SIMULACE TECHNOLOGICKÝCH PROCESŮ HYBRIDNÍ TECHNIKOU VYUŽÍVAJÍCÍ MATEMATICKO-FYZIKÁLNÍCH MODELŮ A UMĚLÝCH NEURONOVÝCH SÍTÍ



Podobné dokumenty
Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:

Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku

EXPLOITATION OF THE ELEMENTS OF ARTIFICIAL INTELLIGENCE FOR TIME PREDICTION OF COOLING DOWN METAL SPECIMENS BEFORE FORMING.

Introduction to MS Dynamics NAV

WORKSHEET 1: LINEAR EQUATION 1

VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O.

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

The Over-Head Cam (OHC) Valve Train Computer Model

Využití hybridní metody vícekriteriálního rozhodování za nejistoty. Michal Koláček, Markéta Matulová

Litosil - application

CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA

USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING

Transportation Problem

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

CHAIN TRANSMISSIONS AND WHEELS

DC circuits with a single source

Compression of a Dictionary

Transformers. Produkt: Zavádění cizojazyčné terminologie do výuky odborných předmětů a do laboratorních cvičení

EXACT DS OFFICE. The best lens for office work

UPM3 Hybrid Návod na ovládání Čerpadlo UPM3 Hybrid 2-5 Instruction Manual UPM3 Hybrid Circulation Pump 6-9

STŘEDNÍ PŘIROZENÉ DEFORMAČNÍ ODPORY PŘI TVÁŘENÍ OCELÍ ZA TEPLA - VLIV CHEMICKÉHO A STRUKTURNÍHO STAVU

STLAČITELNOST. σ σ. během zatížení

Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK. cz

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Friction drives have constant or variable drives (it means variators). Friction drives are used for the transfer of smaller outputs.

Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.

Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.

A Note on Generation of Sequences of Pseudorandom Numbers with Prescribed Autocorrelation Coefficients

Radiova meteoricka detekc nı stanice RMDS01A

ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION

ANALYSIS OF CHEMICAL REHEATING OF STEEL BY MEANS OF REGRESSION AND ARTIFICIAL NEURAL NETWORKS. Ondřej Zimný a Jan Morávka b Zora Jančíková a

Caroline Glendinning Jenni Brooks Kate Gridley. Social Policy Research Unit University of York

SPECIFICATION FOR ALDER LED

GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA

Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation

Výuka odborného předmětu z elektrotechniky na SPŠ Strojní a Elektrotechnické

TKGA3. Pera a klíny. Projekt "Podpora výuky v cizích jazycích na SPŠT"

Projekt: ŠKOLA RADOSTI, ŠKOLA KVALITY Registrační číslo projektu: CZ.1.07/1.4.00/ EU PENÍZE ŠKOLÁM

Inovace řízení a plánování činností s ohledem na požadavky ISO 9001

Database systems. Normal forms

THE HIGH-SPEED CAMERA IN MACHINING VYSOKORYCHLOSTNÍ KAMERA V OBRÁBĚNÍ

Standardní řada lisů Standard range of presses: x x x

Dynamic Signals. Ananda V. Mysore SJSU

Vánoční sety Christmas sets

VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace

Dynamic Development of Vocabulary Richness of Text. Miroslav Kubát & Radek Čech University of Ostrava Czech Republic

THE PREDICTION PHYSICAL AND MECHANICAL BEHAVIOR OF FLOWING LIQUID IN THE TECHNICAL ELEMENT

Czech Technical University in Prague DOCTORAL THESIS

Počítačové kognitivní technologie ve výuce geometrie

Izolační manipulační tyče typ IMT IMT Type Insulated Handling Rod

Příručka ke směrnici 89/106/EHS o stavebních výrobcích / Příloha III - Rozhodnutí Komise

Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová

DATA SHEET. BC516 PNP Darlington transistor. technický list DISCRETE SEMICONDUCTORS Apr 23. Product specification Supersedes data of 1997 Apr 16

PRAVIDLA ZPRACOVÁNÍ STANDARDNÍCH ELEKTRONICKÝCH ZAHRANIČNÍCH PLATEBNÍCH PŘÍKAZŮ STANDARD ELECTRONIC FOREIGN PAYMENT ORDERS PROCESSING RULES

SPECIAL THEORY OF RELATIVITY

By David Cameron VE7LTD

2. Entity, Architecture, Process

Next line show use of paragraf symbol. It should be kept with the following number. Jak může státní zástupce věc odložit zmiňuje 159a.

Cambridge International Examinations Cambridge International General Certifi cate of Secondary Education

PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I I

Dynamic programming. Optimal binary search tree

Příručka ke směrnici 89/106/EHS o stavebních výrobcích / Příloha III - Rozhodnutí Komise

Mechanika Teplice, výrobní družstvo, závod Děčín TACHOGRAFY. Číslo Servisní Informace Mechanika:

Why PRIME? 20 years of Erasmus Programme Over 2 million students in total Annually

Mikrokvadrotor: Návrh,

Fourth School Year PISTON MACHINES AND PISTON COMPRESSORS

CZ.1.07/1.5.00/

LOGOMANUÁL / LOGOMANUAL

Moderní technologie dokončování velmi přesných děr vystržováním a její vliv na užitné vlastnosti výrobků

Biosensors and Medical Devices Development at VSB Technical University of Ostrava

Invitation to ON-ARRIVAL TRAINING COURSE for EVS volunteers

KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE

Problém identity instancí asociačních tříd

Just write down your most recent and important education. Remember that sometimes less is more some people may be considered overqualified.

FIRE INVESTIGATION. Střední průmyslová škola Hranice. Mgr. Radka Vorlová. 19_Fire investigation CZ.1.07/1.5.00/

EU peníze středním školám digitální učební materiál

Melting the ash from biomass

místo, kde se rodí nápady

Obrábění robotem se zpětnovazební tuhostí

T E S T R E P O R T No. 18/440/P124

Dvojitě vyvážený směšovač pro KV pásma. Doubly balanced mixer for short-wave bands

MODELOVÁNÍ A MĚŘENÍ DEFORMACE V TAHOKOVU

1 st International School Ostrava-mezinárodní gymnázium, s.r.o. Gregorova 2582/3, Ostrava. IZO: Forma vzdělávání: denní

SEMI-PRODUCTS. 2. The basic classification of semi-products is: standardized semi-products non-standardized semi-products

SEZNAM PŘÍLOH. Příloha 1 Dotazník Tartu, Estonsko (anglická verze) Příloha 2 Dotazník Praha, ČR (česká verze)... 91

POPIS TUN TAP. Vysvetlivky: Modre - překlad Cervene - nejasnosti Zelene -poznamky. (Chci si ujasnit o kterem bloku z toho schematu se mluvi.

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

kupi.cz Michal Mikuš

User manual SŘHV Online WEB interface for CUSTOMERS June 2017 version 14 VÍTKOVICE STEEL, a.s. vitkovicesteel.com

glass radiators GLASS RADIATORS skleněné radiátory

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Příručka ke směrnici 89/106/EHS o stavebních výrobcích / Příloha III - Rozhodnutí Komise

POSLECH. Cinema or TV tonight (a dialogue between Susan and David about their plans for tonight)

Silicified stems of upper Paleozoic plants from the Intra Sudetic and Krkonoše Piedmont basins

2N Voice Alarm Station

STUDY EDITS FOR BETTER TRANSPORT IN THE CENTRE OF NÁCHOD

SLEDOVÁNÍ AKTIVITY KYSLÍKU PŘI VÝROBĚ LITINY S KULIČKOVÝM GRAFITEM

Element design_boris Klimek 2013

CONTRIBUTION TO METALLURGICAL TECHNOLOGY CONTROL PROBLEMS PŘÍSPĚVEK K PROBLEMATICE ŘÍZENÍ METALURGICKÝCH TECHNOLOGIÍ

Transkript:

8. -. 5., Brno, Czech Republic, EU SIMULACE TECHNOLOGICKÝCH PROCESŮ HYBRIDNÍ TECHNIKOU VYUŽÍVAJÍCÍ MATEMATICKO-FYZIKÁLNÍCH MODELŮ A UMĚLÝCH NEURONOVÝCH SÍTÍ SIMULATION OF TECHNOLOGICAL PROCESSES USING HYBRID TECHNIQUE EXPLORING MATHEMATICAL-PHYSICAL MODELS AND ARTIFICIAL NEURAL NETWORKS Milan HEGER a, Ivo ŠPIČKA b, Martin BOGAR c, Mária STRÁŇAVOVÁ d, Jiří FRANZ e a VŠB-TU Ostrava, 7. listopadu 5, 78 33 Ostrava-Poruba, Česká republika, milan.heger@vsb.cz b VŠB-TU Ostrava, 7. listopadu 5, 78 33 Ostrava-Poruba, Česká republika, ivo.spicka@vsb.cz c VŠB-TU Ostrava, 7. listopadu 5, 78 33 Ostrava-Poruba, Česká republika, martin.bogar.st@vsb.cz d VŠB-TU Ostrava, 7. listopadu 5, 78 33 Ostrava-Poruba, Česká republika, maria.stranavova.st@vsb.cz e Tieto Czech s.r.o, Varenská 5, 7 Ostrava-Moravská Ostrava, Česká republika, franzj@centrum.cz Abstrakt Optimalizace řízení technologických procesů je obvykle svázána s využitím matematických modelů. Většina technických prostředků využitých pro řízení na úrovni vlastní technologie není přizpůsobena na řešení složitých matematických operací a navíc výpočet s kvalitními podrobnými matematickými modely dynamických systémů je časově velmi náročný a spolu s optimalizací v reálném čase prakticky neřešitelný. Na druhé straně matematický popis umělých neuronových sítí (UNS) je velmi jednoduchý a algoritmy naučené UNS jsou snadno aplikovatelné do stávajících technických prostředků řízení technologických procesů. Aby však mohly být modely na bázi UNS úspěšně použity, musí být UNS účelně naučena na datech, která zahrnují všechny možné varianty, které by mohly nastat v reálném procesu včetně poruchových a havarijních stavů. Taková data však prakticky není možné získat z reálného technologického procesu. Nabízí se však možnost naučit UNS off-line na datech získaných simulacemi s využitím přesných matematických modelů a získat tak model hybridní. Vhodnou organizací simulací je pak zajištěno, že UNS bude správně reagovat i na takové situace, které jsou v reálných podmínkách řízení zcela výjimečné. Cílem tohoto článku je pak na několika praktických procesech ukázat filozofii a možnosti použití těchto hybridních modelů. Abstract The optimization of the technological processes control is usually connected with mathematical models usage. Most of technical instruments for control on the level of own technology is not customized for the hard mathematical operations solving and in addition the computation with quality precisely models of the dynamic systems is very time consuming and together with the real time optimization is not really solvable. On the other hand the mathematical description of artificial neural networks (ANN) is very simple and the algorithms of the learned ANN are easily implemented into existing technological processes control means. For successful using of the models on the base of ANN, the ANN needs to be rationally learned on the data which occupy all eventual variants which could occur in the real process including malfunction and crash states. But such a data is not practically possible to get from real technological process. There is possibility of off-line ANN learning with using data given by simulations based on the high precision mathematical models and by this way to get the hybrid model. By the useful organization it is secured, that ANN will also react correctly to such situations which are highly exceptional in real control conditions. The goal of this paper is to present the philosophy and the possibilities of this hybrid models usage on several practical processes. Klíčová slova: Optimalizace, řízení, umělé neuronové sítě, hybridní modely. Key words: Optimization, control, artificial neural networks, hybrid models.

8. -. 5., Brno, Czech Republic, EU Introduction Mass exploitation of artificial intelligence elements, most frequently artificial neural networks in the process of technical praxis solving has been encountered recently. Exploitation of artificial neural networks has its great value whenever it is difficult to obtain solution by usual analytic procedures. In order to have results obtained by artificial neural network effective, it is always necessary to carefully analyze the whole problems in their complexity and choose such methods to expect real results from neural network with high probability. For example, prediction of observed value time trends in the process of solving dynamic processes, which is often loaded with error, but from control point of view, predictions of certain parameters, such as material temperature at the end of heating process, are often sufficient. These predictions are more accurate and faster available. Another artificial neural network exploitation problem tends to be insufficiency and quality of data for the process of artificial neural network learning. The article should demonstrate hybrid models exploitation, so models based on mathematical-physic al bases and artificial neural network work basis. Application of these models could be expected wherever sufficiently precise mathematical models of systems are known, but where their exploitation in real time is due to complexity of their computation unreal.. HYBRID MODEL PROBLEMS Under hybrid model idea is mostly imagined a model, where part of the computation is executed based on mathematics-physics basis and other with artificial neural network exploitation. This model could be signed as parallel hybrid model. Mathematics-physics models seem to be advantageous for generating of large amount alternatives of real object behaviour and data acquired this way then use for artificial neural network learning. This approach could be named as serial hybrid model. The main reason for serial hybrid models application is effective advantage of computation exploitation on one side and effort for the elimination of their characteristic disadvantages on the other side. Originally, the idea of serial hybrid model has been invented in an effort to find an effective solution for online control of material complex heating and cooling processes intended for forming, it can as well be used for hybrid models creation in other industrial parts.. HYBRID MODEL EXPLOITATION The principle of creation and serial hybrid model exploitation will be explained on the following simple example. Two-phase RC capacitor charging element (Fig.), which is connected as low-pass. u (t) R(t) i (t) i 3 (t) C(t) u (t) From system point of view it is proportional dynamic system of st order, the mathematic description of which can be (provided that i 3 = and parameters R and C can change in time) expressed by the following linear differential equation (), ' t u t u t u t T () i (t) where Obr.. Zapojení RC členu Fig.. Scheme of RC element u (t) RC input electric voltage actual value u (t) output electric voltage actual value T(t) actual system time constant and given by expression T(t) = R(t) * C(t) R(t) resistor, the value of which can change in time C(t) capacity, the value of which can change in time

8. -. 5., Brno, Czech Republic, EU Jump in voltage is used as input signal, the value of which will after some time be increased (see Fig..). This way is the process of RC capacitor charging divided in two steps that differ in the length Δt = t t and Δt = t t and also input voltage value u t, which is constant for Δt a t is constant for Δt. u, which t t Obr.. Časové průběhy nabíjení kondenzátoru RC členu Fig.. RC capacitor charging time courses Analytic differential equation solution describing both steps RC capacitor charging defined this way is simple and its mathematical relationship of voltage u t on output RC element in time interval t t t may be expressed, where the expression () is acquired t u () T t u t e and in time interval t t t which describes the expression (3) tt u. (3) T e t u t u t u t Time course of RC capacitor charging element for parameter values from Tab. is shown in Fig.. Tab. Parametry RC členu Table. Parameters of RC element. R = MΩ T = s t = s Δ t = s u = V C = µf T = s t = 3 s Δ t = s u = V From the following graph can be seen that some kind of simplified analogy between RC capacitor charging element and course of surface material temperature during heating could be found. In technical practice, due to various accidents or changes in control strategy, some deviations from ideal course could be found. This state can be simulated by parameters change change R(t) a C(t) respectively in single charging phases. u t, t u, t, t and value

u (t ) MM, u (t ) ANN [V] difference [V] 8. -. 5., Brno, Czech Republic, EU Set of numbers of solutions differential equation (), () and (3) respectively for basic parameters set according to Tab. and loaded with random value changes in the range ± % can be seen in Fig.3. Solutions with tabular values Final charging time and final voltage value on the RC element output at the end of charging process are considerably variable. Similar set of solutions could be found in the process of various heating conditions simulation, only the mathematical model including all physical-chemical processes in three dimensional heat diffusion would be substantially complicated and single solutions generating would Set of all solutions be rather time consuming. For optimal heating control, where multiple simulation repetition is t t required before control system executes competent decision, this kind of model is in praxis non applicable. Obr. 3. Množina náhodných řešení nabíjení On the other hand, a model based on artificial Fig. 3. Set of random solving of charging neural networks has its great advantage because of universal inner structure, which is generally independent of work physical principles of simulated object. The basis is effective interconnection of mathematical analogues of physical neuron. It proceeds from the following and generally known basic mathematical relationship describing neuron: z i j f neur n k w x k k (4) Neural network for the example with RC capacitor element charging then could have a structure according to Fig.4. Even if the structure looks rather complicated at first sight, voltage definition at RC element output at the end of charging process - u (t ) by means of learned artificial neural network for given input values R, R, C, t, t u a u is then effortless. Because the precision of the results acquired by artificial neural network exploitation depends not only on quality, but also on the 8 6 4 8 6 4 6 6 6 Experiment No. Obr. 5. Výsledky predikcí pomocí UNS,,6,,8,4 -,4 -,8 -, -,6 -, mathematical model model with ANN difference between the two models Fig. 5. Prediction results by means of ANN R R C t t u u Obr. 4. Struktura UNS Fig. 4. ANN structure u (t ) amount and data distribution, 7 curves with random choice of input variables with ±% allowance (training set) were generated with aid of mathematical model for artificial neural network learning process. Voltage values at the ends of single charging u (t ) MM were the outputs. Having been artificial neural network learned in "Neuronek" program [], the functionality was verified at voltage prediction u (t ) ANN. For this reason, testing data sum about 7 experiments in volume was generated. Expected results and prediction deviations by

8. -. 5., Brno, Czech Republic, EU means of artificial neural network are stated in figure 5. Maximum error was around ±, V, which is very satisfactory result. 3. HYBRID MODEL EXPLOITATION IN THE PROCESS OF STEEL SPECIMENS COOLING CURVES In paper [.] was shown that cooling curves for specimens, which vary in shape, have the same character and therefore is sufficient when artificial neural network would not predict cooling curve, but corresponding time transformation coefficient (TTC) only, by reciprocal value of which must be transformed physically measured (referential) cooling curve of know shape, therefore the time course of cooling predicted curve for specimens of required dimensions (see Fig. 6) is acquired. In real-time cooling process of two geometrically different steel specimens intended for rolling process, two cooling curves were acquired by means of maximum surface temperature measurement. For correct artificial neural network learning is the count insufficient. Therefore it is effective to use mathematical-physical three-dimensional model of heat diffusion spread in material, which results from Fourier partial differential equation [3.]: c T t material Tmaterial (5) and external heat transfer model at third category conditions results from equation [3.]: Tsurface T surface T mediums (6) n Model parameters could be defined based on identification of both measured cooling curves, on which mathematical-physical models were also verified. To acquire more data for artificial neural network learning process, another five simulations for various geometric specimen shapes were carried out on these models (see Fig. 6). Artificial neural network was learned in "Neuronek" program and tested on another specimen with simulated cooling. The geometric dimensions of the specimens with the appropriate TTC for particular experiments are listed in the table.. From Fig.7 is obvious that prediction by means of artificial neural network exhibits a good relationship with mathematical model results (maximum error do not exceed 5%, which represents s as the maximum error of determining the cooling down time). Tab. Parametry vzorků Table. The specimens' parameters purpose Experiment No. Wide of specimen Height of specimen measured,3,3, 4,,67 3 3,4,46 4 4,4 3,95 Sumulation for 5 7, 3,45 ANN learning 6 3,6 7 7,,4 testing 8 7, 4,48 TTC

Temperature [ C] time [s] 8. -. 5., Brno, Czech Republic, EU Specimens 4 8.3x.3.x4. 3 prediction with ANN 6 4 3.4x. 4.4x3. 7.x3..x3. simulation 7.x. 3 6 9 5 time [s] 7.x4. 6 8 temperature [ C] Obr. 6. Křivky chladnutí Obr. 7. Přesnost predikce Fig. 6. Cooling down curves Fig. 7. Accuracy of prediction 4. CONCLUSION Even if two professionally different but relatively simple examples for hybrid model exploitations were used, it can be seen that satisfactory accuracy for technical praxis was achieved. For successful hybrid models application is fundamental: to create truthful mathematical model of a real object, to properly choose seeking output value or more values, which characterize the process, to choose significant input variables and strategy of changes of their values, so that the simulation would cover the whole field of real object controlling methods, to carry out sufficient number of simulations so that artificial neural network is learned with satisfactory accuracy. By hybrid model application can control system acquire fast means not only for result prediction of actual control strategy, but also for results computation of various control options. It enables to correct control mechanism in time with goal to achieve optimal control. ACKNOWLEDGEMENTS The methodology described and results were obtained in the framework of the solution of Research Plan MSM 69895 (Ministry of Education of the Czech Republic) and project 59366 (Czech Science Foundation). LITERATURE [.] HEGER, M.; DAVID, J. Neuronek program pro výuku neuronových sítí. In Sborník semináře XXVI. ASŘ : Instrumets and Control, Ostrava,, ISBN 8-778-89-9. [.] HEGER, M.; FRANZ, J.; ŠPIČKA, I. Využití prvků umělé inteligence pro predikci času chladnutí kovových vzorků před tvářením. Hutnické listy. roč. LXI, 8, Sv. č.

8. -. 5., Brno, Czech Republic, EU [3.] ŠPIČKA, I.; HEGER, M.; FRANZ, J. The Mathematical-Physical models and The Neural Network Exploitation for Time Prediction of Cooling Down Low Range Specimen. Archives of Matallurgy and Materials., Sv. vol. 55, 3/