Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008)
|
|
- Dominika Vítková
- před 6 lety
- Počet zobrazení:
Transkript
1 Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008)
2 Lidský genom 20 tis. Genů (genom) stovky tisíc proteinů (proteom)
3 Dělení bílkovin podle jejich funkce stavební a podpůrné kolageny, elastin, keratiny (fibrilární) bílkoviny cytoskeletu (tubulin, vimentin, též pohyb) nukleoproteiny (histony, ribosomální bílkoviny) transportní a skladovací hemoglobin a myoglobin (O 2 ) transferrin a ferritin (Fe) sérový albumin (mast. kyseliny, bilirubin, hem...) apolipoproteiny (lipidy, cholesterol) cytochrom c (elektrony) bílkoviny zajišťující membránový transport pohyb aktin a myosin (+další) ochranné a obranné imunoglobuliny fibrinogen regulační hormony receptory (membránové a intracelulární) regulační bílkoviny proteosynthesy katalytická enzymy
4 Proteiny - vazba na jiné molekuly (ligandy) - SPECIFITA - AFINITA (síla interakce) - vazebné místo - nekovalentní interakce Figure 3-36 Molecular Biology of the Cell ( Garland Science 2008)
5 Vazebné místo proteinu Figure 3-37a Molecular Biology of the Cell ( Garland Science 2008)
6 Vazebné místo proteinu Figure 3-37b Molecular Biology of the Cell ( Garland Science 2008) camp
7 Konformace proteinu určuje chemické vlastnosti - vazebné místo chráněno (H 2 O) - reaktivita vazebného místa Figure 3-38 Molecular Biology of the Cell ( Garland Science 2008) Katalytická triáda serinové proteázy
8
9 Figure 3-41 Molecular Biology of the Cell ( Garland Science 2008)
10 Síla vazby (protein ligand) - rovnovážná konstanta - disociační konstanta Figure 3-42 Molecular Biology of the Cell ( Garland Science 2008)
11
12 Enzymy Ligand substrát Dochází ke CH změně substrátu biokatalyzátory Každá (metabolická) reakce má svůj enzym
13 Figure 3-50a Molecular Biology of the Cell ( Garland Science 2008)
14 Table 3-1 Molecular Biology of the Cell ( Garland Science 2008)
15 Jak dosáhnouti úspěchu aneb Co musí umět enzym? účinné snížení aktivační energie specifita substrátová (látka, která se mění účinkem enzymu) specifita účinku (enzym katalyzuje jen jednu z četných termodynamicky možných přeměn látky - specifitu zprostředkuje bílkovinná část) regulovatelnost účinnosti (aktivity)
16 Figure 3-46 Molecular Biology of the Cell ( Garland Science 2008)
17 KINETIKA podle Michaelise a Mentenové V max, K m Michaelisova konstanta koncentrace substrátu, při níž se dosáhne poloviny maximální rychlosti (vysoké hodnoty nízká afinita k substrátu)
18 Linerární transformace Lineweaver-Burk rovnici Michaelise a Mentenové (rovnice hyperboly) lze převést na rovnici přímky
19
20 ENZYMOVÁ AKTIVITA Katalytickou aktivitu 1 katalu ( příp. 1 U )- vykazuje enzymový preparát, který za definovaných podmínek (ph, pufr, teplota) při nasycení substrátem přemění 1 mol (1 mol) substrátu za 1 sec (1 min). PŘEVOD: U=16,67 nkat 60 U=1 µkat Číslo přeměny (turnover number): počet molekul substrátu, které se přemění za 1 minutu jednou molekulou enzymu
21
22 Substrátová specifita - afinita Figure 3-52 Molecular Biology of the Cell ( Garland Science 2008)
23 Indukované přizpůsobení Změna konformace hexokinasy způsobená vazbou substrátu
24
25
26 Enzym = buď jednoduchá bílkovina nebo apoenzym (peptidový řetězec) + kofaktor kofaktor: nepeptidová součást enzymu, která se přímo účastní chemické reakce (bez něj by to nešlo) oprosthetická skupina (př. FAD, PLP, hem) okoenzym (druhý substrát) (př. NAD(P),CoA, ATP) o"nespecifické" organické sloučeniny: - kyselina askorbová (komlex s Fe) - některé další vitaminy okovy přímo se účastnící reakce (metaloenzymy, Zn, Fe, Se, Cu...) ospecifické kovy, působící "nepřímo" (např. Mg a ATP)
27 Hem (hemoglobin) Retinal (rhodopsin) Figure 3-53 Molecular Biology of the Cell ( Garland Science 2008)
28 Table 3-2 Molecular Biology of the Cell ( Garland Science 2008)
29 Regulace enzymové aktivity: o perfect enzyme??? ona úrovni transkripce a translace (synthesa enzymu) oefektory (aktivátory a inhibitory) oallosterické interakce opomocí změn kovalentní struktury (řízeno specifickými enzymy) - nevratné (aktivace stìpením peptidové vazby - proenzymy) - vratné (fosforylace, adenylace...) opřístup k substrátu (koncentrace)
30 Multienzymové komplexy Figure 3-55 Molecular Biology of the Cell ( Garland Science 2008)
31 Feedback regulation (inhibice produktem)
32 Allosterické enzymy protein má více vazebných míst
33
34 Př.: R a T konformace (aspartate transcarbamoylase) CTP je finálním produktem dráhy (negativní regulace (inhibice) produktem)
35 Fosforylace - řada změn (konformace) řízena (de)fosforylací
36 proteinové kinázy (fosforylace proteinu) proteinové fosfatázy (defosforylace proteinu)
37
38 Přenos signálu (receptor)
39 Pohyb motor proteins
40 Transportéry transport molekul přes CM
41 . a další modifikace.
42
43
44 KEY CONCEPTS Protein Binding and Enzyme Catalysis A protein's function depends ~n its ability to bind other molecules known as ligands. For example, antibodies bind to a group of ligands known as antigens and enzymes bind to reactants called substrates that will be converted by chemical reactions into products. The specificity of a protein for a particular ligand refers to the preferential binding of one or a few 'closely related ligands. The affinity of a protein for a particular ligand refers to the strength of binding, usually expressed as the dissociation constant Kd. Proteins are able to bind to ligands because of molecular complementarity between the ligand-binding sites and the corresponding ligands. Enzymes are catalytic proteins that accelerate the rate of cellular reactions by lowering the activation energy and stabilizing transition-state intermediates
45 KEY CONCEPTS Protein Binding and Enzyme Catalysis The initial binding of substrates (S) to enzymes (E) results in the formation of an enzyme-substrate complex (ES), which then undergoes one or more reactions catalyzed by the catalytic groups in the active site until the products (P) are formed. From plots of reaction rate versus substrate concentration, two characteristic parameters of an enzyme can be determined: the Michaelis constant, K11, a rough measure of the enzyme's affinity for converting substrate into product, and the maximal velocity, V rna" a measure of its catalytic power The rates of enzyme-catalyzed reactions vary enormously, with the turnover numbers (number of substrate molecules converted to products at a single active site at substrate saturation) ranging between <1 to 6 X 105 molecules/s.
Biologie buňky. proteiny, nukleové kyseliny, procesy genom, architekura (membrána), funkce mitoza, buněčná smrt, kmenové buňky, diferenciace
Biologie buňky Molecules of life Struktura buňky Buněčný cyklus proteiny, nukleové kyseliny, procesy genom, architekura (membrána), funkce mitoza, buněčná smrt, kmenové buňky, diferenciace Biologie tkání
VíceBiologie buňky. systém schopný udržovat se a rozmnožovat
Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický
VícePřírodní polymery proteiny
Přírodní polymery proteiny Funkční úloha bílkovin 1. Funkce dynamická transport kontrola metabolismu interakce (komunikace, kontrakce) katalýza chemických přeměn 2. Funkce strukturální architektura orgánů
VíceENZYMY. RNDr. Lucie Koláčná, Ph.D.
ENZYMY RNDr. Lucie Koláčná, Ph.D. Enzymy: katalyzátory živé buňky jednoduché nebo složené proteiny Apoenzym: proteinová část Kofaktor: nízkomolekulová neaminokyselinová struktura nezbytně nutná pro funkci
VíceVÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ
FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů
VíceBiopolymery. struktura syntéza
Biopolymery struktura syntéza Nukleové kyseliny Proteiny Polysacharidy Polyisopreny Ligniny.. Homopolymery Kopolymery (stat, alt, block, graft) Lineární Větvené Síťované kombinace proteiny Funkční úloha
VícePřírodní polymery. struktura syntéza
Přírodní polymery struktura syntéza Nukleové kyseliny Proteiny Polysacharidy Polyisopreny Ligniny.. průmyslové využití (tradiční, obnovitelný zdroj) Sruktura komplikovanější Homopolymery Kopolymery (stat?,
Více>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu
Enzymy Charakteristika enzymů- fermentů katalyzátory biochem. reakcí biokatalyzátory umožňují a urychlují průběh rcí v organismu nachází se ve všech živých systémech z chemického hlediska jednoduché nebo
VíceBiologie buňky. proteiny, nukleové kyseliny, procesy genom, architekura,funkce, mitoza, buněčná smrt, kmenové buňky, diferenciace
Biologie buňky Molecules of life Struktura buňky, Buněčný cyklus proteiny, nukleové kyseliny, procesy genom, architekura,funkce, mitoza, buněčná smrt, kmenové buňky, diferenciace Buněčná membrána mezibuněčné
VíceReakční kinetika enzymových reakcí
Reakční kinetika enzymových reakcí studuje časový průběh enzymových reakcí za různých reakčních podmínek zabývá se faktory, které ovlivňují rychlost reakcí katalyzovaných enzymy - uvažujme monomolekulární
VíceEnzymologie. Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů.
ENZYMOLOGIE 1 Enzymologie Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů. Jak je možné, že buňka dokáže utřídit hrozivou změť chemických procesů, které v ní v každém okamžiku
VíceAminokyseliny, proteiny, enzymologie
Aminokyseliny, proteiny, enzymologie Aminokyseliny Co to je? Organické látky karboxylové kyseliny, které mají na sousedním uhlíku navázanou aminoskupinu Jak to vypadá? K čemu je to dobré? AK jsou stavební
VíceBÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.
BÍLKOVINY o makromolekulární látky, z velkého počtu AMK zbytků o základ všech organismů o rostliny je vytvářejí z anorganických sloučenin (dusičnanů) o živočichové je musejí přijímat v potravě, v trávicím
VíceENZYMY. Klasifikace enzymů
ENZYMY Enzymy jsou bílkoviny, které katalyzují chemické reakce probíhající v živých organismech. Byly identifikovány tisíce enzymů, mnohé z nich byly izolovány čisté. Klasifikace enzymů Vzhledem k tomu,
Více(molekulární) biologie buňky
(molekulární) biologie buňky Buňka základní principy Molecules of life Centrální dogma membrány Metody GI a MB Interakce Struktura a funkce buňky - principy proteiny, nukleové kyseliny struktura, funkce
VíceUSPOŘÁDEJTE HESLA PODLE PRAVDIVOSTI DO ŘÁDKŮ
Proteiny funkce Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek proteiny 22.7.2012 3. ročník čtyřletého G Procvičování struktury a funkcí proteinů
VíceREGULACE ENZYMOVÉ AKTIVITY
REGULACE ENZYMOVÉ AKTIVITY Proč je nutno regulovat enzymovou aktivitu? (homeostasa) Řada úrovní: regulace množství přítomného enzymu (exprese = proteosynthesa, odbourávání) synthesa vhodného enzymu (isoenzymy)
VíceText zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY
Inovace profesní přípravy budoucích učitelů chemie CZ.1.07/2.2.00/15.0324 Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Obsah 1 Úvod do problematiky přírodních látek... 2 2 Vitamíny... 2 2.
VíceV organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.
BÍLKOVINY Bílkoviny jsou biomakromolekulární látky, které se skládají z velkého počtu aminokyselinových zbytků. Vytvářejí látkový základ života všech organismů. V tkáních vyšších organismů a člověka je
VíceMolekulární biofyzika
Molekulární biofyzika Molecules of life Centrální dogma membrány Metody GI a MB Biofyzika buňky Biofyzika tkání proteiny, nukleové kyseliny struktura, funkce replikace, transkripce, translace struktura,
VíceIntermediární metabolismus. Vladimíra Kvasnicová
Intermediární metabolismus Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba zásob glykogen,
VíceRegulace enzymové aktivity
Regulace enzymové aktivity MUDR. MARTIN VEJRAŽKA, PHD. Regulace enzymové aktivity Organismus NENÍ rovnovážná soustava Rovnováha = smrt Život: homeostáza, ustálený stav Katalýza v uzavřené soustavě bez
VíceMolekulární biofyzika
Molekulární biofyzika Molekuly v živých systémech - polymery Lipidy (mastné kyseliny, fosfolipidy, isoprenoidy, sfingolipidy ) proteiny (aminokyseliny) nukleové kyseliny (nukleotidy) polysacharidy (monosacharidy)
VíceEnzymy. aneb. Není umění dělat co tě baví, ale najít zalíbení v tom, co udělati musíš. Luboš Paznocht
Enzymy aneb Není umění dělat co tě baví, ale najít zalíbení v tom, co udělati musíš. Luboš Paznocht Umožňují rychlý a koordinovaný průběh chemických přeměn v organismu Kinetika biochemických reakcí řád
VíceENZYMY A NUKLEOVÉ KYSELINY
ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí
VíceProč biokatalýza? Vyšší reakční rychlost Vyšší specificita reakce Mírnější reakční podmínky Možnost regulace
Enzymy Proč biokatalýza? Vyšší reakční rychlost Vyšší specificita reakce Mírnější reakční podmínky Možnost regulace COO - - COO NH 2 OH - COO NH 2 - COO O OH - COO Chorismate mutase - OOC O OH - COO -
VíceRegulace metabolických drah na úrovni buňky
Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace
VíceEnzymy charakteristika a katalytický účinek
Enzymy charakteristika a katalytický účinek Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek enzymy 28.7.2012 3. ročník čtyřletého G Charakteristika
VíceEnzymy faktory ovlivňující jejich účinek
Enzymy faktory ovlivňující jejich účinek Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek enzymy 10.8.2012 3. ročník čtyřletého G Faktory ovlivňující
VíceENZYMY. Charakteristika enzymaticky katalyzovaných reakcí:
ENZYMY Definice: Enzymy (biokatalyzátory) jsou jednoduché či složené makromolekulární bílkoviny s katalytickou aktivitou. Urychlují reakce v organismech tím, že snižují aktivační energii (Ea) potřebnou
VíceAminokyseliny, proteiny, enzymy Základy lékařské chemie a biochemie 2014/2015 Ing. Jarmila Krotká Metabolismus základní projev života látková přeměna souhrn veškerých dějů, které probíhají uvnitř organismu
VíceFarmakologie. -věda o lécích používaných v medicíně -studium účinku látek na fyziologické procesy -biochemie s jasným cílem
Farmakologie -věda o lécích používaných v medicíně -studium účinku látek na fyziologické procesy -biochemie s jasným cílem Léky co v organismu ovlivňují? Většina léků působí přes vazbu na proteiny u nichž
VíceHistorie. Pozor! né vždy jen bílkovinná část
Enzymy a hormony Enzymy = biokatalyzátory jejich působení je umožněn souhrn chemických přeměn v organismu (metabolismus) jednoduché, složené bílkoviny globulární v porovnání s katalyzátory účinnější, netoxické,
VíceBílkoviny (=proteiny) (vztah struktury a funkce) DNA RNA protein modifikovaný protein
Bílkoviny (=proteiny) (vztah struktury a funkce) DNA RNA protein modifikovaný protein Chemické složení Jednoduché Složené - polypeptidová + neproteinová část Složené: metaloproteiny fosfoproteiny glykoproteiny
VíceRedoxní děj v neživých a živých soustavách
Enzymy Enzymy Katalyzují chemické reakce, kdy se mění substrát na produkt Katalytickým působením se snižuje aktivační energie reagujících molekul substrátu, tím se reakce urychlí Za přítomnosti enzymu
VícePŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY
PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY 1 VÝZNAM MEMBRÁNOVÝCH RECEPTORŮ V MEDICÍNĚ Příklad: Membránové receptory: adrenergní receptory (receptory pro adrenalin a noradrenalin) Funkce: zprostředkování
VíceBílkoviny. Bílkoviny. Bílkoviny Jsou
Bílkoviny Bílkoviny Úkol: Vyberte zdroje bílkovin: Citróny Tvrdý sýr Tvaroh Jablka Hovězí maso Luštěniny Med Obilí Vepřové sádlo Hroznové víno Bramborové hlízy Řepa cukrovka Bílkoviny Základními stavebními
VíceCHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV
CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV a) Chemické složení a. biogenní prvky makrobiogenní nad 0,OO5% (C, O, N, H, S, P, Ca.) - mikrobiogenní pod 0,005%(Fe,Zn, Cu, Si ) b. voda 60 90% každého organismu - 90% příjem
VíceEnzymy biologické katalyzátory. regulovatelnost účinnosti (aktivity) Platí o nich totéž co o chemických katalyzátorech, ale mají něco navíc:
Enzymy biologické katalyzátory Platí o nich totéž co o chemických katalyzátorech, ale mají něco navíc: účinné snížení aktivační energie specifita regulovatelnost účinnosti (aktivity) Regulace účinnosti
VíceToxikologie PřF UK, ZS 2016/ Toxikodynamika I.
Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický
VíceBÍLKOVINY R 2. sféroproteiny (globulární bílkoviny): - rozpustné ve vodě, globulární struktura - odlišné funkce (zásobní, protilátky, enzymy,...
BÍLKVIY - látky peptidické povahy tvořené více než 100 aminokyselinami - aminokyseliny jsou poutány...: R 1 2 + R 2 R 1 R 2 2 2. Dělení bílkovin - vznikají proteosyntézou Struktura bílkovin primární sekundární
VíceTestové úlohy aminokyseliny, proteiny. post test
Testové úlohy aminokyseliny, proteiny post test 1. Které aminokyseliny byste hledali na povrchu proteinů umístěných uvnitř fosfolipidových membrán a které na povrchu proteinů vyskytujících se ve vodném
VíceHISTORIE ENZYMOLOGIE
ENZYMY HISTORIE ENZYMOLOGIE 1. Berzelius (18.stol.) v rostlinách i živočiších probíhají tisíce katalyzovaných reakcí FERMENTY fermentace (Fabrony) 2. W.Kühne en zýme = v kvasnicích enzymy 3. J. Sumner
VíceBílkoviny - proteiny
Bílkoviny - proteiny Proteiny jsou složeny z 20 kódovaných aminokyselin L-enantiomery Chemická struktura aminokyselin R představuje jeden z 20 různých typů postranních řetězců R Hlavní řetězec je neměnný
Více13. Enzymy aktivační energie katalýza makroergické sloučeniny
13. Enzymy Průběh chemických reakcí závisí též na schopnosti molekul přiblížit se dostatečně blízko a překonat repulsní energetickou bariéru. K tomu je zapotřebí energie typické pro každou reakci, tzv.
VíceProkaryotická X eukaryotická buňka. Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen)
Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Cytoplazmatická membrána osemipermeabilní ofosfolipidy, bílkoviny otransport látek, receptory,
Více1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu
Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná
VíceSekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch
Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Atom, složení a struktura Chemické prvky-názvosloví, slučivost Chemické sloučeniny, molekuly Chemická vazba
Vícestrukturní (součástmi buněčných struktur) metabolická (realizují b. metabolizmus) informační (jako signály či receptory signálů)
1 Bílkoviny - představují cca. ½ suché hmotnosti buňky - molekuly bílkovin se podílí na všech základních životních procesech - součástmi buněčných struktur (stavební f-ce) Funkce bílkovin: strukturní (součástmi
VíceUniverzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii
Univerzita Karlova v Praze - 1. lékařská fakulta Buňka. Stavba a funkce buněčné membrány. Transmembránový transport. Membránové organely, buněčné kompartmenty. Ústav pro histologii a embryologii Doc. MUDr.
VíceINTRACELULÁRNÍ SIGNALIZACE II
INTRACELULÁRNÍ SIGNALIZACE II 1 VÝZNAM INTRACELULÁRNÍ SIGNALIZACE V MEDICÍNĚ Příklad: Intracelulární signalizace: aktivace Ras proteinu (aktivace receptorové kinázy aktivace Ras aktivace kinázové kaskády
VíceMolekulární biofyzika
Molekulární biofyzika Molecules of life Centrální dogma membrány Metody GI a MB Interakce proteiny, nukleové kyseliny struktura, funkce replikace, transkripce, translace struktura, funkce analýza proteinů,
VíceGlykolýza Glukoneogeneze Regulace. Alice Skoumalová
Glykolýza Glukoneogeneze Regulace Alice Skoumalová Metabolismus glukózy - přehled: 1. Glykolýza Glukóza: Univerzální palivo pro buňky Zdroje: potrava (hlavní cukr v dietě) zásoby glykogenu krev (homeostáza
VíceOligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních.
1 (3) CHEMICKÉ SLOŢENÍ ORGANISMŮ Prvky Stejné prvky a sloučeniny se opakují ve všech formách života, protože mají shodné principy stavby těla i metabolismu. Např. chemické děje při dýchání jsou stejné
VíceFigure 3-23 Molecular Biology of the Cell ( Garland Science 2008)
Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008) Lidský genom 20 tis. Genů (genom) stovky tisíc proteinů (proteom) Dělení bílkovin podle jejich funkce stavební a podpůrné kolageny, elastin,
VíceZkušební okruhy k přijímací zkoušce do magisterského studijního oboru:
Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -
VíceNukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Figure 4-3 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-4 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-5 Molecular
VíceEfektivní adaptace začínajících učitelů na požadavky školské praxe
Mezipředmětová integrace tělesná výchova biologie chemie Biochemie pro učitele tělesné výchovy I.: úvod (průvodce studiem) Filip Neuls, Ph.D. Průvodce studiem Vážené studentky, vážení studenti, tématem
VíceBuněčný cyklus. Replikace DNA a dělení buňky
Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných
VíceVÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ
REGULACE APOPTÓZY 1 VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ Příklad: Regulace apoptózy: protein p53 je klíčová molekula regulace buněčného cyklu a regulace apoptózy Onemocnění: více než polovina (70-75%) nádorů
VíceRegulace enzymových aktivit
Regulace enzymových aktivit Regulace enzymových aktivit: Změny množství enzymu v kompartmentu, buňce, orgánu: - změna exprese, degradace atd. - změna lokalizace Skutečné regulace: - aktivace/inhibice nízkomolekulárními
VíceStruktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce
VíceBílkoviny příručka pro učitele. Obecné informace:
Obecné informace: Bílkoviny příručka pro učitele Téma Bílkoviny přesáhne rámec jedné vyučovací hodiny. Vyučující rozdělí téma na 2 vyučovací hodiny, zadá klasifikaci bílkovin jako samostatnou práci popř.
VíceMATURITNÍ TÉMATA - CHEMIE. Školní rok 2012 / 2013 Třídy 4. a oktáva
MATURITNÍ TÉMATA - CHEMIE Školní rok 2012 / 2013 Třídy 4. a oktáva 1. Stavba atomu Modely atomu. Stavba atomového jádra, protonové a nukleonové číslo, izotop, izobar, nuklid, stabilita atomového jádra,
VíceEvropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. ENZYMY I úvod, názvosloví, rozdělení do tříd
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ENZYMY I úvod, názvosloví, rozdělení do tříd Úvod z řeckého EN ZYME (v kvasinkách) biologický katalyzátor, protein (RNA) liší se od chemických
VíceNukleové kyseliny Replikace Transkripce, RNA processing Translace
Nukleové kyseliny Replikace Transkripce, RNA processing Translace Figure 6-2 Molecular Biology of the Cell ( Garland Science 2008) replikace Figure 4-8 Molecular Biology of the Cell ( Garland Science
VíceENZYMOLOGIE. Pracovní sešit k přednáškám z biochemie pro studenty biologických kombinací ZDENĚK GLATZ
EZYMLGIE Pracovní sešit k přednáškám z biochemie pro studenty biologických kombinací II ZDEĚK GLATZ 2004 Katalýza - Berzelius 1838 2 EZYMLGIE katalyzátor - látky urychlující chemické reakce - nemění rovnováhu
VíceMechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová
Mechanismy hormonální regulace metabolismu Vladimíra Kvasnicová Osnova semináře 1. Obecný mechanismus působení hormonů (opakování) 2. Příklady mechanismů účinku vybraných hormonů na energetický metabolismus
VíceEnzymologie. Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol Matej Kohutiar. akad. rok 2017/2018
Enzymologie Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol Matej Kohutiar akad. rok 2017/2018 Osnova I. Základní principy enzymových reakcí II. Termodynamické a kinetické aspekty enzymové
VíceBílkoviny a rostlinná buňka
Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin
VíceBiosyntéza a degradace proteinů. Bruno Sopko
Biosyntéza a degradace proteinů Bruno Sopko Obsah Proteosyntéza Post-translační modifikace Degradace proteinů Proteosyntéza Tvorba aminoacyl-trna Iniciace Elongace Terminace Tvorba aminoacyl-trna Aminokyselina
VíceObecný metabolismus.
mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Enzymy biokatalyzátory (6). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie, Přírodovědecká
VíceKinetika enzymově katalysovaných reakcí
Kinetika enzymově katalysovaných reakcí Rychlost reakce aa + bb + c C + d D +... dn A d [ A] d [ B ] d [C ] v= = = = av d τ ad τ bd τ cd τ Počáteční rychlost reakce aa + bb + konc. c C + d D +... d [ A]
VíceHeterogenní katalýza
Ústav fyzikální chemie Jaroslava Heyrovského AV ČR Heterogenní katalýza Blanka Wichterlová Katalýza cíle Zvýšení rychlosti reakce termodynamicky schůdné Snížení aktivační bariéry tvorbou vazby s katalyzátorem
VíceNázev školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_04_BUŇKA 1_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077
Více*Ivana FELLNEROVÁ, PřF UP Olomouc*
AMINOKYSELINY PEPTIDY 2 9 aminokyselin POLYPEPTIDY 10 100 aminokyselin PROTEINY >100 aminokyselin PRIMÁRNÍ struktura SEKUNDÁRNÍÍ struktura TERCIÁLNÍ struktura KVARTÉRNÍ struktura Pořadí aminokyselin Skládaný
VíceAminokyseliny, proteiny, enzymy
Aminokyseliny, proteiny, enzymy Základy lékařské chemie a biochemie 2013/2014 Ing. Jarmila Krotká Metabolismus základní projev života látková přeměna souhrn veškerých dějů, které probíhají uvnitř organismu
VíceVAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost
VAKUOLA membránou ohraničený váček membrána se nazývá tonoplast běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA Funkce: uložiště odpadů a uskladnění chemických látek (fenolické
VíceNukleové kyseliny Replikace Transkripce, RNA processing Translace
ukleové kyseliny Replikace Transkripce, RA processing Translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti
VíceBÍLKOVINY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 2. 2013. Ročník: devátý
BÍLKOVINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 15. 2. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí s oblastmi chemického
VíceEsenciální Isoleucin Leucin Lysin Methionin Phenylalanin Threonin Tryptofan Valin
Metabolismus Aminokyseliny, proteiny, enzymy Základy lékařské chemie a biochemie 2013/2014 Ing. Jarmila Krotká základní projev života látková přeměna souhrn veškerých dějů, které probíhají uvnitř organismu
VíceBIOKATALYZÁTORY I. ENZYMY
BIOKATALYZÁTORY I. Obecné pojmy - opakování: Katalyzátory látky, které ovlivňují průběh katalyzované reakce a samy se přitom nemění. Dělíme je na: pozitivní (aktivátory) urychlující reakce negativní (inhibitory)
VícePředmět: KBB/BB1P; KBB/BUBIO
Předmět: KBB/BB1P; KBB/BUBIO Chemické složení buňky Cíl přednášky: seznámit posluchače se složením buňky po chemické stránce Klíčová slova: biogenní prvky, chemické vazby a interakce, uhlíkaté sloučeniny,
VíceMá tajemný clusterin u dětí v septickém stavu aktivitu chaperonu? J. Žurek, P.Košut, M. Fedora
Má tajemný clusterin u dětí v septickém stavu aktivitu chaperonu? J. Žurek, P.Košut, M. Fedora Klinika dětské anesteziologie a resuscitace, Lékařská fakulta MU, Fakultní nemocnice Brno DNA transkripce
VíceJana Fauknerová Matějčková
Jana Fauknerová Matějčková glykosyltransferáza schopná syntetizovat řetězec prvních několika molekul glukosy jako základ nové molekuly glykogenu glykogenin tak slouží jako primer prvním krokem je navázání
VíceIntracelulární Ca 2+ signalizace
Intracelulární Ca 2+ signalizace Vytášek 2009 Ca 2+ je universální intracelulární signalizační molekula (secondary messenger), která kontroluje řadu buměčných metabolických a vývojových cest intracelulární
VíceNukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,
VíceBiochemie kosti. Anatomie kosti. Kostní buňky. Podpůrná funkce. Udržování homeostasy minerálů. Sídlo krvetvorného systému
Biochemie kosti Podpůrná funkce Udržování homeostasy minerálů Sídlo krvetvorného systému Anatomie kosti Haversovy kanálky okostice lamely oddělené lakunami Kostní buňky Osteoblasty Osteocyty Osteoklasty
VíceI N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
I V E S T I E D Z V J E V Z D Ě L Á V Á Í AMIKYSELIY PEPTIDY AMIKYSELIY = substituční/funkční deriváty karboxylových kyselin = základní jednotky proteinů (α-aminokyseliny) becný vzorec 2-aminokyselin (α-aminokyselin):
VíceTématické okruhy pro státní záv rečné zkoušky
Tématické okruhy pro státní záv rečné zkoušky Program/Obor Povinný okruh Volitelný okruh (jeden ze t í) Obor: Obecná a aplikovaná Obecná biochemie Biochemie mikroorganism a rostlin biochemie Molekulární
VíceTypy molekul, látek a jejich vazeb v organismech
Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,
VíceMonitorování léků. RNDr. Bohuslava Trnková, ÚKBLD 1. LF UK. ls 1
Monitorování léků RNDr. Bohuslava Trnková, ÚKBLD 1. LF UK ls 1 Mechanismus působení léčiv co látka dělá s organismem sledování účinku léčiva na: - orgánové úrovni -tkáňové úrovni - molekulární úrovni (receptory)
VíceHořčík. Příjem, metabolismus, funkce, projevy nedostatku
Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán
VíceProteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.
Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec
VíceAminokyseliny, peptidy a bílkoviny
Aminokyseliny, peptidy a bílkoviny Dělení aminokyselin Z hlediska obsahu v živé hmotě Z hlediska významu ve výživě Z chemického hlediska Z hlediska rozpustnosti Dělení aminokyselin Z hlediska obsahu v
VícePublikováno z 2. lékařská fakulta Univerzity Karlovy v Praze (http://www.lf2.cuni.cz)
Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze (http://www.lf2.cuni.cz) Biochemie Napsal uživatel Marie Havlová dne 8. Únor 2012-0:00. Sylabus předmětu Biochemie, Všeobecné lékařství, 2.
VíceEnzymy. Vladimíra Kvasnicová
Enzymy Vladimíra Kvasnicová Enzym je biokatalyzátor: enzym vychází z reakce nezměněn Obrázek převzat z http://fig.cox.miami.edu/~cmallery/255/255enz/enzymology.htm (prosinec 2006) Obrázek převzat z http://stallion.abac.peachnet.edu/sm/kmccrae/biol2050/ch1-13/jpegart1-13/05jpeg/05_jpeg_html/index.htm
VíceHořčík. Příjem, metabolismus, funkce, projevy nedostatku
Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán
VíceBunka a bunecné interakce v patogeneze tkánového poškození
Bunka a bunecné interakce v patogeneze tkánového poškození bunka - stejná genetická výbava - funkce (proliferace, produkce látek atd.) závisí na diferenciaci diferenciace tkán - specializovaná produkce
Více