Laboratory of Growth Regulators. NEW ANTICANCER DRUGS DERIVED FROM PLANT HORMONES (Olomoucines)



Podobné dokumenty
Laboratoř růstových regulátorů Miroslav Strnad

růstu a buněčného dělění

Buněčný cyklus - principy regulace buněčného růstu a buněčného dělění

Výzkumný ústav veterinárního lékařství v Brně

Elektrochemická analýza metalothioneinu u pacientů s onkologickým onemocněním

Buněčný cyklus a molekulární mechanismy onkogeneze

Apoptóza Onkogeny. Srbová Martina

SOIL ECOLOGY the general patterns, and the particular

VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ

Apoptóza. Veronika Žižková. Ústav klinické a molekulární patologie a Laboratoř molekulární patologie

Inhibitory ATR kinasy v terapii nádorů

Vliv způsobu podání bortezomibu na účinnost a bezpečnost léčby pacientů s mnohočetným myelomem. MUDr. P. Pavlíček FN KV a 3.

CENTRUM REGIONU HANÁ PRO BIOTECHNOLOGICKÝ A ZEMĚDĚLSKÝ VÝZKUM

(Full cost model) Správce rozpočtů a projektů Obsah

Buněčný cyklus. Replikace DNA a dělení buňky

Waldenström macroglobulinemia and mirna

Viši kurs biologije ćelija (OA-IB2-2) Plan nastave zimski semestar 2018/19.

Růst a vývoj rostlin - praktikum MB130C78

AFILIACE PRACOVIŠŤ CENTRA REGIONU HANÁ PRO BIOTECHNOLOGICKÝ A ZEMĚDĚLSKÝ VÝZKUM

PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY

Klinická studie CMG stav příprav. Roman Hájek. Velké Bílovice CMG CZECH GROUP M Y E L O M A Č ESKÁ MYELOMOVÁ SKUPINA

Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk. Aleš Hampl

Nukleové kyseliny Replikace Transkripce, RNA processing Translace

Development of high throughput screening assay for detection of E2F mediated signaling pathways

Regulace enzymových aktivit

Jan F. Humplík Laboratoř růstových regulátorů & Oddělení chemické biologie a genetiky, CRH, ÚEB AV ČR

Cena děkana prosince 2014, Přírodovědecká fakulta

Existence trade-offs záleží na proximátních mechanismech ovlivňujících znaky

ISOLATION OF PHOSPHOPROTEOM AND ITS APPLICATION IN STUDY OF THE EFFECT OF CYTOKININ ON PLANTS

EFFECT OF DIFFERENT HOUSING SYSTEMS ON INTERNAL ENVIRONMENT PARAMETERS IN LAYING HENS

Nukleové kyseliny Replikace Transkripce, RNA processing Translace

Doktorský studijní program (obor) a návrh témat disertačních prací. Název studijního programu P1417 Chemie

Laboratoř na čipu. Lab-on-a-chip. Pavel Matějka

TechoLED H A N D B O O K

II. Nástroje a metody, kterými ověřujeme plnění cílů

binding protein alpha (CEBPA) a prognostický význam mutací v jeho genu u Ota Fuchs, Arnošt t Kostečka, Monika

THE ASSOCIATION OF SERUM BILIRUBIN AND PROMOTER VARIATIONS IN UGT1A1 WITH ATHEROSCLEROSIS

Biosensors and Medical Devices Development at VSB Technical University of Ostrava

Ceník izolačních kitů STRATEC v mikrodestičkách

Kopie z

ASSESSMENT OF REDUCED DOSES EFFICACY OF GLYPHOSATE BY CHLOROPHYLL FLUORESCENCE MEASUREMENT

rní tekutinu (ECF), tj. cca 1/3 celkového množstv

Řekněte si o vzorky zdarma!

Aktivita CLIL Chemie I.

Změny v indikaci léků a doporučené postupy na základě guidelines 2007

Roman Hájek. Zbytkové nádorové onemocnění. Brno

(molekulární) biologie buňky

Detlef Weigel ( )

Libor Hájek, , Centrum regionu Haná pro biotechnologický a zemědělský výzkum, Přírodovědecká fakulta, Šlechtitelů 27, Olomouc

Hemofilie v ČR Výsledky a úhrada léčby

INSTITUTE FOR CLINICAL AND EXPERIMENTAL MEDICINE

Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)

Výuka genetiky na Přírodovědecké fakultě UK v Praze

MECHANISMUS TVORBY PORÉZNÍCH NANOVLÁKEN Z POLYKAPROLAKTONU PŘIPRAVENÝCH ELEKTROSTATICKÝM ZVLÁKŇOVÁNÍM

Projekt SPOLEČNÉ VZDĚLÁVÁNÍ PRO SPOLEČNOU BUDOUCNOST. Současná kosmonautika a kosmické technologie 2014

Interakce viru klíšťové encefalitidy s hostitelským organismem a patogeneze infekce

Collabora'on between Coopera'on: Universi'es and Industry in Czech Republic. Kamil Kuča

Transfer of Regenerative medicine products into practice in biotech park 4MEDi. Jakub Schůrek Ostrava

Detection of prognostic markers in CLL patients Kateřina Bučilová

VÝROČNÍ ZPRÁVA ZA ROK 2005

Struktura chromatinu. Co je to chromatin?

Configuration vs. Conformation. Configuration: Covalent bonds must be broken. Two kinds of isomers to consider

Svalová dystrofie. Prezentace technologických řešení registru Petr Brabec

C-Geranylated Flavanones from Paulownia tomentosa Fruits as Potential Anti-Inflammatory Compounds Acting via Inhibition of TNF-α Production

GENETICS OF CAT S COLORS GENETIKA ZBARVENÍ KOČEK. Chaloupková L., Dvořák J. ABSTRACT ABSTRAKT ÚVOD

Melting the ash from biomass

Introduction to MS Dynamics NAV

CZ.1.07/1.5.00/

TELEGYNEKOLOGIE TELEGYNECOLOGY

INTRACELULÁRNÍ SIGNALIZACE II

AIC ČESKÁ REPUBLIKA CZECH REPUBLIC

Možná uplatnění proteomiky směrem do klinické praxe

4. Centrální dogma, rozluštění genetického kódu a zrod molekulární biologie.

EFFECT OF FEEDING MYCOTOXIN-CONTAMINATED TRITICALE FOR HEALTH, GROWTH AND PRODUCTION PROPERTIES OF LABORATORY RATS

Radioterapeutické techniky ve FN Olomouc. David Vrána

Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008)

Dynamic programming. Optimal binary search tree

Schéma průběhu transkripce

Mitochondriální genom, úloha mitochondrií v buněčném metabolismu, signalizaci a apoptóze

CZ.1.07/1.5.00/

Försterův rezonanční přenos energie (FRET)

1 Biochemické animace na internetu

Transportation Problem

VLIV APLIKACE GLYFOSÁTU NA POČÁTEČNÍ RŮSTOVÉ FÁZE SÓJI

INSTITUT KLINICKÉ A EXPERIMENTÁLNÍ MEDICÍNY

Proteinové znaky dětské leukémie identifikované pomocí genových expresních profilů

LÉKAŘSKÉ SYMPOZIUM MODULACE (MDM) V LÉKAŘSKÉ PRAXI TOP HOTEL PRAHA

Lymfomy Chronická lymfatická leukémie. Marek Trněný I.interní klinika 1.LF UK a VFN Praha

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ DISERTAČNÍ PRÁCE

PSI (Photon Systems Instruments), spol.s.r.o.


Ceník izolačních kitů STRATEC ve zkumavkách

Laboratoř růstových regulátorů

IS THERE NECESSARY TO RECALCULATE VLTAVA CASCADE PURPOSES??

Nové směry ve vývoji nanoterapeutik

Gel-based a Gel-free kvantifikace v proteomice

2. Fotosensitizované reakce a jejich mechanismus. 5. Samoorganizované porfyrinové nanostruktury a jednoduché aplikace

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).

Univerzita Karlova v Praze Farmaceutická fakulta v Hradci Králové Katedra biologických a lékařských věd

PŘENOS SIGNÁLU V BUŇCE. Nela Pavlíková

Transkript:

Laboratory of Growth Regulators Miroslav Strnad EW ATICACER DRUGS DERIVED FRM PLAT HRMES (lomoucines) lomouc Palacky University & Institute of Experimental Botany AS CR lomouc, Czech Republic

Landmarks in Biology and Genetics Gregor Mendel laws of genetics 1865 Human Genome Project James Watson & Francis Crick double-helical structure of DA 1953

Institute of Experimental Botany Academy of Sciences of the Czech Republic

UIVERSITAS PALACKIAA LMUCESIS

Co je Laboratoř růstových regulátorů? 1. Laboratoř růstových regulátorů je společným pracovištěm Ústavu experimentální botaniky AVČR a Přírodovědecké fakulty Univerzity Palackého. 2. Byla založena v září 1996 jako výzkumné pracoviště interdisciplinárního charakteru. 3. Účelem pracoviště je integrovat kapacity PřF UP a ÚEB AV ČR pro společné řešení vědecko-výzkumných projektů v oblasti molekulárních a fyziologických mechanismů účinků růstových regulátorů u živých organismů.

Co je Laboratoř růstových regulátorů? Pracoviště se zabývá vědecko-výzkumnou a pedagogickou činností v oboru experimentální biologie, zejména: a) pak přípravou nových, vysoce biologicky účinných růstových regulátorů na bázi purinu, b) vývojem metod jejich analýzy, c) studiem jejich funkcí a účinků v růstových a vývojových procesech normální a nádorové buňky, včetně vývoje protinádorových látek odvozených od rostlinných hormonů. d) studiem onkogenů a nádorových supresorových genů, mechanismů regulace jejich exprese, včetně vývoje transgenních organismů kontrolovaně exprimujících různé geny zapojené v růstově-regulačních a obranných funkcích organismů.

rganizační schéma LRR Laboratoř růstových regulátorů Miroslav Strnad Biomedicíncká chemie Bioanalytická chemie Bioorganická chemie Auxiny a kys. abscisová Libor Havlíček ndřej ovák Karel Doležal Jakub Rolčík Cytokininy Inhibitory kinas Fytosteroidy Enzymologie rostlin Lukáš Spíchal Vladimír Kryštof Jana Swaczynová Jitka Frébortová Molekulární fyziologie Martin Fellner

Publikační aktivita LRR Vědecké publikace LRR Počet publikací 40 35 30 25 20 15 10 5 Počet článků v impakt. časopisech Celkový poč. publikací LRR Průměrný impakt faktor 5.00 4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 Průměrný impakt faktor 0 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 0.00 Rok

Isoprenoid and Aromatic Cytokinins H H H 6 7 1 5 8 2 4 9 3 H H H H H 6 -isopentenyladenine trans-zeatin dihydrozeatin H H H H H H H H 6 -benzyladenine meta-topolin ortho-topolin

Cytokinins (CK) CKs regulate cell division in shoots and roots, growth of stems and roots and specific components of the cell cycle. CK -glucoside HH CKs overproduction is implicated in plant tumour development. H H CK base H P H H H 3 CK ribotide (ribose-5 MP) R1 9 7 R2 H H H H H CK riboside CK -glucoside H H H H CKs delay leaf senescence. CKs promote chloroplast development and cell extension in leaves and cotyledons.

Cell Cycle Cell with Chromosomes in ucleus Cell Division G1 MITSIS Chromosome Separation M G2 CDK Cyclin S DA Synthesis Chromosome Duplication Cell with Duplicated Chromosomes

Cell Cycle and CDK CDK2 Cyclin A CDK2 Cyclin E S CDK1 Cyclin A G2 M CDK1 Cyclin B G1 CDK4-6 Cyclin D G0

Regulation of CDK Activity peptide CDK inhibitor association (IK4, CIP/KIP) cyclin synthesis / proteolysis export from nucleus CDK / cyclin association phosphorylation (T161) phosphorylation (T14, Y15)

CDK Regulation CDC25B p21 CIP1 p27 KIP1 p57 KIP2 CDC25A CDK2 Cyklin A CDK2 Cyklin E S G2 CDK1 Cyklin A M CDK1 Cyklin B CDK7 Cyklin H CDC25A CDC25B CDC25C p16 IK4A p15 IK4B p18 IK4C CDK4-6 Cyklin D G1 G0 Wee1 Myt1 p19 IK4D CDC25B CDK7 Cyklin H

CDK and Cell Cycle Regulation during G1/S Transition c-myc,, cyclin E, cyclin A, thymidinkinase, Thymidylate synthase,, DA pol α,... transcription transcription G1 prb P P CDK2 Cyklin E E2F DP E2F prb DP P CDK4-6 Cyklin D E2F prb DP p130 E2F p107 E2F p21 CIP1 p27 KIP1 p16 IK4A

CDK and G2/M Transition transition G2/M G2 CDK1 Cyclin A M CDK7 Cyclin H survivin lamines nucleolin condensin peroxiredoxin CDK1 Cyclin B transport to nucleus Cyclin F Importin β CDC25C CDC25B CDC25A Wee1 Myt1 Plk1 PKA Tome-1 APC PKB/AKT p90rsk Erk1/2

Alterations of G1/S regulators ature Reviews Cancer 1, 222-231 (2001)

Chemical structure 6 -substituted derivatives of adenine isoprenoid H R aromatic H free basis 3/7/9 -glucosides 9 ribosides 9 ribotides -glycosides H R 1 6 5 7 8 2 3 4 9 Which of the biologically active cytokinins and cytokinin activate/inhibits cyclin-depedent kinases?

CDK Inhibition Assays human cyclin B / CDK1 complex produced via baculoviral expression system enzyme purification on i-ta affinity column. assay in the presence of histone H1, ATP + [ γ- 33 P] ATP and tested drug SDS gel electrophoresis, digital image analyser BAS-1800 graphic analysis (IC ) 50 SDS gel with reaction mixtures containing decreasing concentrations of CDK inhibitor (BAS-1800 scan) Dose-response curve of CDK inhibition by purine inhibitor

IC 50 Values for Various Purines Added to Purified CDC2, CDK5 and CDK4 Kinases Compound IC 50 (µm ) CDK1 CDK5 CDK4 6-substituted 6-aminopurine(adenine) 200 - - purines 6-dimethylaminopurine 120 120-6-allylaminopurine 50 100 >500 isopentenyladenine 55 70 200 6-benzylaminopurine 200 80-6-furfurylaminopurine(kinetin) 180 - - trans-zeatin 70 150 >1000 dihydrozeatin 80 - - cis-zeatin 150 100 - meta -topolin 70 - - ortho-topolin 200 - - 6-(o-β-D- glucopyranosyl)- zeatin 850 - -

IC 50 Values for Various Purines Added to Purified CDC2, CDK5 and CDK4 Kinases Compound IC 50 (µm) CDK1 CDK5 CDK4 6,9-substituted adenosine 55 - - purines 6-benzylamino-9-(2-tetrahydropyranyl)purine(BPA) 200 160 - dihydrozeatin riboside >500 >500 - benzyladenosine >500 - - meta-topolin riboside >500 - - ortho-topolin riboside >500 - - zeatin riboside >500 >1000 - zeatin-9-glucoside >500 - - zeatin riboside-5 -monophosphate >500 - -

IC 50 values for various purines added to purified CDC2, CDK5 and CDK4 kinases Compound IC 50 (µm ) CDK1 CDK5 CDK4 2,6,9-2-amino-6- benzylamino -9- methylpurine 40 - - substituted 2-chloro-6- benzylamino -9- methylpurine 70 - - purines 2-(2- hydroxyethylamino )-6- amino -9- methylpurine 50 - - 2-(2- hydroxyethylamino )-6- benzylamino - 7 3 >1000 9-methylpurine (olomoucine ) 2-(2- hydroxyethylamino )-6- isopentenylamino -9- methylpurine 65 13 >1000 2-(2- hydroxyethylamino )-6- benzylamino -9- isopropylpurine 2 3 >1000 2-(R)-(1- hydroxymethyl /propylamino /)-6- benzylamino - 0.2 0.1 >500 9- isopropylpurine ( roscovitine )

lomoucine and its Potential Interactions with a Binding Site HYDRGE BD DR HYDRGE BD ACCEPTR HYDRPHBIC / LIPPHILIC ITERACTIS CHARGE-TRASFER ITERACTI

IC 50 Values for lomoucine and Isopentenyladenine Added to Various Purified Kinases Enzyme IC 50 (µ M) olomoucine isopentenyladenine p34 cdc2 /cyclina 50 - p34 cdc2 /cyclinb 7 45 p34 cdc2 /cycline 10 - p33 cdk2 /cyclina 7 50 p33 cdk2 /cycline 7 - p34 cdk4 /cyclind >1000 200 p35 cdk5 /35 3 80 p40 cdk6 /cyclind3 >250 >100 GST- erk -1 30 90 c-protein kinasec α,β1,β2,γ >1000 40-100 n-protein kinasec δ,ε,η,ζ >1000 50-100 camp -dependent kinase >1000 50 cgmp -dependent kinase >1000 50 Calmodulin -dependent kinaseii >1000 >100 Myosin light -chain kinase >1000 >1000 AMP- activated protein kinase 230 >1000 Insulin-receptor protein kinase 400 140 DA topoisomerase I, II 250 - DA polymerase α,δ 500 -

Double reciprocal plots of kinetic data from assays of p 34cdc2 /cyclin B protein kinase activity at different concentrations of olomoucine

Schematic Drawing of CDK2 with the Inhibitor Roscovitine Superimposed in the Binding Pocket

Development of Purine CDK2 Inhibitors Compound IC / µm 50 6-benzylaminopurine 200 olomoucine 7 roscovitine 0.2 olomoucine II 0.02 6-benzylaminopurine lomoucine Roscovitine lomoucine II

Therapeutical Effects of CDK Inhibitors Roscovitine (Cyc202) 7 6 Relative tumor size 5 4 3 2 Control Roscovitine 200 mg / kg Roscovitine 500 mg / kg 1 0 0 5 10 15 Days MUSE XEGRAFTS: LV AD MESSA-DX5 CARCIMAS Int. J. Cancer 102, 463-468, 2002 Int. J. Cancer 102, 463-468, 2002

Therapeutical Effects of CDK Inhibitors Sequential combination: 1. Taxol 2. Purvalanol A Survival (%) 100 80 60 40 STP Intensive apoptoses Reduction of tumor Low toxicity Unlimited survival Carcinoma MCF7 0 0 10 20 30 40 50 Days Control Taxol (2,5 mg/ml) Cancer Cell 2, 43-54, 2002 Taxol (5 mg/ml) Taxol (2,5 mg/ml) Purvalanol A Taxol (5 mg/ml) Purvalanol A Taxol (5 mg/ml) Purvalanol A continuously

Roscovitine in Clinical Trials R-roscovitine (CYC202, Seliciclib) Licenced to Cyclacel Ltd. Seliciclib is currently in Phase II clinical trials as a single therapy in multiple myeloma as well as two other B-cell B hematological malignancies: B-cell B Chronic Lymphocytic Leukemia and Mantle Cell Lymphoma. An additional Phase II clinical trial is in progress investigating the effects of Seliciclib in patients with on-small Cell Lung Cancer in combination with gemcitabine and cisplatin.

Roscovitine (Seliciclib) R Clinical Results Seliciclib: Monotherapy of hepatocelullar liver carcinoma - reduction 46%, data from clinical examinations of Cyclacel, Scotland

Roscovitine (Seliciclib) R Clinical Results Seliciclib: Monotherapy of nazopharingal carcinoma associated with EBV infection (Epstein-Barr virus), no drug available reduction > 50%, regression of neck metastasis lymph nodes

List of CDK inhibitors s in clinical development Compound Structure Sponsor Comments Phase Route Seliciclib (CYC202, R-roscovitine) 1 Cyclacel Selective CDK2-CDK7-CDK9 inhibitor II p.o. Alvocidib (flavopiridol, HMR1275) 2 Sanofi-Aventis Promiscuous kinase inhibitor with potent CDK-inhibitory activity II i.v. UC-01 3 Kyowa Hakko Kogyo Promiscuous kinase inhibitor with CDKinhibitory activity II i.v. E7070 (indisulam) 4 Eisai G1/S cell cycle agent with indirect effects on CDK function I/II i.v. SS-032 (formerly BMS- 387032) 5 Sunesis Selective CDK2-CDK7-CDK9 inhibitor I i.v. 01910.a 6 nconova Dual specificity non-atp-competitive CDK1/PLK1 inhibitor I i.v. AZD-5438 ot disclosed AstraZeneca ot known I? ZK-CDK ot disclosed Schering AG Dual-specificity CDK2/VEGF-/PDGF-RTK inhibitor I p.o. PD 0332991 7 Pfizer Highly CDK4-selective with G1/S activity I p.o. PHA-690509 ot disclosed erviano Medical Science ot known I? JJ-7706621 8 Johnson & Johnson Dual specificity CDK and ARK inhibitor Preclinical p.o. ot disclosed ot disclosed Hoffmann-La Roche ot known Preclinical? GPC-286199 9 GPC Biotech Pan-CDK inhibitor with antimitotic activity Preclinical i.v.

CDK inhibitors s in clinical development H H H H H H Cl H H H H H H S S H 2 1: Roscovitine (Cyclacel) 2: Flavopiridol (Aventis/CI) 3: UC-01 (Kyowa Hakko Kogyo) 4: E7070 (Eisai) H H S S H.a S H H 5: SS-032 (Sunesis) 6: 01910a (nconova) 7: PD 0332991 (Pfizer) H 2 F S H 2 H 8: JJ-7706621 (Johnson & Johnson) F H H H 9: GPC-286199 (GPC Biotech)

Cytokinin-Like Inhibitors of CDK9 (CDK7) = lomoucine II

Molecular Docking Insight into the active site of CDK2 with a purine bound.

lomoucine II: ortho-hydroxylat Hydroxylated Roscovitine Derived from ortho-topolin

Biochemical Aspects of Roscovitine kinase IC50 / µm CDK1/B 2.7 CDK2/E 0.84 CDK4/D 14.2 CDK7/H 0.49 CDK9/T 0.72 Erk2 1.17 PKA >100 PKC >100 CHK1 >100 c-abl >100 CDK2 / roscovitine co-crystal

lomoucine II Interactions with CDK2 kinase IC50 / µm CDK1/B 2.7 CDK2/E 0.1 CDK4/D 20 CDK7/H 0.45 CDK9/T 0.06 Erk2 32 PKA >100 PKC >100 CHK1 >100 c-abl >100 Leu83 Lys89 Asp86

Anticancer effect of olomoucine II Roscovitine CYC202 Seliciclib H H H lomoucine II H H H H roscovitine Mean GI 50 = 19 µm olomoucine II Mean GI 50 = 3.3 µm

p53 signalling Stress DA breaks UV radiation stress ncogenes Stress signalling ATM DA PK ATR Casein kinase II II p14 ARF Increase of p53 level Transactivation p53 MDM2 PTE feedback loop Cyclin G p21 Expression of effector genes GADD45 14-3-3σ Reprimo Scotin PERP XA KILLER/DR5 P53AIP1 Fas Bax PIDD Tsp1 Maspin BAI1 GD-AIF Cell cycle block Apoptosis Inhibition of vascularization

Stabilization of p53/induction of p21 CDK2 Cyklin E S G1 G2 M CDK1 Cyklin B MDM2 p14 ARF p14 ARF p21 CIP1 apoptoses p53 MDM2 p53 P Chk2 MDM2 P ATM DA damage, hypoxia and temperature shock...

Stabilization of p53/induction p21 expression 1200 1000 olomoucine II roscovitine Accumulation of p53 and p21 WAF proteins in olomoucine II treated MCF7 cells 0 5 10 15 20 30 40 µm p53 positive cells / well 800 600 400 200 PCA p21 0 1 3 6 9 12 15 20 30 40 50 60 80 concentration / µm Induction of p53-transcriptional activity by olomoucine II in Arn8 cells with reporter system

Anticancer activity of CDK inhibitors CDK1 cyclin B CDK1 cyclin A G2 M DA RA polymerase II CDK4/6 S G1 cyclin D CDK9 CDK2 cyclin A CDK2 cyclin E inhibitor CDK7 cyclin H cyclin T CDK8 cyclin C RA Cell cycle arrest Induction of apoptosis Activation of p53 DA RA polymerase II

Anticancer activity of CDK inhibitors Cell Cycle. 2004 ct;3(10):1259-62 Pivotal role for Mcl-1 in multiple myeloma cells. Mcl-1 (a member of the Bcl-2 family) antagonizes apoptosis upon mitogenic and survival stimuli. It is rapidly degraded in response to cell death signals. Roscovitine inhibits phosphorylation of RA polymerase II by CDK9. Inhibition of transcription exerts its greatest effect on gene products where both mra and protein have short half-lives, resulting in rapid decline of the protein levels. Mcl-1, crucial for the survival of a range of cell types including multiple myeloma, is rapidly down-regulated, which precededs the induction of apoptosis. Cancer Res. 2005 Jun 15;65(12):5399-407.

Roscovitine blocks transcription through combined inhibition of CDK2, CDK7 and CDK9. Being activated by roscovitine, tumor suppressor proteins prb and p53 potently repress transcription factors necessary for RA polymerase I (UBF), RA polymerase II (e.g. E2F) and RA polymerase III (TFIIIB).

Structure of ur Research Cell Cycle and CDKs Cytokinin-Like Inhibitors of Cyclin -Dependent Kinases 1/2 Cytokinin-Like Inhibitors of CDK7 a CDK9 p53 activation Selective Inhibitors of CDK9 Anticytokinins as ew Database for Development of CDK Inhibitors Anticancer Drugs Combining CDK Inhibition with Antiinflammatory properties Anticancer Drugs Exhibiting Antiviral Activities

CDKI Therapeutic Applications oncology (new generation of drugs affecting cell cycle) neurology (Alzheimer s s disease, stroke) virology (human cytomegalovirus, herpes virus...) parasitology (Plasmodium,Trypanosoma, Toxoplasma...)... and other diseases resulting from uncontrolled proliferation atherosclerosis post-angioplastic restenosis tumor angiogenesis glomerulonephritis psoriasis

Acknowledgement Laboratory of Growth Regulators Palacky University & Institute of Experimental Botany, lomouc Libor Havlicek Vladimir Krystof Karel Dolezal Igor Popa Lukas Spichal Vera Siglerova Jan Hanus Marek Zatloukal ta Blahousek Josef Holik Jarmila Balonova Miloslava Subova Rene Lenobel lga Hustakova Laboratory of Cell Cycle and Cytoskeleton Institute of Experimental Botany, lomouc Pavla Binarova Vera Cenklova Universitaire Instelling Antwerpen Harry van nckelen Katrien Vermeulen Zwi Bernemann Dirk Van Bockstale Medical Faculty, Palacký University in lomouc Cyclacel Ltd Marián Hajdúch Jaroslav Veselý Peter M. Fisher MU Brno Bořivoj Vojtěšek Petr Müller