Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2006, ročník LII, řada strojní článek č.

Podobné dokumenty
Introduction to MS Dynamics NAV

The Over-Head Cam (OHC) Valve Train Computer Model

Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Litosil - application

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů

USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING

Stojan pro vrtačku plošných spojů

DC circuits with a single source

AUTODETEKCE PORUCH A POSKYTOVÁNÍ VÝUKOVÉ PODPORY NÁVRHU REGULAČNÍHO OBVODU S PROGRAMEM MATLAB-SIMULIK

Radiova meteoricka detekc nı stanice RMDS01A

DETEKCE DISKREDIBILITY SENZORU REGULOVANÉ VELIČINY POMOCÍ MODELU PROGRAMEM MATLAB/SIMULIK

WORKSHEET 1: LINEAR EQUATION 1

Transportation Problem

GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA

CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA

Database systems. Normal forms

Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.

1 INTRODUCTION 2 TESTING HARDWARE

Výuka odborného předmětu z elektrotechniky na SPŠ Strojní a Elektrotechnické

UŽIVATELSKÁ PŘÍRUČKA

u plnorozsahových simulaèních modelù s detailním modelováním všech podstatných

2. Entity, Architecture, Process

Fytomineral. Inovace Innovations. Energy News 04/2008

Project Life-Cycle Data Management

By David Cameron VE7LTD

ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION

USER'S MANUAL FAN MOTOR DRIVER FMD-02

UPM3 Hybrid Návod na ovládání Čerpadlo UPM3 Hybrid 2-5 Instruction Manual UPM3 Hybrid Circulation Pump 6-9

VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O.

VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace

CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION

EXACT DS OFFICE. The best lens for office work

Melting the ash from biomass

KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE

PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I I

Dynamic Development of Vocabulary Richness of Text. Miroslav Kubát & Radek Čech University of Ostrava Czech Republic

Vánoční sety Christmas sets

Zelené potraviny v nových obalech Green foods in a new packaging

Obrábění robotem se zpětnovazební tuhostí

STÁVAJÍCÍ PALIVOVÝ MIX A PLNĚNÍ EMISNÍCH LIMITŮ V ČR

Využití hybridní metody vícekriteriálního rozhodování za nejistoty. Michal Koláček, Markéta Matulová

FIRE INVESTIGATION. Střední průmyslová škola Hranice. Mgr. Radka Vorlová. 19_Fire investigation CZ.1.07/1.5.00/

PRAVIDLA ZPRACOVÁNÍ STANDARDNÍCH ELEKTRONICKÝCH ZAHRANIČNÍCH PLATEBNÍCH PŘÍKAZŮ STANDARD ELECTRONIC FOREIGN PAYMENT ORDERS PROCESSING RULES

Abstrakty. obsah a struktura

Compression of a Dictionary

DATA SHEET. BC516 PNP Darlington transistor. technický list DISCRETE SEMICONDUCTORS Apr 23. Product specification Supersedes data of 1997 Apr 16

Uživatelská příručka. Xperia P TV Dock DK21

Theme 6. Money Grammar: word order; questions

Automatika na dávkování chemie automatic dosing

Social Media a firemní komunikace

Mikrokvadrotor: Návrh,

Energy vstupuje na trh veterinárních produktů Energy enters the market of veterinary products

Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation

Biosensors and Medical Devices Development at VSB Technical University of Ostrava

PAINTING SCHEMES CATALOGUE 2012

Invitation to ON-ARRIVAL TRAINING COURSE for EVS volunteers

Effect of temperature. transport properties J. FOŘT, Z. PAVLÍK, J. ŽUMÁR,, M. PAVLÍKOVA & R. ČERNÝ Č CTU PRAGUE, CZECH REPUBLIC

WYSIWYG EDITOR PRO XML FORM

AIC ČESKÁ REPUBLIKA CZECH REPUBLIC

SPECIFICATION FOR ALDER LED

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Innovated Solution: Questions and Answers after the Webinar

SEZNAM PŘÍLOH. Příloha 1 Dotazník Tartu, Estonsko (anglická verze) Příloha 2 Dotazník Praha, ČR (česká verze)... 91

Czech Technical University in Prague DOCTORAL THESIS

SGM. Smart Grid Management THE FUTURE FOR ENERGY-EFFICIENT SMART GRIDS

Drags imun. Innovations

TechoLED H A N D B O O K

Configuration vs. Conformation. Configuration: Covalent bonds must be broken. Two kinds of isomers to consider

Čtvrtý Pentagram The fourth Pentagram

Hi-Res Audio/DNC Headset MDR-NC750

Next line show use of paragraf symbol. It should be kept with the following number. Jak může státní zástupce věc odložit zmiňuje 159a.

Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.

Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.

Uživatelská příručka. USB Charger UCH20

Jak importovat profily do Cura (Windows a

ActiPack rozšířil výrobu i své prostory EMBAX Od ledna 2015 jsme vyrobili přes lahviček či kelímků. Děkujeme za Vaši důvěru!

Instalace Pokyny pro instalaci v operačním systému Windows XP / Vista / Win7 / Win8

Contact person: Stanislav Bujnovský,

Enabling Intelligent Buildings via Smart Sensor Network & Smart Lighting

TKGA3. Pera a klíny. Projekt "Podpora výuky v cizích jazycích na SPŠT"

Připojení internetového modulu econet300 Do regulátoru ecomax 810P3-L TOUCH.

Air Quality Improvement Plans 2019 update Analytical part. Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová

Oxide, oxide, co po tobě zbyde

PRODEJNÍ EAUKCE A JEJICH ROSTOUCÍ SEX-APPEAL SELLING EAUCTIONS AND THEIR GROWING APPEAL

VŠEOBECNÁ TÉMATA PRO SOU Mgr. Dita Hejlová

The Military Technical Institute

dat 2017 Dostupný z Licence Creative Commons Uveďte autora-zachovejte licenci 4.0 Mezinárodní

Moderní technologie dokončování velmi přesných děr vystržováním a její vliv na užitné vlastnosti výrobků

Tabulka 1 Stav členské základny SK Praga Vysočany k roku 2015 Tabulka 2 Výše členských příspěvků v SK Praga Vysočany Tabulka 3 Přehled finanční

Plánované a nadcházející inovace kapslových produktů / Planned and upcoming innovations of capsule products

CHAIN TRANSMISSIONS AND WHEELS

Název společnosti: VPK, s.r.o. Vypracováno kým: Ing. Michal Troščak Telefon: Datum:

Buderus System Logatherm Wps K

CONTRIBUTION TO METALLURGICAL TECHNOLOGY CONTROL PROBLEMS PŘÍSPĚVEK K PROBLEMATICE ŘÍZENÍ METALURGICKÝCH TECHNOLOGIÍ

Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Inovace a individualizace výuky

Převod prostorových dat katastru nemovitostí do formátu shapefile

INFLUENCE OF CONSTRUCTION OF TRANSMISSION ON ECONOMIC PARAMETERS OF TRACTOR SET TRANSPORT

Transactions of the VŠB Technical University of Ostrava, Mechanical Series. article No Vladislav KŘIVDA *

Transkript:

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2006, ročník LII, řada strojní článek č. 1538 David KLIMÁNEK *, Bohumil ŠULC ** IMPROVEMENT OF CONTROL LOOP FUNCTION BY CONTROL VARIABLE SENSOR DISCREDIBILITY DETECTION VYLEPŠENÍ FUNKCE REGULAČNÍHO OBVODU DETEKCÍ DISKREDIBILITY SENZORU REGULOVANÉ VELIČINY Abstract The gradual loss of the credibility of sensors measuring control variables in control loops (socalled control variable sensor discredibility) may cause serious difficulty detectable problems in control. If such a sensor produces biased data, which are not correct but not totally wrong, then there is a danger that the controlled variable exceeds limits of a tolerance range without displaying any difference from the set point. However, this is not the only negative consequence, sometimes, undesirable side effects may occur and they remain unrecognized. The problem of these indirect unrecognized impacts becomes important especially in combustion processes. In case of a pilot stokefired boiler, which has been used for experiments in the CTU labs, the sensor discredibility problem is related with function of the oxygen probe used for accurate control of the burning air. Discredibility of this sensor will affect hidden increase of penalized gaseous emissions, above all CO and NOx. The discredibility of the oxygen probe is very difficult to reveal because the main (temperature) control loop seems to be working without any problems. The usual way of discredibility detection (but sometimes expensive) is to use more measuring equipments (so-called hardware redundancy). The aim the research is to replace this expensive way of the hardware redundancy with the use of software tools. In this paper, a comparison of software evolutionary model-based methods (genetic algorithm and simulated annealing) will be shown. Abstrakt Postupná ztráta kredibility senzorů měřicích regulované veličiny v regulačních obvodech (tzv. diskredibilita senzorů regulačního obvodu) může způsobit při regulaci vážné, obtížně detekovatelné problémy. Pokud senzor poskytuje zkreslené údaje, které nejsou správné, ale také nejsou zcela špatné, vzniká nebezpečí, že skutečná hodnota regulované veličiny překročí limity tolerančního pásma, aniž je přístroji signalizovaná odchylka od žádané hodnoty. Toto není jediný negativní důsledek; v některých případech se mohou vyskytnout také nežádoucí vedlejší efekty, které zůstanou nerozpoznány. Problém vedlejších nerozpoznaných důsledků se stává závažný zejména u spalovacích procesů. V případě pilotního tepelného roštového kotle, který je k dispozici pro experimenty v laboratořích ČVUT v Praze, je problém diskredibility senzoru spojen s funkcí kyslíkové sondy použité pro přesnou regulaci spalovacího vzduchu. Diskredibilita tohoto senzoru ovlivní skryté zvýšení penalizovaných emisí zejména CO nebo NOx. Diskredibilita kyslíkové sondy je velmi obtížně odhalitelná, protože hlavní (tepelný) regulační obvod pracuje bez jakýchkoliv problémů. Obvyklý způsob detekce diskredibility (ale někdy nákladný) je použit více měřicích zařízení (tzv. * Ing., Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, Prague, tel. (+420) 22435 2896, e-mail David.Klimanek@fs.cvut.cz ** Doc., Ing., CSc., Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, Prague, tel. (+420) 22435 2531, e-mail Bohumil.Sulc@fs.cvut.cz 85

hardwarová redundance). Cílem výzkumu je nahradit tento drahý způsob hardwarové redundance s použitím softwarových nástrojů. V příspěvku je ukázáno porovnání softwarových modelových metod s pomocí evolučních algoritmů (genetického algoritmu a simulovaného žíhání). 1 INTRODUCTION When operating a control loop, unrecognized hidden inaccuracy of the control loop operation may be present. This control loop inaccuracy arises due to so-called discredibility of the controlled variable sensor. Notion of the sensor discredibility means, that the sensor is not faulty, but its properties have changed (or they have been changing gradually), and thus the sensor has started to provide biased data. As follows from the following, this notion has a special sense if linked with controlled variable sensors. The problem of sensor discredibility detection is usually not so important until side effects on the controlled process are negligible and they need not be taken into account. To avoid undesirable side effects resulting from the controlled variable sensor discredibility, either hardware or software way of the sensor discredibility detection can be used. The hardware discredibility detection is usually achieved by means of adding another redundant sensor. This may be a costly solution. The cheapest solution is offered by the software way, which is under the current investigation and which is the main point of this presentation. Generally, the aim of research is to extend function of a standard controller, so it would be able, besides its normal control function, to discover impreciseness in the control loop operation. Sensor discredibility detection is well demonstrable especially when we are interested in the combustion process control. In quest of producing the minimal achievable gaseous emissions and maintaining the steady fuel combustion, it is necessary to control the air factor (air excess) α, on its desired value [Bašta, J., et al., 2004]. The air factor α is expressed by the ratio where Qa α = > 1 [ ] (1) Q amin Q a actual burning air 3 m s, 3 m Q amin the necessary burning air. s The topical value of the air factor α in the running combustion process is acquired via oxygen concentration measurement in the flue gases at the end part of the boiler. In Fig. 1 an optimal range of the air factor is depicted. If the air factor is between α min and α max, then emissions of CO and NO x will not exceed a maximal level. However, the problem is that oxygen probes are vulnerable to faults [Neuman, P., Šulc, B., Zítek, P. & Dlouhý, T, 2000]. If the oxygen probe starts to provide -biased information about the oxygen content in flue gasses, emissions of CO and NOx will exceed given limited values and penalties for the undesirable side environment impacts can follow. Thus it is necessary to avoid an unrecognized increase of emissions particularly of CO and NOx. To the avoid penalised side effect resulting from oxygen probe faults, we suggest to prevent this state by a software tool which would be able to detect changes of the controlled variable sensor at its beginning. Such a task is referred to the sensor discredibility detection. 86

Fig. 1 Optimal operating range in dependence on the fuel - air ratio The sensor discredibility detection is considered to be applied to a pilot stoker-fired boiler (Fig. 2), available for experiments in the CTU labs. In spite of the fact that usually the hardware redundancy is preferred, this solution is not suitable for the used oxygen probe because of the expected additional costs. Our aim is to implement the software sensor discredibility detection into the controller unit. Fig. 2 Stoker-fired boiler for biomass combustion Before any implementation to a control loop, it is necessary to test proper function of the designed procedures by simulation. Therefore, the methods have been applied to a simulated example of a control loop. In this example, the controlled object is a cascade of two tanks and the controlled variable is the level in the second tank. For modelling Matlab Simulink is used. In the developed methods of the sensor discredibility detection a linear model of the controlled variable sensor is used and the real sensor behaviour was limited to a linear relation between sensor s input and output. Results of a suitability comparison and a time consuming of both model based methods will be shown. 2 DISCREDIBILITY DETECTION TESTING Model based software methods for sensor discredibility detection (namely the method of simulated annealing SA and the method of genetic algorithm GA) has been presented i.e. in 87

[ŠULC, B., KLIMÁNEK, D., 2005 B]. The general requirement of successful application of any of the methods is to design so - called objective function. In terms of the sensor discredibility detection, this function is called a residual function or a residuum. For testing and application the methods a Graphical User Interface (GUI) has been developed (Fig. 3). It offers choice of the methods for testing. Both of the methods are implemented with the use of Matlab S-function, because results computed by means of the S-functions are obtained faster than by standard M-functions blocks. Fig. 3 Matlab GUI dialog window provides selection of discredibility detection methods, sensor discredibility simulation and sensor model parameter development. 3 COMPARISON OF METHODS Representative simulation responses obtained via methods GA and SA are depicted in Fig. 4. In the simulation, the model of the real level sensor behavior is modeled by the same equation as the sensor model for discredibility evaluation part, it means that the real physical value of the controlled variable y real is transmitted to the measured value y according to the equation y = k y real + q. Evidently, if the sensor works properly the values of the parameters must be: the gain of the sensor k = 1, and the shift factor q = 0. The sensor model for discredibility evaluation part uses the estimated value of y real marked as y est. This value (y est ) is transmitted to the value marked as y m according to equation y m = k m y est + q m. In principle, the discredibility detection algorithms try to find such parameters (k m, q m ) of sensor model for discredibility evaluation part, which minimize a residuum e (e = y real y m ). The sensor discredibility detection is based on the continual evaluating of the sensor model parameters; because when no sensor discredibility occurs, the parameters do not change. In the Fig. 4 there is depicted a simulation run when the sensor gain has increased from 100 % to 140 % (at the simulation time 2000 the sensor gain was decreased by 55 %). It is apparent that both algorithms were able to find the new gain k m of the sensor model. From these responses, it is also evident that both methods are sensitive mainly to changes of the gain k of the sensor. Detection of the shift factor q changes at the sensor is not so important, because the control loop is mostly vulnerable to sensor gain changes (when the linear model of the sensor is considered). 88

Generally, from testing of algorithms follows, that the SA needs more evaluation time for one evaluation period a period for SA required 60 iterations, while GA needed 10 iterations. This difference is because GA works with a group of potential solutions, while SA compares only two potential solutions and accepts better one. SA needs six times more of evaluation time to perform as much iteration as GA. Fig. 4 Sensor model parameter detection 4 CONCLUSIONS Both methods are able to indicate the sensor properties changes. Although the evolutionary algorithm generally required more time consumption in comparison with other optimizing procedures, this circumstance does not matter in the sensor discredibility detection. Because discredibility may not have any unacceptable impacts on the control results. The time needed for the detection does not affect the control process. In order to apply methods for oxygen probe discredibility detection, future development will focus on estimation of the oxygen content in the flue gasses. A way that seems to be viable is depicted in Fig 5. This method is based on balancing the oxygen incomes to combustion process, determination the oxygen fixed in the unburned solid fuel and the oxygen fixed in the wet flue gasses. The value of the oxygen fixed in flue gasses can be obtained from the tabulated values for each component of the wet gasses based on the air factor. Fig 5 Schematic diagram depicting principle of estimation of the oxygen content in flue gases 89

Acknowledgement The research work has been supported by the grant No. 101/04/1182 of the Grant Agency of the Czech Republic. REFERENCES [1] KLIMÁNEK, D. & ŠULC, B. Evolutionary Detection of Sensor Discredibility in Control Loops. In Proceedings of IEEE. Raleigh, North Carolina, USA: IEEE Press, 2005, pp. 136 141. ISBN 0 78039253 1. [2] ŠULC, B & KLIMÁNEK, D. Sensor Discredibility Detection via Computational Intelligence. WSEAS Transactions on Systems. 2005, Vol. 4, Nr. 11, pp. 1906 1915. ISSN 1109 2777. [3] KLIMÁNEK D. & ŠULC B. Sensor Discredibility Detection by Means of Software Redundancy. In: Proceedings of the 7th International Carpathian Control Conference ICCC 2006. Ostrava: VŠB Ostrava, 2006, pp. 249-252. ISBN 80 248 1066 2. [4] KING, R. 1999. Computational Intelligence in Control Engineering. New York: Marcel Dekker Inc., 1999. ISBN 0 8247 1999 8. [5] KORBICZ, J., et al. Fault diagnosis, Models, Artifical Intelligence, Applications. Berlin: Springer, 2004. ISBN 3 540 40767 7. [6] BAŠTA, J., et al. Topenářská příručka: 120 let topenářství v Čechách. Praha: GAS, 2001. ISBN 80 86176 82 7. [7] MAŘÍK, V., LAŽANSKÝ J. & ŠTĚPÁNKOVÁ O. Umělá inteligence 3. Praha: Academia, 2001. ISBN 80 200 0502 1. [8] BAŠTA, J., et al. Topenářská příručka: 120 let topenářství v Čechách. Praha: GAS, 2001. ISBN 80 86176 82 7. [9] NEUMAN, P., ŠULC, B., ZÍTEK, P. & DLOUHÝ, T. Non-linear Engineering Simulator of a Coal Fired Steam Boiler Applied to Fault Detection of Optimum Combustion Control. In: Preprints of the 4th Symposium on Safety Processes. Budapest: IFAC, 2002, pp. 927 932. ISBN 80 432 50 6. Reviewer: doc. Ing. Miluše Vítečková, CSc., VŠB Technical University of Ostrava 90