ÈÁST VII - K V A N T O V Á F Y Z I K A



Podobné dokumenty
OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ)

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

Jméno a příjmení. Ročník. Měřeno dne Příprava Opravy Učitel Hodnocení. Fotoelektrický jev a Planckova konstanta

Ing. Stanislav Jakoubek

Na základě toho vysvětlil Eisnstein vnější fotoefekt, kterým byla platnost tohoto vztahu povrzena.

4. STANOVENÍ PLANCKOVY KONSTANTY

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

Digitální učební materiál

ČÁST VII - K V A N T O V Á F Y Z I K A

9. Fyzika mikrosvěta

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka

Vlnění, optika a atomová fyzika (2. ročník)

Zeemanův jev. Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov

Studium fotoelektrického jevu

37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra

ZÁKLADY SPEKTROSKOPIE

Čím je teplota látky větší (vyšší frekvence kmitů), tím kratší je vlnová délka záření.

L A S E R. Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami.

Základy fyzikálněchemických

5 Měření absorpce ionizujícího záření v závislosti na tlaku vzduchu

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů

2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A

7.8 Kosmická loď o délce 100 m letí kolem Země a jeví se pozorovateli na Zemi zkrácena na 50 m. Jak velkou rychlostí loď letí?

4.3. Kvantové vlastnosti elektromagnetického záření

λ, (20.1) infračervené záření ultrafialové γ a kosmické mikrovlny

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model

Předmět: Technická fyzika III.- Jaderná fyzika. Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY. Obor:MVT Ročník:II.

- studium jevů pozorovaných při průchodu světla prostředím: - absorpce - rozptyl (difúze) - rozklad světla

Relativistická dynamika

Vybrané podivnosti kvantové mechaniky

ZÁKLADNÍ POJMY KVANTOVÉ FYZIKY, FOTOELEKTRICKÝ JEV. E = h f, f je frekvence záření, h je Planckova

1 Tepelné kapacity krystalů

36 RADIOAKTIVITA. Rozpadový zákon Teorie radioaktivního rozpadu Umělá radioaktivita

Kam kráčí současná fyzika

Měření výstupní práce elektronu při fotoelektrickém jevu

Maturitní okruhy Fyzika

A Large Ion Collider Experiment

Jaroslav Reichl. Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl, 2017

VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost

MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fakulta BAKALÁŘSKÁ PRÁCE

Solární elektrárna Struhařov

Einsteinových. podle množství. dá snadno určit osud vesmíru tři možné varianty

Počátky kvantové mechaniky. Petr Beneš ÚTEF

E e = hf -W. Kvantové vysvětlení fotoelektrického jevu. Fotoelektrický jev vysvětlil Einstein pomocí Planckovy kvantové

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15

ELEKTROMAGNETICKÁ INTERAKCE

FYZIKA na LF MU cvičná. 1. Který z následujících souborů jednotek neobsahuje jen základní nebo odvozené jednotky soustavy SI?

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA

Elektronový obal atomu

Měření absorbce záření gama

Elektřina a magnetismus UF/ Základy elektřiny a magnetismu UF/PA112

5. Měření výstupní práce elektronu při fotoelektrickém jevu

13. Spektroskopie základní pojmy

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření.

školní vzdělávací program ŠKOLNÍ VZDĚLÁVACÍ PROGRAM DR. J. PEKAŘE V MLADÉ BOLESLAVI RVP G 8-leté gymnázium Fyzika II. Gymnázium Dr.

STUDIUM FOTOEFEKTU A STANOVENÍ PLANCKOVY KONSTANTY. 1) Na základě měření vnějšího fotoefektu stanovte velikost Planckovy konstanty h.


HISTORIE ATOMU. M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy,

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

BAKALÁŘSKÁ PRÁCE. Univerzita Palackého v Olomouci. Sbírka příkladů z atomové a jaderné fyziky. Přírodovědecká fakulta. Katedra experimentální fyziky

Pohyb elektronu ve zkříženém elektrickém a magnetickém poli a stanovení měrného náboje elektronu

Dualismus vln a částic

Určení Planckovy konstanty pomocí fotoelektrického jevu

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

KIS A JEJICH BEZPEČNOST I PŘENOS INFORMACÍ DOC. ING. BOHUMIL BRECHTA, CSC.

Maturitní témata profilová část

Od kvantové mechaniky k chemii

Jak se pozorují černé díry? - část 2. Základy rentgenové astronomie

Pokroky matematiky, fyziky a astronomie

Stručný úvod do spektroskopie

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

1. 2 Z Á K L A D Y K V A N T O V É T E O R I E

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Elektromagnetické kmitání

. Maximální rychlost lze určit z brzdného napětí V. je náboj elektronu.

Práce, energie a další mechanické veličiny

8.1 Elektronový obal atomu

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

41 ELEKTRICKÉ VLASTNOSTI

Fyzik potkává filmaře

Za hranice současné fyziky

ZÁŘENÍ V ASTROFYZICE

Theory Česky (Czech Republic)

Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_F.5.20 Autor Mgr. Jiří Neuman Vytvořeno Základy relativistické dynamiky

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Ústav aplikované fyziky a matematiky ZÁKLADY FYZIKY II

2. Atomové jádro a jeho stabilita

Elektromagnetické vlnění, vlny a částice

ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5

Pavel Cejnar. mff.cuni.cz. Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze

LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

5. Elektromagnetické vlny

100 let od vzniku speciální teorie relativity

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

λ hc Optoelektronické součástky Fotorezistor, Laserová dioda

Transkript:

Kde se nacházíme? ÈÁST VII - K V A N T O V Á F Y Z I K A 29 Èásticové vlastnosti elektromagnetických vln 30 Vlnové vlastnosti èástic 31 Schrödingerova formulace kvantové mechaniky Kolem roku 1900-1915 øada experimentù, které neodpovídaly klasické fyzice : na pø. fotoelektrický jev, záøení èerného tìles, Comptonùv jev - hovoøí se o krizi fyziky - nutný nový pohled na jevy v pøírodì Y KVANTOVÁ FYZIKA Co je to FOTOELEKTRICKÝ JEV? (pomocí simulace Coloradské universit- PhET

2 29 ÈÁSTICOVÉ VLASTNOSTI ELEKTROMAGNETICKÝCH VLN Fotony - Experimenty, které prokázaly existenci fotonu : Fotoelektrický jev, Comptonùv jev, Záøení absolutnì èerného tìlesa, 29.1 Fotony Foton je základním elementem elektromagnetického pole a zaøazujeme ho proto mezi tzv. elementární èástice, tj. základní èástice, ze kterých sestává náš svìt. Vlastnosti fotonu urèují vìty 29.1 a 29.2.. 29.1 Energie fotonu je urèena vztahem (29.1) -34 kde Planckova konstanta h = 6,6256.10 J s, =h/2ð, í je kmitoèet záøení a ù je úhlový kmitoèet.

3 29.2 Hybnost fotonu je urèena vztahem (29.2) resp.. ve vektorovém tvaru vztahem (29.3) kde k je vlnový vektor (vìta 24.1).

4 EXPERIMENT è. 1 - FOTOELEKTRICKÝ JEV = ENERGIE FOTONU Heinrich Hertz 1887 ( objevuje elmg. vlny a zjiš uje, že UV záøení ovlivòuje výboj) Wilhelm Hallwachs 1888 ( vybíjení kovových desek UV záøením) J.J. Thomson 1899 ( emitované èástice jsou elektrony) Philipp Lenard 1902 ( brzdný potenciál, jeho nezávislost na intenzitì ). 29.3 Rovnice pro fotoelektrický jev (Einsteinova rovnice) (29.4) 2 kde A je tzv. výstupní práce materiálu, na který dopadají fotony, W k=1/2 mv je kinetická energie vyletujících elektronù. Výstupní práce nìkterých kovù A =... ev Hliník 4.08 ev Cesium 2.1 ev Olovo 4.14 ev Draslík 2.3 ev Uran 3.6 ev Beryllium 5.0 ev Kobalt 5.0 ev Hoøèík 3.68 ev Platina 6.35 ev Zinek 4.3 ev Kadmium 4.07 ev Mìï 4.7 ev Rtu 4.5 ev Selen 5.11 ev Vápník (calcium) 2.9 ev Zlato 5.1 ev Nikl 5.01 ev Støíbro 4.73 ev Uhlík 4.81 ev Železo 4.5 ev Niob 4.3 ev Sodík 2.28 ev

5 Co je to FOTOELEKTRICKÝ JEV? (pomocí simulace Coloradské universit- PhET Komentáø k fotoelektrickému jevu Velmi pøesvìdèivým dùkazem fotonové struktury elektromagnetického záøení je tzv. fotoelektrický jev. Je to jev, pøi kterém se pøi ozáøení vhodných látek (kovù) svìtlem vhodné vlnové délky uvolòují z jejich povrchu elektrony. Schéma uspoøádání experimentu je na obr. 29.2. Charakteristické vlastnosti tohoto jevu jsou 1. kinetická energie vyletujících elektronù nezávisí na intenzitì dopadajícího záøení, 2. uvolòování elektronù nastává jen pro kmitoèty dopadajícího záøení í>í o. V podstatì i na základì elektromagnetické teorie svìtla vyjádøené Maxwellovými rovnicemi bylo možno oèekávat takový jev, avšak pro platnost uvedených poznatkù nebyla tato teorie schopna poskytnout žádný rozumný argument. Správné vysvìtlení jevu podal až r. 1905 Einstein na základì zpøesnìní Planckovy hypotézy, že totiž kvantovou povahu má nejen samotný jev emise elektromagnetického záøení, ale i její absorpce. Elektromagnetické záøení se tedy šíøí v podobì "korpuskulí" (fotonù), které mají nejen energii W=hí, ale v souladu se vztahem (24.55) i hybnost p=w/c=hí/c, (což je vztah (29.2)) a hmotnost m=hí/c2. Zápis (29.3) vyplývá z pøedchozího vztahu na základì rovnic í=ù/2ð, c=íë a definice vlnového vektoru (vìta 24.1). Podle Einsteina se energie fotonu W=hí absorbovaná v pevné látce elektronem, spotøebuje zèásti na pøekonání vazebních a povrchových sil (tzv. výstupní práce A) a zbytek tvoøí kinetická energie elektronu mv 2/2. Musí tedy platit rovnice

6 (29.4) což je rovnice (29.4). Pøi hí<a nemùže dojít k uvolòování elektronù, což vysvìtluje existenci dolní frekvenèní hranice fotoelektrického jevu. Minimální kmitoèet, pøi kterém se elektron právì staèí uvolnit z povrchu látky s nulovou rychlostí je urèen podmínkou (29.6) 14 což napø. ve vápníku s A = 2,9eV dává ío 7.10 Hz. Vznik fotoelektrického jevu ve vápníku mùžeme tedy oèekávat pøi ozáøení svìtlem s vlnovou délkou kratší než asi ë = 427 nm, což velmi dobøe souhlasí s pozorováním ( viz simulace ). Fotoelektrický jev ve vápníku (calcium Ca)A = 2,9eV:vlnová délka záøení ë = 427 nm, napìtí U=0V proud I = 0 na Fotoelektrický jev ve vápníku (calcium Ca) A = 2,9eV:vlnová délka záøení ë = 210nm, brzdné napìtí U br =-3V proud I = 0 na 2 Pokud naopak platí podmínka hí >A vyletují elektrony z kovu katody s kinetickou energií mv /2, takže i pøi napìtí U = 0V na elektronce z obr. 29.2 protéká obvodem proud. Napìtí, potøebné k potlaèení proudu, brzdné napìtí U br splòuje podmínku pro náš pøípad draslíku je to U br = -3V ( náboj elektronu je e = - 1,6 10 C (viz simulace). Ze závislosti brzdného napìtí na vlnové délce záøení lze stanovit experimentálnì Planckovu konstantu ( viz praktikum). -19

EXPERIMENT è.2 : COMPTONÙV ROZPTYL = HYBNOST FOTONU 7 Obr. 29.4 Zaøízení pro mìøení Comptonova rozptylu: 1-zdroj fotonù, 2-clona, 3-pevné látka, ve které dochází k rozptylu, 4-detektor fotonù Obr. 29.5 Rozložení intenzity rozptýleného záøení pøi rùzných rozptylových úhlech A. H. Compton (10. 9.,1892-3.15.1962) Comptonùv jev - srážka fotonu s elektronem 1927 Nobel Prize in Physics Time magazine, January 13, 1936. 29.4 Zmìna vlnové délky fotonu pøi Comptonovì rozptylu je (29.5)

8 Comptonovy vlnové délky: ë = h/(mc) o -12 2.426 310 238(16) x 10 m (electron) -15 1.319 590 9067(88) x 10 m (neutron) -15 1.321 409 8555(88) x 10 m (proton) Odvození Comptonova jevu Dalším jevem svìdèícím o existenci fotonù je tzv. Comptonùv jev. Podle principu kvantové fyziky je energie fotonu nedìlitelná, takže po ozáøení absorbujícího prostøedí záøením mùžeme oèekávat po prùchodu látkou sice zmenšený poèet fotonù, avšak se stejným kmitoètem. Ukázalo se však, že záøení se pøi prùchodu mùže "mìnit" na záøení s vìtší vlnovou délkou rozptýlené do stran. Tento jev vysvìtlil na základì kvantové a relativistické fyziky Compton, proto se nazývá Comptonùv jev. Pøedstavme si, že foton se chová jako èástice, a proto pøi interakci s elektronem mùže dojít ke srážce podobající se srážce dvou pružných koulí (obr. 13.11). Po srážce se elektron - který byl pùvodnì v klidu - pohybuje jedním smìrem a foton se zmìnìnou energií, tj. i jiným kmitoètem, jiným smìrem. I zde musí být splnìny dva zákony: zákon zachování energie a zákon zachování hybnosti. Pomocí rovnic (29.1) a (16.29) mùžeme prvý z nich vyjádøit rovnicí Obr. 29.3 K odvození Comptonova rozptylu (29.7) Zákon zachování hybnosti musíme napsat ve vektorovém tvaru. Hybnost fotonu pøed srážkou je podle (29.2) p o=ihí o"c, po srážce p'=i'hí"c, kde i a i' jsou jednotkové vektory ve smìru pohybu fotonu pøed a po srážce. Hybnost elektronu pøed srážkou je p eo=0 a po srážce p e=mv. Zákon zachování hybnosti tedy mùžeme psát a dále pak rozepsat na dvì skalární rovnice vyjadøující prùmìty do zvolených x a y os

9 (29.8) (29.9) kde ã je úhel, který svírá vektor hybnosti elektronu po srážce s pùvodním smìrem pohybu fotonu a á je úhel, pod kterým se rozptýlí novì vzniklý foton. Výhodnìjší je pøejít na vyjádøení zmìny vlnové délky použitím vztahu ë=c/í. Rovnice (29.8) a (29.9) tím pøejdou na tvar (s uvážením m=ßm ) o Jejich umocnìním na druhou a seètením získáme (29.10) Úpravou rovnice (29.7) dostaneme Tuto rovnici rovnìž umocníme na druhou a potom od ní odeèteme rovnici (29.10). Dostaneme další rovnici (29.11) Výraz v hranaté závorce se však rovná nule a ze zbývající rovnice po uvedení na spoleèného jmenovatele výrazu v závorce už lehce dostaneme vztah (29.5). Mìøení na pomìrnì jednoduchém zaøízení (obr. 29.4) tento vztah velmi dobøe potvrdila (obr. 29.5). Tak mùžeme Comptonùv jev považovat za velmi pøesvìdèivý dùkaz kvantové povahy èástic pole - fotonù.

Je zajímavé si povšimnout otázky klidové hmotnosti fotonù z hlediska teorie relativity. Fotony, pohybující se ve vakuu rychlostí svìtla mají podle speciální teorie relativity hmotnost (16.27) 10 (29.12) V pøípadì, že klidová hmotnost fotonu m of je nenulová (i když nepatrnì malá) roste m f nade všechny meze (mf ). Odstranit tento rozpor se skuteèností je možné pouze pøijetím podmínky m of=0, tj. klidová hmotnost fotonu je nulová. Z rovnice pro celkovou relativistickou energii èástice (16.35) vyplývá, že jeho energie je W=pc a hybnost p=wc=hí/c, což je ve shodì s vìtami (29.1) a (29.2). Poznámka: Na závìr tohoto èlánku si musíme nevyhnutelnì položit otázku: Co je tedy svìtlo - vlnìní nebo proud èástic? Vlnovou povahu nemùžeme zamítnout z hlediska poznatkù interference, ohybu a polarizace, èásticovou povahu si zase vynucují jevy uvedené v tomto èlánku. Jediná správná odpovìï na tuto otázku je taková, že elektromagnetické záøení (tj. i svìtlo) má souèasnì vlnovou i korpuskulární povahu, i když se tyto vlastnosti v našich pøedstavách vyluèují. Naštìstí neexistuje jev, v kterém by se souèasnì projevily obì protichùdné povahy svìtla. Podle èasto používané interpretace se pøi vzniku a zániku záøení projevují kvantové vlastnosti, pøi šíøení naopak vlnové vlastnosti.