MATHEMATIC SIMULATION OF THE WEDGE ROLLING TEST AND COMPUTER PROCESSING OF LABORATORY RESULTS

Podobné dokumenty
POSSIBILITIES OF COMPUTER ANALYSIS EXPLOITATION IN THE PROCESS OF SOLUTION SOME TASKS CONNECTED WITH MATERIAL FORMING

ZDOKONALENÁ KLÍNOVÁ ZKOUŠKA TVARITELNOSTI PRI VÁLCOVÁNÍ ZA TEPLA IMPROVED WEDGE TEST OF FORMABILITY AT HOT ROLLING

Využití počítačového rozpoznávání obrazu pro určení parametrů laboratorně válcovaných vzorků

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:

UTILIZATION OF THE HOT WEDGE TEST IN RESEARCH OF HOT FORMABILITY OF FREE-CUTTING STAINLESS STEELS

VÝZKUM PLASTICKÝCH VLASTNOSTÍ CrNiSi OCELI ZA TEPLA VÁLCOVÁNÍM A KROUCENÍM

SEMI-PRODUCTS. 2. The basic classification of semi-products is: standardized semi-products non-standardized semi-products

STŘEDNÍ PŘIROZENÉ DEFORMAČNÍ ODPORY PŘI TVÁŘENÍ OCELÍ ZA TEPLA - VLIV CHEMICKÉHO A STRUKTURNÍHO STAVU

SIMPLE MODELS DESCRIBING HOT DEFORMATION RESISTANCE OF SELECTED IRON ALUMINIDES

Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku

Introduction to MS Dynamics NAV

Litosil - application

CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA

MOŽNOSTI TVÁŘENÍ MONOKRYSTALŮ VYSOKOTAVITELNÝCH KOVŮ V OCHRANNÉM OBALU FORMING OF SINGLE CRYSTALS REFRACTORY METALS IN THE PROTECTIVE COVER

Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.

The Over-Head Cam (OHC) Valve Train Computer Model

Objasnění příčin vzniku vady při válcování speciálního profilu pomocí MKP

Moderní technologie dokončování velmi přesných děr vystržováním a její vliv na užitné vlastnosti výrobků

Compression of a Dictionary

GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA

HOT FORMABILITY OF LEDEBURITIC TOOL STEEL X155CrVMo12.1. TVAŘ ITELNOST LEDEBURITICKÉ NÁSTROJOVÉ OCELI X155CrVMo12.1 ZA TEPLA

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Využití hybridní metody vícekriteriálního rozhodování za nejistoty. Michal Koláček, Markéta Matulová

DATA SHEET. BC516 PNP Darlington transistor. technický list DISCRETE SEMICONDUCTORS Apr 23. Product specification Supersedes data of 1997 Apr 16

WORKSHEET 1: LINEAR EQUATION 1

STLAČITELNOST. σ σ. během zatížení

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

LOGOMANUÁL / LOGOMANUAL

SPECIAL FORMING METHODS. Use: It is used for the production of cylindrical and conical parts of exact shapes, which needn t be further machined.

DC circuits with a single source

VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace

Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.

TKGA3. Pera a klíny. Projekt "Podpora výuky v cizích jazycích na SPŠT"

VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O.

User manual SŘHV Online WEB interface for CUSTOMERS June 2017 version 14 VÍTKOVICE STEEL, a.s. vitkovicesteel.com

OBJASNĚNÍ PŘÍČIN VZNIKU VADY PŘI VÁLCOVÁNÍ SPECIÁLNÍHO PROFILU POMOCÍ MKP

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

UPM3 Hybrid Návod na ovládání Čerpadlo UPM3 Hybrid 2-5 Instruction Manual UPM3 Hybrid Circulation Pump 6-9

Radiova meteoricka detekc nı stanice RMDS01A

Biosensors and Medical Devices Development at VSB Technical University of Ostrava

Next line show use of paragraf symbol. It should be kept with the following number. Jak může státní zástupce věc odložit zmiňuje 159a.

Database systems. Normal forms

KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE

ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION

Stojan pro vrtačku plošných spojů

MODELS OF MEAN FLOW STRESS AND STRUCTURE EVOLUTION OF IRON ALUMINIDES IN HOT FORMING

Tváření,tepelné zpracování

Vánoční sety Christmas sets

PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I I

Risk management in the rhythm of BLUES. Více času a peněz pro podnikatele

THE HIGH-SPEED CAMERA IN MACHINING VYSOKORYCHLOSTNÍ KAMERA V OBRÁBĚNÍ

Údaje o stroji PWO UNITOOLS 1250T-1

2. Entity, Architecture, Process

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů

STUDY EDITS FOR BETTER TRANSPORT IN THE CENTRE OF NÁCHOD

EXACT DS OFFICE. The best lens for office work

PAINTING SCHEMES CATALOGUE 2012

Together H A N D B O O K

SPECIFICATION FOR ALDER LED

PC SIMULACE PRONIKU PLASTICKÉ DEFORMACE V ZÁVISLOSTI NA PODCHLAZENÍ POVRCHOVÝCH VRSTEV PRI VÁLCOVÁNÍ SOCHORU. Richard Fabík a Jirí Kliber a

Uni- and multi-dimensional parametric tests for comparison of sample results

Air Quality Improvement Plans 2019 update Analytical part. Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová

Research infrastructure in the rhythm of BLUES. More time and money for entrepreneurs

INŽENÝRSKÁ MECHANIKA 2002

CASTING HAND PRODUCTION USING MOULDS

CREEP AUSTENITICKÉ LITINY S KULIČKOVÝM GRAFITEM CREEP OF AUSTENITIC DUCTILE CAST IRON

Standardní řada lisů Standard range of presses: x x x

filtrační polomasky disposable respirators


4Ever H A N D B O O K

Transportation Problem

GENERAL INFORMATION RUČNÍ POHON MANUAL DRIVE MECHANISM

Převod prostorových dat katastru nemovitostí do formátu shapefile

Transactions of the VŠB Technical University of Ostrava, Mechanical Series. article No Vladislav KŘIVDA *

T E S T R E P O R T No. 18/440/P124

CZ.1.07/1.5.00/

EXPLOITATION OF THE ELEMENTS OF ARTIFICIAL INTELLIGENCE FOR TIME PREDICTION OF COOLING DOWN METAL SPECIMENS BEFORE FORMING.

USER'S MANUAL FAN MOTOR DRIVER FMD-02

Image Analysis and MATLAB. Jiří Militky

OPTIMALIZACE CHLAZENÍ KALIBROVANÝCH VÁLCŮ OPTIMIZATION OF CALIBRATED SHAPED ROLLS. Pohanka, M., Horský, J., Juriga, A.

Czech Technical University in Prague DOCTORAL THESIS

1-AYKY. Instalační kabely s Al jádrem. Standard TP-KK-133/01, PNE Konstrukce. Použití. Vlastnosti. Installation cables with Al conductor

Effect of temperature. transport properties J. FOŘT, Z. PAVLÍK, J. ŽUMÁR,, M. PAVLÍKOVA & R. ČERNÝ Č CTU PRAGUE, CZECH REPUBLIC

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník LII, řada strojní článek č.

Transformers. Produkt: Zavádění cizojazyčné terminologie do výuky odborných předmětů a do laboratorních cvičení

Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation

SIMULACE TECHNOLOGICKÝCH PROCESŮ HYBRIDNÍ TECHNIKOU VYUŽÍVAJÍCÍ MATEMATICKO-FYZIKÁLNÍCH MODELŮ A UMĚLÝCH NEURONOVÝCH SÍTÍ

Friction drives have constant or variable drives (it means variators). Friction drives are used for the transfer of smaller outputs.

Comparison of Two Designs for the Spiral Casing of the Fan Grinding Mill. Porovnání dvou konstrukčních variant spirálové skříně ventilátorového mlýna

Project Life-Cycle Data Management

USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING

THE NUMERICAL PREDICTION OF FRICTION FORCES DISTRIBUTION WITHIN THE ROLL BITE WHEN HOT ROLLING STEEL

WYSIWYG EDITOR PRO XML FORM

CHAIN TRANSMISSIONS AND WHEELS

Dynamic Development of Vocabulary Richness of Text. Miroslav Kubát & Radek Čech University of Ostrava Czech Republic

Inovace řízení a plánování činností s ohledem na požadavky ISO 9001

PLASTICKÉ VLASTNOSTI VYSOKOPEVNOSTNÍCH MATERIÁLŮ DĚLENÝCH NESTANDARDNÍMI TECHNOLOGIEMI

Why PRIME? 20 years of Erasmus Programme Over 2 million students in total Annually

Foster Bohemia s.r.o. Laboratoř měření imisí Immission Measurement Laboratory. Mezi Rolemi 54/10, Praha 5, Jinonice, Česká republika

BLATNÍKY A BEDNY NA NÁŘADÍ MUDGUARDS AND TOOLBOXES

Transkript:

Acta Metallurgica Slovaca, 12, 2006, 4 (469-476) 469 MATHEMATIC SIMULATION OF THE WEDGE ROLLING TEST AND COMPUTER PROCESSING OF LABORATORY RESULTS Kubina T. 1, Schindler I. 1, Turoňová P. 1, Heger M. 1, Franz J. 2, Liška M. 3, Hlisníkovský M. 4 1 Faculty of Metallurgy and Materials Engineering, VŠB Technical University of Ostrava, Czech Republic, E-mail: tomas.kubina@vsb.cz, milan.heger@vsb.cz 2 AutoCont CZ a.s., Ostrava, Czech Republic 3 VÍTKOVICE Research & Development, spol. s r. o., Ostrava, Czech Republic 4 TŘINECKÉ ŽELEZÁRNY, a.s.,třinec, Czech Republic MATEMATICKÁ SIMULACE KLÍNOVÉ VÁLCOVACÍ ZKOUŠKY A POČÍTAČOVÉ ZPRACOVÁNÍ LABORATORNÍCH VÝSLEDKŮ Kubina T. 1, Schindler I. 1, Turoňová P. 1, Heger M. 1, Franz J. 2, Liška M. 3, Hlisníkovský M. 4 1 Fakulta metalurgie a materiálového inženýrství, VŠB Technická univezita Ostrava, Česká republika, E-mail: tomas.kubina@vsb.cz, milan.heger@vsb.cz 2 AutoCont CZ a.s., Ostrava, Česká republika 3 VÍTKOVICE Výzkum a vývoj, spol. s r. o., Ostrava, Česká republika 4 TŘINECKÉ ŽELEZÁRNY, a.s., Třinec, Česká republika Abstrakt Jednoduchá laboratorní zkouška, prováděná válcováním klínovitého vzorku na hladkých válcích, umožňuje efektivní zkoumání strukturotvorných procesů a tvařitelnosti kovových materiálů, a to díky možnosti provést výškovou deformaci v širokém rozsahu na jednom vzorku. Při tváření jsou na povrchu tvářeného materiálu indukovaná tahová napětí což může vést k porušení. Takto je to velmi vhodná metoda k porovnání tvařitelnosti nesnadně tvařitelných materiálů. Matematické zpracování výsledků klínové zkoušky je komplikované v důsledku nerovnoměrného tvaru vývalku. Z tohoto důvodu byl vyvinut počítačový program, jako univerzální nástroj pro matematické zpracování zmiňované zkoušky a který pracuje nezávisle na složitosti tvaru konečného provalku. Základem je vyhodnocení obrazu provalku, kdy se využívá obrazové analýzy ve spojení s naměřenou délkou. Spolu s počátečními rozměry klínu pak obdržíme hodnoty poměrné deformace, skutečné deformace a deformační rychlosti po celé délce vzorku. Program je taky použitelný v případě, kdy počáteční vzorek pro klínovou laboratorní zkoušku je opatřen V vruby na kraji ve vertikálním směru. Tyto zářezy fungují jako iniciátory trhlin a umožňují tak lépe porovnat plastické vlastnosti různých kovových materiálů. Deformační vlastnosti v blízkosti těchto vrubů byly taky podrobeny analýze pomocí metody konečných prvků s využitím programu FORGE 2005. Simulace potvrdily růst podílu tahových napětí na povrchu vrubu a zcitlivění na tvorbu trhlin. Zároveň se tvoří přeložky během průchodu vrubu přes válcovací mezeru. Poznatky získané výpočtem tak souhlasí s vlastnostmi vzorků válcovaných laboratorní válcovací stolicí. Abstract A simple laboratory test, performed by rolling of the wedge-shaped sample on plain rolls, enables to investigate the structure-forming processes and formability of metallic materials effectively, thanks to its ability to implement a wide range of height reductions in a single sample. The formed material s spread induces tensile stresses at the sample s lateral faces,

Acta Metallurgica Slovaca, 12, 2006, 4 (469-476) 470 which can yield in cracking. This method is very suitable for comparison of rollability of some materials with lower. Mathematical processing of the wedge rolling test s results is complicated due to an irregular shape of the rolled stock. Hence the developed software represents an universal instrument for mathematical processing of results of the discussed test, which works reliably and independently on complexity of shape of the final rolled product. It is valid also in the case when the initial sample for the wedge rolling test is provided with notches of V shape, milled in the vertical direction on a lateral surface. These notches function as initiators of cracks and make it possible to better compare plastic properties of miscellaneous metallic materials. Deformation behaviour of the material close to these notches was subjected to FEM analysis by means of program FORGE 2005. The simulation confirmed an increased share of tensile stresses on the face of the notch and susceptibility to crack formation. At the same time the formation of laps during drawing the notch into the roll gap was confirmed. Knowledge gained by calculation are in full accordance with behaviour of the samples rolled in a laboratory rolling mill. Keywords: wedge rolling test, formability, cracking, computer analysis, FEM 1. Introduction A simple laboratory test performed by rolling of the wedge-shaped sample on plain rolls enables to investigate both the hot and cold deformation behaviour and above all formability of metallic materials effectively, thanks to its ability to implement a wide range of height reductions (commonly from 0 up to ca 80 %) in a single sample. The formed material s spread induces tensile stresses at the sample s lateral faces, which can yield in cracking. Formability (or more exactly rollability) of the actual material can thus be evaluated as a function of temperature and strain. It is necessary to note that this experimental method cannot give the exactly defined results comparable e.g. with the results of plastometric tests because of the markedly changing conditions along the rolled sample s length (states of stresses, strain rate, etc.). On the other hand, this method is very suitable for comparison of rollability of some materials with lower plasticity e.g. those containing some subsurface flaws in as-cast state. To increase accuracy and comfort of this method the special software was developed for calculation of equivalent strain and strain rate in whatever cross section along the length of the resulting rolling stock [1]. Calculations are based on comparison of corresponding partial volumes of the wedge-shaped initial sample and resulting rolling stock. The latter has approximately constant thickness but due to spread strongly irregular planar shape and size. This factor considerably complicates principle application of the law of volume preservation, when necessary calculations of partial strain components are carried out. The outlined particular problem was successfully solved by applying methods of computer analysis of a bitmap picture gained by scanning the planar shape of the sample after its rolling and straightening [2]. 2. Obtaining of picture of the rolled out sample and its computer processing Accuracy in obtaining of dimensions of the rolled out sample has decisive influence on accuracy of values computation which represent plastic features of the material, of which the sample is made. In general a mechanical deduction of dimensions in several cross-sections is made and the obtained values are averaged. However, the values obtained in such a way do not allow to acquire continuous values of the monitored parameters and are loaded with a statistical discrepancy. Computer techniques open new possibilities of acquiring precise dimensions of the

Acta Metallurgica Slovaca, 12, 2006, 4 (469-476) 471 samples with exploitation of picture analysis. There are several possibilities how to acquire a first-rate two-dimensional picture of the plan area projection of the rolled out sample that is crucial for its volume determination [3]. One of the possibilities is use of a camera or videocamera. In this case, however, some risk of incorrect deduction of the dimensions may occur. It is due to the fact that 1) the camera is not always in the same distance of the sample in the process of repeating measurements, and 2) the value of magnification (ZOOM) need not be the same. Repeatability of measurements and accessibility of the suitable technique may be obtained by use of the scanner. While preserving the optimal differentiation ability in DPI, the acquiring of precise absolute values of picture dimensions is assured (see figure 1). In the process of rolling, the original sample is deformed and the edges of the sample are irregular with dome-shaped concavity. Also various forms of surface roughness (notches, cracks and so on) result in local changes of colour of the sample. These defects have to be retouched because they could have unfavourable consequences in the process of computer analysis of the picture. In figure 1 the picture of the rolled out sample is shown before (left) and after (right) picture hand retouching. After the picture is retouched, it can be analyzed and a set of values about the sample width along its length may be obtained. Now an additional program was created, which enables easy and quality retouching of the picture of the sample in such a way so that errors during transfer of the picture to dimensions of the sample could be minimized. Fig.1 Rolled out sample (right - retouched picture) The program will read the file of the required picture of the sample and will screen this picture. The corrector will make the brush wet in a place of the sample that corresponds with its colour to the corrected area. The correction itself is performed by drawing a circular correction mark with selected diameter in places of the picture which may be different in colour and where possible errors of transfer to dimension could occur.

Acta Metallurgica Slovaca, 12, 2006, 4 (469-476) 472 Further the program makes it possible, after pressing the button, to create a check screen of the result of quality of retouching and hence localize easily some shortcomings of retouching, as the case may be. The retouched picture is stored in a new file and it is ready for computer processing of results of the wedge rolling test. Fig 2 RGB model Fig. 3 HLS model Every pixel of the picture is defined by ordered triad of colour components RGB (see figure 2). The RGB arrangement is suitable for colour displaying on the computer monitor, but for dimension analysis of the sample s pictures the RGB values have to be converted to an arrangement that is divided into three components which define Hue, Saturation and Luminance. As the most suitable HLS arrangement was chosen, the basic expression of colour information of which is apparent in figure 3. By choosing an appropriate interval of single components of HLS arrangement [4], the monitored object can be picked up from the whole picture and converted to a contrast projection, where the sample has black and its surroundings white attributes of colours. The pre-processed picture can be now further compiled in order to acquire precise layout dimensions of the deformed sample. Dome-shaped concavity of the sample sides after rolling results in problems with definition of accurate width and length of the sample, respectively. In the process of dimensions determination by mechanical measurement (e.g. with a slide rule), the diameter between maximum (outer relief) and minimum (inception of dome-shaped concavity) value is usually taken. Fig.4 Initial shape of a wedge-shaped sample (side wall and ground plan) Computer analysis enables to increase the precision of this operation. Because of illuminating of the sample by the scanner, the dome-shaped concavities are distinguished by the change of the colour hue and luminance compared to the rest of the sample. By changing the

Acta Metallurgica Slovaca, 12, 2006, 4 (469-476) 473 parameters that define the dividing line between the sample and its surroundings and in agreement with the law of the volume preservation, the agreement between the known volume of the wedged sample (see figure 4) before rolling and computed volume of the rolled out sample can be reached; hence, the high precision of the width and length of the sample is assured. Fig.5 Simplified schema of rolling of the wedge-shaped sample 3. Computation of deformation features of rolled material Knowing the geometry dimensions of the initial as well as rolled sample, the developed program is ready for computation of actual deformation features. Its intention is not only the improvement of computation but also maximum simplicity, comfort and automation for acquiring and computation of information about the rolled material. When calculating equivalent strain, it is necessary to determine the real roll bite length l d (see figure 5) in any place of the rolled sample and assign the selected cross section of the rolling stock to the relevant cross section of the input wedge-shape sample (by comparing the partial volumes of the sample before and after its forming). Equivalent strain e is calculated according to equation 2 2 2 2 e = eh + ew + e (1) l 3 where strain in the height direction e h = ln(h s /h x ), strain in the width direction e w = ln(b s /b x ), and strain in the length direction is calculated according to the law of conservation of volume as e l = -e h - e w. Equivalent strain rate é [s -1 ] has been simply defined as v é = e (2) l d

Acta Metallurgica Slovaca, 12, 2006, 4 (469-476) 474 where v [mm/s] is output velocity of the rolling stock. Figure 6 shows an example of information obtained after the complex computer processing described above, with using equation 1 and 2 data concerning shredding strain as well as strain rate along the hot rolled wedge-shaped sample made from the Cr-Ni-Cu-S freecutting austenitic steel 17247CuS (temperature 1000 C). Before the test itself this steel was heat treated by annealing at 1200 C / 0.5 hours and water cooled [5]. Length of the wedge-shaped sample was 150 mm with eight notches (see figure 4). Evident cracks were observed starting from the notch No. 3, i.e. from ca 60 % of the height reduction of the sample. Fig.6 Plan shape of the rolled out wedge and strain/speed relations along the rolling stock (steel 17247CuS, temperature 1000 C) 4. Mathematical simulation of rolling of the wedge-shaped sample To add knowledge of deformation behaviour of tested materials a mathematical simulation by means of FEM was carried out on the basis of the program FORGE 2005 of the company Transvalor. For comparison with samples rolled on real conditions, simulations of rolling of wedge-shaped samples with notches were computed. A model for austenitic steel corresponding to steel grade 17247CuS was chosen from the material database, i.e. the same material that is used for exhibition of evaluation of the wedge rolling test in Figure 6 [6]. It was most difficult to select an appropriate friction coefficient µ from boundary conditions; an optimum value seems to be µ = 0.4. The initial conditions were defined according to actual conditions of rolling (roll diameter, geometry of the sample, rotational speed of rolls, roll temperature, wedge temperature). An obvious contradiction results from the direct comparison of the obtained shapes. The result of mathematical simulation does not take into account springback of rolls, forming tools are here defined as rolls rotating around the axis that is in a constant position during computation. In real conditions this cannot be maintained due to clearances in bearings of rolls and rigidity of the rolling mill stand. It is obvious from the obtained results that a lap in the top of the notch will arise at the entry of the formed material into rolls. Size and location of laps formed in this way may be seen in figure 7 by means of criterion of lap formation c f [7]. In this figure also status of the end of

Acta Metallurgica Slovaca, 12, 2006, 4 (469-476) 475 the wedge-shaped sample with last three notches can be seen. These results are in accordance with observations of the surface of the rolled out wedge-shaped sample. Fig.7 Results for criterion of lap formation c f at simulation of rolling of wedge-shaped sample made from steel 17247CuS (heating temperature 1000 C). Fig.8 Course of the normalized Nathan and Cockroft variable c nnc at the level of last 8 th notch and specific places related to width of the sample from steel 17247CuS (heating temperature 1000 C). From viewpoint of stress state during forming itself we were interested in a distribution of stress in location of the notch. It was confirmed that in the notch location a formation of tensile stress occurs at lower deformation size than in case of tensile stress that occurs at the edge of the sample at the roll gap exit. The normalized Nathan and Cockroft variable c nnc was used for a more general expression. The results was obtained by a-posteriori sensors. In figure 8 one can see an approximately identical growth of this criterion for points in a half and in a fourth of width of the sample, at the level of the last notch during moving across the roll bite. In the vicinity of the last notch a value of the normalized Nathan and Cockroft variable increases above 0.45, which is considered to be an usual critical value for starting of crack formation in the material. This relationship is calculated again for steel 17247CuS and heating temperature 1000 C. 5. Conclusion

Acta Metallurgica Slovaca, 12, 2006, 4 (469-476) 476 By exploitation of computer analysis of the rolled out material, the wedge test becomes very effective because assigning between particular corresponding cross sections of the wedge-shaped rolled out sample is very accurate, which allows to improve considerably even calculations of deformation parameters. Of course, for evaluation of the test the outlined procedure connected with picture evaluation of shape of the rolled out sample has to be followed. With only one sample it is possible to evaluate formability at the given temperature and to take the material necessary for metallographic observations with different, accurately defined, deformation parameters. In the case of materials with good formability it is possible to make the wedge test more sensitive by means of the V-shaped notch. Influence of these notches was investigated by means of FEM. Formation of laps on the surface of the material that is in contact with rolls was proved by calculation. This fact helped to differentiate laps from cracks that are formed at lateral sides of the rolled wedge-shaped samples with notches. By expression of the normalized Nathan and Cockroft variable we confirmed correctness of the assumption of higher sensitivity of the material in the area of a notch to crack formation in rolling, which was also verified during laboratory tests. Acknowledgement The article has come into existence in the framework of solution of the projects MSM6198910015 (Ministry of Education, Youth and Sports of the Czech Republic) and 106/05/2596 (Czech Science Foundation). Literature [1] Heger M., Schindler I., Franz J, Čmiel K.:Computer processing of results of the wedge test of formability, Proc. Conf. CO-MAT-TECH 2003, Trnava 2003, pp. 255-258 [2] Turoňová P., Schindler I., Heger M., Bořuta J., Jelen L., Jonšta P., Sojka J.: Comparison of the hot plasticity parameters obtained by the wedge rolling test and torsion, Proc. Conf. Forming 2005, Ostrava 2005, pp. 303-308. [3] Heger M., Schindler I., Franz J.:The Exploitation of Picture Computer Recognition for Parameters Determination in the Laboratory Sheeting Process, Proceedings of XXVIII. ASR Seminary 03, Instruments and Control, VŠB-TU Ostrava, Ostrava 2003, pp. 131-138. [4] Žára J., Beneš B., Felkel P,: Moderní počítačová grafika, Computer Press, Praha 1998 [5] Rusz S., Schindler I., Turoňová P., Suchánek P., Kubečka P., Liška M., Hlisnikovský M., Heger M.,: Hot Formability of High-Alloyed Steels Studied by Wedge Rolling Test, Proc. Conf. Forming 2006, Katowice 2006, pp. 175-180. [6] Schindler I., Bořuta J.,: Deformační odpory ocelí při vysokoredukčním tváření za tepla. Hutnické listy, 1995, No. 7-8, pp. 1-47 [7] Forge - Reference guide version 2005, Transvalor, Mougins Ceres 2005.