3500 mm.

ZÁKLADNÍ INFORMACE. NC nebo konvenční horizontální soustruh série HL s délkou až 12000 mm, točným průměrem nad ložem až 3500 mm. TDZ Turn TDZ TURN S.R.O. HLC SERIE ZÁKLADNÍ INFORMACE Společnost TDZ Turn s.r.o. patří mezi přední dodavatele nových CNC vertikálních soustruhů v České a Slovenské republice, ale také v dalších evropských

Více

Šroubovitá pružina válcová tažná z drátů a tyčí kruhového průřezu [in]

Šroubovitá pružina válcová tažná z drátů a tyčí kruhového průřezu [in] Šroubovitá pružina válcová tažná z drátů a tyčí kruhového průřezu i ii Výpočet bez chyb. Informace o o projektu? 1.0 1.1 Kapitola vstupních parametrů Volba režimu zatížení, provozních a výrobních parametrů

Více

VY_32_INOVACE_C 08 01

VY_32_INOVACE_C 08 01 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více