VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI OCELI PRO ŽELEZNICNÍ KOLA THE INFLUENCE OF HEAT TREATENT ON THE PROPPERTIES OF STEEL FOR RAILWAY WHEELS



Podobné dokumenty
INFLUENCE OF TEMPERING ON THE PROPERTIES OF CAST C-Mn STEEL AFTER NORMALIZING AND AFTER INTERCRITICAL ANNEALING. Josef Bárta, Jiří Pluháček

Popouštění ocelí. Teorie tepelného zpracování Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2007

Metodika hodnocení strukturních změn v ocelích při tepelném zpracování

HODNOCENÍ VLASTNOSTÍ VÝKOVKŮ ROTORŮ Z OCELI 26NiCrMoV115

VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI JEMNOZRNNÝCH SVAŘITELNÝCH OCELÍ PRO TENKOSTĚNNÉ ODLITKY

TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, Plzeň Česká republika

MENDELOVA UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA BAKALÁŘSKÁ PRÁCE

NEKONVENČNÍ VLASTNOSTI OCELI 15NiCuMoNb5 (WB 36) UNCONVENTIONAL PROPERTIES OF 15NiCuMoNb (WB 36) GRADE STEEL. Ladislav Kander Karel Matocha

TEPELNÉ ZPRACOVÁNÍ RYCHLOŘEZNÝCH OCELÍ SVOČ FST 2010 Lukáš Martinec, Západočeská univerzita v Plzni, Univerzitní 8, Plzeň Česká republika

TECHNOLOGIE SVAŘOVÁNÍ MIKROLEGOVANÝCH OCELÍ DOMEX 700MC SVOČ FST

VLIV TECHNOLOGIE ŽÁROVÉHO ZINKOVÁNÍ NA VLASTNOSTI ŽÁROVĚ ZINKOVANÝCH OCELÍ

INFLUENCE OF HEAT RE-TREATMENT ON MECHANICAL AND FATIGUE PROPERTIES OF THIN SHEETS FROM AL-ALLOYS. Ivo Černý Dagmar Mikulová

VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI VYSOCEPEVNÉ NÍZKOLEGOVANÉ OCELI. David Aišman

VLIV OBSAHU HLINÍKU NA VLASTNOSTI HOŘČÍKOVÝCH SLITIN PŘI ODLÉVÁNÍ DO BENTONITOVÝCH A FURANOVÝCH FOREM

STRUKTURNÍ STABILITA A VLASTNOSTI SVAROVÝCH SPOJŮ OCELI T24

Hodnocení degradace ocelí pro tepelnou energetiku pomocí mikrosrukturních paramertrů

ASTM A694 F60 - TEPELNÉ ZPRACOVÁNÍ A MECHANICKÉ VLASTNOSTI ASTM A694 F60 HEAT TREATMENT AND MECHANICAL PROPERTIES

STRUKTURNÍ A FÁZOVÁ ANALÝZA OCELI T23 STRUCTURE AND PHASE ANALYSIS OF T23 STEEL

POVRCHOVÉ VYTVRZENÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM PLAZMOVOU NITRIDACÍ SURFACE HARDENING OF NIOBIUM-CONTAINING PM TOOL STEEL BY PLASMA NITRIDING

Tváření,tepelné zpracování

MOŽNOSTI VYUŽITÍ MIKROLEGOVANÝCH OCELÍ. Tomáš Schellong Kamil Pětroš Václav Foldyna. JINPO PLUS a.s., Křišťanova 2, Ostrava, ČR

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VLIV TEPELNÉHO ZPRACOVÁNÍ NA STRUKTURU A MECHANICKÉ VLASTNOSTI NÁSTROJOVÝCH OCELÍ

HODNOCENÍ MIKROSTRUKTURY A VLASTNOSTÍ ODLITKŮ ZE SLITINY AZ91HP EVALUATION OF MICROSTRUCTURE AND PROPERTIES OF SAND CAST AZ91HP MAGNESIUM ALLOY

PLASTICKÉ VLASTNOSTI VYSOKOPEVNOSTNÍCH MATERIÁLŮ DĚLENÝCH NESTANDARDNÍMI TECHNOLOGIEMI

TEPELNÉ ZPRACOVÁNÍ OCELÍ

þÿ V l i v v o d í k u n a p e v n o s t a s v ay i t vysokopevných martenzitických ocelí pro automobilové aplikace

VÝVOJ MIKROSTRUKTURY VÍCEFÁZOVÉ OCELI S TRIP EFEKTEM SVOČ - FST 2013

, Hradec nad Moravicí POLYKOMPONENTNÍ SLITINY HOŘČÍKU MODIFIKOVANÉ SODÍKEM

POCÍTACOVÁ SIMULACE ZRYCHLENÉHO OCHLAZOVÁNÍ PLOCHÝCH TYCÍ PO VÁLCOVÁNÍ PC SIMULATION OF FLAT BARS ACCELERATED COOLING AFTER ROLLING

Jominiho zkouška prokalitelnosti

Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení

POPIS PRECIPITAČNÍCH DĚJŮ PŘI SEKUNDÁRNÍM VYTVRZENÍ PM NÁSTROJOVÉ OCELI SE ZVÝŠENÝM OBSAHEM NIOBU. P. Novák, M. Pavlíčková, D. Vojtěch, J.

THE IMPACT OF PROCESSING STEEL GRADE ON CORROSIVE DEGRADATION VLIV TEPELNÉHO ZPRACOVÁNÍ OCELI NA KOROZNÍ DEGRADACI

4. KOVOVÉ MATERIÁLY A JEJICH ZPRACOVÁNÍ. 4.1 Technické slitiny železa Slitiny železa s uhlíkem a vliv dalších prvků

TEPELNÉ ZPRACOVÁNÍ NIKLOVÝCH SUPERSLITIN HEAT TREATMENT OF HIGH-TEMPERATURE NICKEL ALLOYS. Božena Podhorná a Jiří Kudrman a Karel Hrbáček b

PRVNÍ POZNATKY Z VÁLCOVÁNÍ MIKROLEGOVANÝCH PÁSŮ S MEZÍ KLUZU NAD 460 MPa NA TRATI STECKEL. Radim Pachlopník Pavel Vavroš

SIMULACE TEPELNÉHO ZPRACOVÁNÍ TYČOVÉ OCELI NA INDUKČNÍCH ZUŠLECHŤOVACÍCH LINKÁCH

Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení

materiálové inženýrství

Metalurgie vysokopevn ch ocelí

MECHANICKÉ A NĚKTERÉ DALŠÍ CHARAKTERISTIKY PLECHŮ Z OCELI ATMOFIX B (15127, S355W) VE STAVU NORMALIZAČNĚ VÁLCOVANÉM

Mn max. P max. Mezní úchylky pro rozbor hotového výrobku % hmot. Označení oceli Pevnostní vlastnosti Zkouška rázem v ohybu

NEDOSTATKY PŘI VÝBĚRU A ZPRACOVÁNÍ VYSOKOLOGOVANÝCH NÁSTROJOVÝCH OCELÍ. Peter Jurči

CREEP AUSTENITICKÉ LITINY S KULIČKOVÝM GRAFITEM CREEP OF AUSTENITIC DUCTILE CAST IRON

SMĚROVÁ KRYSTALIZACE EUTEKTIK SYSTÉMU Ti-Al-Si DIRECTIONAL CRYSTALLIZATION OF Ti-Al-Si EUTECTICS

FÁZOVÉ PŘEMĚNY. Hlediska: termodynamika (velikost energie k přeměně) kinetika (rychlost nukleace a rychlost růstu = celková rychlost přeměny)

VLIV MIKROSTRUKTURY NA ODOLNOST DUPLEXNÍ OCELI 22/05 VŮČI SSC. Petr Jonšta a Jaroslav Sojka a Petra Váňová a Marie Sozańska b

TECHNOLOGICAL PROCESS IN ISOTHERMAL HEAT TREATMENT OF STEEL TECHNOLOGICKÝ POSTUP PŘI IZOTERMICKÉM TEPELNÉM ZPRACOVÁNÍ OCELI

VÝZKUM MECHANICKÝCH VLASTNOSTÍ A STRUKTURNÍ STABILITY SUPERSLITINY NA BÁZI NIKLU DAMERON. Karel Hrbáček a

Kinetika austenitizace nízkouhlíkové Mn oceli při interkritickém tepelném zpracování

2 MECHANICKÉ VLASTNOSTI SKLA

Charakteristika. Vlastnosti. Použití FYZIKÁLNÍ VLASTNOSTI TEPLOTA KOROZNÍ ODOLNOST ELMAX. Kaleno a popouštěno na 58 HRC

VLIV OBSAHU NIKLU NA VLASTNOSTI LKG PO FERITIZAČNÍM ŽÍHÁNÍ EFFECT OF THE CONTENT OF NICKEL ON DI PROPERTIES AFTER FERRITIZATION ANNEALING

VLIV MIKROLEGUJÍCÍCH PRVKŮ A PARAMETRŮ TEPELNÉHO ZPRACOVÁNÍ NA MECHANICKÉ VLASTNOSTI PLECHŮ JAKOSTI P 460N

3. VÝSLEDKY ZKOUŠEK A JEJICH DISKUSE

HAIGHŮV DIAGRAM VYBRANÉ PRUŽINOVÉ OCELI HAIGH DIAGRAM OF SELECTED SPRING STEEL

PEVNOSTNÍ MATERIÁLY V KAROSÉRII

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VLIV INTERKRITICKÉHO ŽÍHÁNÍ NA VLASTNOSTÍ OCELI 10GN2MFA POUŽÍVÁNÉ V JADERNÉ ENERGETICE.

VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA.

Radek Knoflíček 45. KLÍČOVÁ SLOVA: Hydraulický lis, hydropneumatický akumulátor, mezní stav konstrukce, porucha stroje.

PŘÍSPĚVEK K POVRCHOVÉ ÚPRAVĚ SKLOVITÝM SMALTOVÝM POVLAKEM CONTRIBUTION TO SURFACE ARRANGEMENT WITH VITREOUS ENAMEL COAT

Obsah jednotlivých prvků v hm.% ocel C Mn Si Al P S TRIP 1 0,23 1,35 1,85 0,025 0,015 0,006

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Postupy. Druh oceli Chemické složení tavby hmotnostní % a) Značka Číselné označení. Mn P max. S max 0,40-1,20 0,60-1,40

Posouzení stavu rychlořezné oceli protahovacího trnu

Měření mikro-mechanických vlastností tepelně zpracovaných ocelí. Jaroslav Zapletal

OCELI A LITINY. Ing. V. Kraus, CSc. Opakování z Nauky o materiálu

MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA LITÝCH NIKLOVÝCH SLITIN PO DLOUHODOBÉM ÚČINKU TEPLOTY

Obr. 1. Řezy rovnovážnými fázovými diagramy a) základního materiálu P92, b) přídavného materiálu

, Hradec nad Moravicí CHOVÁNÍ OCELI T23 PŘI DLOUHODOBÉM ÚČINKU TEPLOTY BEHAVIOUR OF STEEL T23 AFTER LONG-TIME TEMPERATURE EFFECT

EVALUATION OF SPECIFIC FAILURES OF SYSTEMS THIN FILM SUBSTRATE FROM SCRATCH INDENTATION IN DETAIL

VZTAH MIKROSTRUKTURY A MECHANICKÝCH VLASTNOSTÍ KONSTRUKCNÍ OCELI 15NiCuMoNb5 PRO PLÁŠTE KOTLU A TLAKOVÉ NÁDOBY

VÝZKUM MOŽNOSTÍ ZVÝŠENÍ ŽIVOTNOSTI LOŽISEK CESTOU POVRCHOVÝCH ÚPRAV

VLIV TEPELNÉHO ZPRACOVÁNÍ NA MECHANICKÉ VLASTNOSTI A VYSOKOTEPLOTNÍ STABILITU NIKLOVÉ SLITINY IN 792 5A

MOŽNOSTI TVÁŘENÍ MONOKRYSTALŮ VYSOKOTAVITELNÝCH KOVŮ V OCHRANNÉM OBALU FORMING OF SINGLE CRYSTALS REFRACTORY METALS IN THE PROTECTIVE COVER

Výrobky válcované za tepla z jemnozrnných svařitelných konstrukčních ocelí termomechanicky válcované. Technické dodací podmínky

1. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

VÁLCOVÁNÍ ZA STUDENA TRIP OCELI PO TERMOMECHANICKÉM ZPRACOVÁNÍ THE COLD ROLLING OF TRIP STEEL AFTER THERMOMECHANICAL TREATMENT

Metalografie ocelí a litin

PODKRITICKÝ RŮST TRHLINY VE SVAROVÉM SPOJI MEZI KOMOROU A PAROVODEM KOTLE VÝKONU 230 T/H. Jan KOROUŠ, Ondrej BIELAK BiSAFE, s.r.o.

ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC

DETERMINATION OF MECHANICAL AND ELASTO-PLASTIC PROPERTIES OF MATERIALS BY NANOINDENTATION METHODS

VÝROBA TEMPEROVANÉ LITINY

STŘEDNÍ PŘIROZENÉ DEFORMAČNÍ ODPORY PŘI TVÁŘENÍ OCELÍ ZA TEPLA - VLIV CHEMICKÉHO A STRUKTURNÍHO STAVU

Antonín Kříž a) Miloslav Chlan b)

Pevnost a životnost Jur III

Tepelné a chemickotepelné zpracování slitin Fe-C. Žíhání, kalení, cementace, nitridace

VÝZKUM MECHANICKÝCH VLASTNOSTÍ SVAROVÝCH SPOJŮ MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ T24 A P92. Ing. Petr Mohyla, Ph.D.

VLIV MLETÍ ÚLETOVÉHO POPÍLKU NA PRŮBĚH ALKALICKÉ AKTIVACE

VLIV TEPELNÉHO ZPRACOVÁNÍ A MIKROLEGOVÁNÍ NA MIKROSTRUKTURU A VLASTNOSTI LITÝCH MANGANOVÝCH OCELÍ

VLIV TEPELNĚ-MECHANICKÉHO ZPRACOVÁNÍ NA VLASTNOSTI DRÁTU Z MIKROLEGOVANÉ OCELI. Stanislav Rusz a Miroslav Greger a Otakar Drápal b Radim Lukáš a

PRASKÁNÍ VRTÁKŮ PO TEPELNÉM ZPRACOVÁNÍ Antonín Kříž

Mikrostrukturní analýza svarového spoje oceli P92 po creepové expozici

OPTIMÁLNÍ POSTUPY TEPELNÉHO ZPRACOVÁNÍ MATERIÁLŮ PRO PRÁCI ZA TEPLA. Jiří Stanislav

VÝVOJ NOVÉ TECHNOLOGIE OPRAVY SVAROVÝCH SPOJŮ POMOCÍ WELD OVERLAY (WOL)

POSSIBLE GENERALISATION OF DECREASE IN MECHANICAL PROPERTIES OF CARBON STEEL (ČSN ) ON OTHER STEELS

T E C H N I C K Á U N I V E R Z I T A V L I B E R C I

Kvantifikace strukturních změn v chrom-vanadové ledeburitické oceli v závislosti na teplotě austenitizace

Transkript:

VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI OCELI PRO ŽELEZNICNÍ KOLA THE INFLUENCE OF HEAT TREATENT ON THE PROPPERTIES OF STEEL FOR RAILWAY WHEELS Rudolf Foret a Petr Matušek b a FSI-VUT v Brne,Technická 2,616 69 Brno, CR, foret@umi.fme.vutbr.cz b BONATRANS, a. s.,bezrucova 300, 735 94 Bohumín, CR, matušek@bonatrans.cz Abstrakt Príspevek pojednává o optimalizaci tepelného zpracování oceli 24CrMo5-4, používané k výrobe železnicních kol. Na podklade provedených zkoušek tahem a rázem v ohybu, doplnených o zevrubný strukturní a fraktografický rozbor bylo zjišteno, že strukturní stav uvedené oceli by mel být tvoren popušteným martenzitem a bainitem BIII, nebo smesí bainitu BII a BIII. Teplota popouštení by nemela být vyšší než 300 C. Abstract The paper deals with problems of the heat treatment of steel 24CrMo5-4 used in the manufacture of railway wheels. On the basis of the performed tests of mechanical properties combined with exhaustive structural analysis and fractographic analysis it was found that the optimum structural state of the above steel appears to be formed by tempered martensite and bainites ranging from BIII to a mixture of bainites BII and BIII. The tempering temperature should not exceed ca. 300?C. 1. ÚVOD Na železnicní kola jsou kladeny stále vetší nároky, nebot vzrustá jejich osové zatížení, roste rychlost a intenzita prepravy. Mezi casté príciny poruch železnicních kol patrí kontaktní únava (Rolling Contact Fatigue). V prípade simulace rustu trhlin pri RCF jsou uvažována tato tri stadia: iniciace trhliny, rust trhliny pod malým úhlem vzhledem k povrchu pod úcinkem kontaktních napetí a vertikální vetvení trhlin za pusobení ohybových napetí. Podle Pointnera [1] vzrustá odolnost oceli vuci iniciaci uvedených trhlin s rostoucí mezí kluzu, v prípade vetvení trhlin je treba zajistit mimo vysoké pevnosti i dostatecnou houževnatost. Soucasný vývoj ocelí pro železnicní kola sleduje oba parametry. tj. zachování nebo rust hodnot pevnostních charakteristik za soucasného zvyšování houževnatosti. 2. EXPERIMENTÁLNÍ MATERIÁL A JEHO TEPELNÉ ZPRACOVÁNÍ. Experimentální práce byly realizovány na nízkolegované oceli 24CrMo5-4, která je používána k výrobe železnicních kol. Experimentální materiál byl odebrán z výkovku dvou kol prumeru o prumeru 730 a 920 mm. Tepelné zpracování jednotlivých kol, ci jejich segmentu, je uvedeno v tab. 1. Z této tabulky je zrejmé, že bylo použito peti variant kalení a následne pak trí variant popouštení (ozn. A, B a C). 3. POUŽITÉ EXPERIMENTÁLNÍ METODY Plochy metalografických výbrusu byly pripraveny na preražených vzorcích po zkouškách rázem v ohybu broušením za mokra a leštením diamantovými pastami. Po naleptání 5 % Nita- 1

Tabulka 1 Tepelné zpracování kol Table 1 Heat treatment of wheels prumer kola 920 mm prumer kola 730 mm Ozn. TZ 2A 2B 2C 4A 4B 4C 6A 6B 6C 8A 8B 8C 10A 10B 10C Ochlazení z teploty austenitizace ochlazování, dlouhý pobyt ve vode ve vode než TZ 2 ve vode než TZ 4 vodou vyšší intenzita ochlazování, dlouhý pobyt ve vode vodou vyšší intenzita ve vode než TZ 8 Popouštení Ozn. TZ IIA IIB IIC IVA IVB IVC VIIIA VIIIB VIIIC XA XB XC Ochlazení z teploty austenitizace ochlazování, dlouhý pobyt ve vode ve vode než TZ 2 vodou vyšší intenzita ochlazování, dlouhý pobyt ve vode vodou vyšší intenzita ve vode než TZ VIII Popouštení 510 C 540 C 510 C 540 C 510 C 540 C 510 C 540 C lem byly struktury vyhodnocovány nejdríve na metalografickém mikroskopu, poté pak s využitím obrazu sekundárních elektronu rastrovacího elektronového mikroskopu (REM) 30 XL Philips. Obsah zbytkového austenitu byl stanoven rentgenograficky. Materiál k výrobe vzorku pro zkoušky rázem v ohybu (KU a KV pri 20 C) byl odebrán z vence kol; pro tahové zkoušky byl materiál odebírán z vence i desky. Vybrané lomové plochy vzorku po zkouškách rázem v ohybu byly studovány pomocí REM JXA-840A Jeol. 4. VÝSLEDKY EXPERIMENTÁLNÍCH PRACÍ Vliv použitých variant tepelného zpracování na hodnoty meze kluzu, pevnosti v tahu a nárazové energie je uveden na obr. 1 až 4. Hodnoty R p 0,2 a R m pro stavy pouze kalené jsou nejvyšší pro vyšší intenzitu ochlazování. Tyto rozdíly jsou výraznejší a uvedené hodnoty jsou vyšší pro kolo 920 mm. Popouštením segmentu kola 730 mm na teplotách 510 a 540 C došlo k mírnému poklesu obou velicin, aplikované pouštení v podstate nemá vliv na hodnoty R p 0,2 a R m. V prípade kola 920 mm popouštení vedlo ke snížení uvedených hodnot, pricemž toto snížení je zvlášte výrazné u stavu kalených vyšší intenzitou ochlazování a je úmerné velikosti teploty popouštení. Hodnoty KU pri 20 C ve stavu kaleném jsou pro kolo 730 mm srovnatelné a relativne vysoké (mimo variantu IVA, pro kterou jsou hodnoty KU témer polovicní). Popouštení na teplote 510 C vedlo k výraznému poklesu hodnot KU pro zpusoby kaleni II a IV. Popouštení na 540 C v podstate srovnalo hodnoty KU na úroven asi 23 J, tyto hodnoty jsou nižší než ve stavu kaleném. Popouštení segmentu kola 920 mm prí 450 o C vedlo v porovnání se stavy nepopuštenými ke zkrehnutí, které se nejvíce projevilo u variant kalení 8 a 10. Popouštení na 620 o C se projevilo nárustem prumerných hodnot KU, soucasne však došlo k znacnému zvetšení jejich rozptylu, takže minimální hodnoty KU jsou pro všechny varianty kalení (mimo variantu 8) na úrovni stavu A a B. 2

Rp0,2, Rm, MPa 1500 1000 500 0 IIA IVA VIIIA XA IIB IVB VIIIB XB IIC IVC varianty tepelného zpracování VIIIC XC KU, J 40 35 30 25 20 15 10 5 0 IIA IVA VIIIA XA IIB IVB VIIIB XB IIC IVC VIIIC XC varianty tepelného zpracování Obr. 1 Vliv tepelného zpracování na hodnoty R p 0.2 a R m (kolo 730 mm) Fig. 1 Influence of heat treatment on values of R p 0.2 and R m (wheel 730 mm) Obr. 2 Vliv tepelného zpracování na hodnoty KU a KV (kolo 730 mm) Fig. 2 Influence of heat treatment on values of KU and KV (wheel 730 mm) 1600 1400 140 120 Rm, Rp0,2, MPa 1200 1000 800 600 400 KU, KV(-20 C), J 100 80 60 40 200 20 0 0 2A 2B 2C 4A 4B 4C 6A 6B 6C 8A 8B 8C 10A 10B 10C varianty tepelného zpracování 2A 2B 2C 4A 4B 4C 6A 6B 6C 8A 8B 8C 10A 10B 10C varianty tepelného zpracování Obr. 3 Vliv tepelného zpracování na hodnoty R p 0.2 a R m (kolo 920 mm) Fig. 3 Influence of heat treatment on values of R p 0.2 and R m (wheel 920 mm) Obr. 4 Vliv tepelného zpracování na hodnoty KU a KV (kolo 920 mm) Fig. 4 Influence of heat treatment on values of KU and KV (wheel 920 mm) Také srovnání hodnot KV pri -20 o C prokázalo zkrehnutí studované oceli po popouštení na teplote 450 o C, pricemž na popouštení je zvlášte citlivá varianta kalení 8. Popouštení na 620 o C vedlo k nárustu hodnot KV pri -20 o C, pricemž minimální hodnoty se príliš neliší od variant popouštení A a B. Zkoušky rázem v ohybu byly doplneny o zevrubný fraktografický rozbor. Vetšina lomových ploch odpovídá semikrehkým lomum (hodnoty KU v intervalu 20 až 40 J) s transkrystalickým tvárným porušením (iniciací) pod vrubem a s transkrystalickým štepným nebo transkrystalickým kvazištepným nestabilním šírením a se smykovými okraji po obvodu lomové plochy. Velikost štepných a kvazištepných faset je znacne heterogenní a tyto fasety jsou propojeny více ci méne vyvinutými stupni vzniklými tvárným mechanismem. Výskyt interkrystalických faset v rozsahu 10 až 15 % byl pozorován pouze u kol 730 mm pro stavy kalené vyšší intenzitou ochlazování a popuštené. Nízké hodnoty KU (10 až 20 J) lze spojovat s krehkým porušením, kdy zmizí TT iniciace pod vrubem a kdy na lomových plochách bylo možné pozorovat jen transkrystalické štepné a kvazištepné fasety. Krehké typy lomu nebyly pozorovány pro stavy s vyšší intenzitou kalení, a to ani na vzorcích s V vrubem zkoušených pri teplote -20 o C. Predesíláme, že pro všechny krehké stavy (KU i KV) se ve strukture vyskytovala M/A složka. Stavy houževnaté s tvárnou iniciací a s dominujícím transkrystalickým tvárným šírením a stavy prechodové (semikrehký až houževnatý) zpravidla korespondovaly s vyšší intenzitou kalení. Autori práce [2] uvádejí, že v prípade nízkouhlíkových ocelí pro témer všechny typy bainitu vzniklých pri anizotermickém ochlazování prevládá latková morfologie bainitu. Pro bainit BIII je charakteristická orientace cementitu rovnobežne s podélnou osou latek. V prípade BI (zrnitý bainit)se soucasne vyskytuje i tzv.m/a složka, jejíž vliv na vlastnosti mikrolegovaných ocelí bainitickou mikrostrukturu je popsán v napr. v práci [3]. 3

Mikrostruktura vzniklá ochlazováním povrchu jízdní plochy kola nižší intenzita je prevážne bainitická. V prípade varianty IIA prevládá bainit BIII, který se vyskytuje v kombinaci s bainitem BII, obr.5a. Po tepelném zpracování IVA se jedná o kombinaci bainitu BII a BI, dále se vyskytuje proeutektoidní ferit a M/A složka. obr. 5b. Kalení kol 730 mm vyšší intenzitou ochlazování vedlo k martenzitické transformaci cásti objemu povrchu kol, pricemž prevládá morfologie paketu nízkouhlíkového martenzitu. V tomto martenzitu lze pozorovat drobné karbidické cástice - samopopouštení popr. popouštení v dusledku pusobení tepla uvolnovaného z vnitrku kola. Martenzitická struktura prevládá v prípade kalení vyšší intenzitou ochlazování (obr. 5c), pro kratší doby ochlazování byla pozorována smíšená struktura martenziticko-bainitická s prevahou struktury bainitické (obr.5d). Strukturní zmeny behem popouštení probehly spíše na úrovni substruktury, které jsou z vetší cásti nepozorovatelné v použitém zobrazení sekundárními elektrony REM. V podstate byla pozorována tendence hrubnutí karbidu, postupne mizí jejich strukturní usmernení, s výjimkou jejich precipitace po hranicích zrn. Rekrystalizace byla pozorovatelná až pri popouštení na 540 o C, zvlášte pak u stavu bainitických, obr.5e,f. Pro 11 z 12 hodnocených strukturních stavu je stupen velikosti puvodních austenitických zrn vetší než 7 (viz. tab.5), v prumeru lze tedy austenitická zrna hodnotit jako jemná. Pro stav IVB tento stupen cinil 6,3, v prípade stavu VIIIA, IIA, IIB a IIC byla pozorována heterogenita ve velikosti austenitických zrn, ve strukture se vyskytovala zrna až o 2 stupne vetší než odpovídá jejich strední hodnote. Predpokládáme, že.heterogenita velikosti austenitických zrn souvisí s relativne vysokou austenitizacní teplotou pro oceli dezoxidované hliníkem. Heterogenita velikosti zrn byla pozorována predevším u stavu ciste bainitických, u kterých je menší rychlost ochlazování a tedy možný vetší rozsah rekrystalizace austenitu. Mikrostruktury typické pro kolo 920 mm jsou uvedeny a obr. 6. V prípade nepopuštených stavu jsou srovnatelné korespondujících mikrostruktury kol 730 a 920 mm.. Vetší prumer kola vedl k pomalejšímu ochlazování, což se odrazilo ve vetším podílem bainitu BI a M/A složky pro stav 4. Struktura stavu 6 je témer shodná se strukturou stavu 4. Popouštení na teplotu 450 o C nevedlo k výrazné rekrystalizaci feritu, takže ve vetšine hodnocených strukturních stavu zustala zachována jeho latková morfologie. Zretelný je rozpad M/A komponenty na feriticko-karbidickou smes. Bainitický cementit je relativne drobný, zachovává si protáhlý tvar a orientaci rovnobežnou s latkami feritu Popuštení na teplotu 620 o C vedlo k homogenním sorbitickým strukturám s výraznou rekrystalizací feritických latek. Výrazná sferoidizace karbidických fází a jejich hrubnutí nebyly pozorovány, naopak místy stále ješte zustala zachována jejich puvodní orientace. S ohledem na výskyt tzv. M/A složky a s uvážením relativne vysokého obsahu Si (nad 0,7hm.%) ve studované oceli, byl rozbor mikrostruktury rozšíren i o stanovení obsahu zbytkového austenitu na minimalizovaném souboru vzorku rtg. metodou. Výsledky této analýzy jsou uvedeny v tab. 2, ze které vyplývá, že ve stavech nepopuštených je obsah zbytkového austenitu vyšší než 10 obj.%, popouštení 450 o C zpusobilo snížení jeho obsahu asi na polovinu a až popouštení 620 o C vedlo k jeho úplnému rozpadu. Pozorovaná stabilita zbytkového austenitu souvisí mj. s vlivem Si na potlacení precipitace cementitu [4], která je spojena s jeho rozpadem na feriticko-karbidickou smes bainitického typu. Oblasti koherentního rozptylu (OKR), korespondující s velikostí subzrn, jsou dle ocekávání vetší v bainitickém feritu, pri teplote popouštení 450 o C se nemení a na teplote 620 o C již dochází k pozorovatelné rekrystalizaci latek puvodního bainitu i martenzitu. 4

a b c d e f Obr. 5 Mirostruktury pro tyto varianty tepelného zpracování: Fig. 5 Microstructures for the following variations of heat treatment: a IIA, b IVA, c VIIIA, d XA, e IIC, f - VIIIC 5

Tabulka 2 Výsledky rtg.fázové analýzy Table 2 Results of X-ray analyse Ozn. vzorku Teplota popouštení Obsah ZA [obj.%] Velikost OKR *, [?m] 4AC 20 o C 13,3 ± 2,2 0,553 8AC 10,7 ± 1,9 0,273 4BC 450 o C 6,6 ± 0,9 0,443 8BC 5,7 ± 0,9 0,286 4CC 620 o C 0 0,643 8CC 0 0,604 * OKR - oblast koherentního rozptylu 5. ROZBOR VÝSLEDKU Ohtani et al. [2] na souboru vysocepevných nízkolegovaných ocelí (obsah Si do 0,4 hm.%) s obsahem uhlíku max. 0,22 hm.% ukázali, že optimální struktura techto ocelí z hlediska kombinace pevnosti a houževnatosti by mela být po kalení tvorena kombinací martenzitu a bainitu BIII. Bainit vede ke zjemnení "zrn" pred vlastní martenzitickou transformací, je méne citlivý na popouštení a nevykazuje nízkoteplotní popouštecí krehkost. Výrazný degradacní úcinek M/A komponenty na hodnoty KCV mikrolegované konstrukcní oceli (0,08 C, 1,75 Mn, 0,40 Si, 0,003 S, 0,025 P, 0,25 Mo a 0,05 Nb hm.%) byl prokázán v práci [3], kdy napr. pro 20 obj. % M/A komponenty KCV (-20 o C) = 29-34 J/cm 2, zatímco pro 8 obj.% M/A komponenty KCV (-20 o C) = 120 J/cm 2. V práci [5] bylo mj. zjišteno, že hodnocená tavba oceli 24CrMo5-4 nevykazuje citlivost k vysokoteplotní popouštecí krehkosti (izo ci anizotermické). Výskyt nízkoteplotní popouštecí krehkosti této oceli je posunut k vyšším teplotám popouštení, tj. do intervalu teplot 300 až 400 C a je spojený s poklesem hodnot KU z úrovne 40J na úroven 30J. Kalení na martenzit nevedlo k výskytu ZA prevyšujícím hodnotu 1 obj. %. S ohledem na získané výsledky a s uvážení literárních údaju je zrejmé, že strukturní stav dané oceli po kalení by nemel být tvoren bainitem BI, který je doprovázen výskytem tzv. M/A komponenty, na druhé strane ani ciste martenzitická struktura po kalení není optimální (sice relativne vysoké hodnoty KU, ale i vysoké hodnoty pevnosti spojené se ztíženou obrobitelností, navíc výskyt nízkoteplotní popouštecí krehkosti). Budeme-li porovnávat vliv tepelného zpracování na hodnoty R p 0,2 a R m, pak lze konstatovat, že maximálních hodnot bylo dosaženo pro stavy kalené vyšší intenzitou ochlazování. Popouštení segmentu kol 730 mm na teplotách 510 a 540 C v podstate vedlo ke "srovnání" sledovaných hodnot, takže tyto se jeví v daných podmínkách jako strukturne necitlivé. V prípade segmentu kol 920 mm popuštení na teplotách 450 a 620 C melo za následek pokles hodnot R p 0,2 a R m, který byl patrný predevším u segmentu kalených vyšší intenzitou ochlazování. Naopak hodnoty nárazové práce KU a KV(-20 C) jsou znacne strukturne citlivé. Stavy krehké s hodnotami nárazové práce asi 10 J se vyskytují u kol 730 mm u stavu bainitických (ostrik kol) popuštených na 510 o C. Toto zkrehnutí spojujeme výskytem a s rozpadem M/A složky a s heterogenitou velikosti puvodních austenitických zrn. Stavy houževnaté, anebo témer houževnaté, byly zjišteny pro stavy nepopuštené, ve kterých se po kalení vyskytovala smes martenzitu a bainitu a u kterých došlo soucasne k popouštení (samopopuštení). Pokles hodnot houževnatosti segmentu kol 920 mm spojený s popouštením na teplotu 450 o C byl u stavu 2, 4 a 6 spojen s rozpadem M/A komponenty a s rozpadem zbytkového austenitu. V prípade stavu 8 a 10 se patrne jednalo o rozpad zbytkového austenitu a o rozvoj nízkoteplotní popouštecí krehkosti. Popouštení 450 o C/2h však vedlo k rozpadu jen asi poloviny zbytkového austenitu a je otázkou jaké by byly hodnoty KU v prípade jeho úplného rozpadu, 6

a b c d e f Obr. 6 Mirostruktury pro tyto varianty tepelného zpracování kola 730 mm: Fig. 6 Microstructures for the following variations of heat treatment: a 2A, b 4A, c 8A, d 10A, e 2C, f - 4C 7

nebo jak by se choval zbytkový austenit v prípade jeho výskytu již v hotových kolech, zejména pak ve vlastní jízdní ploše. Popouštení na teplotu 620 o C je již nevhodné z duvodu nízkých hodnot meze kluzu. Z použitých variant tepelného zpracování se jeví jako optimální varianty 8(VIII)A a 10(X)A, tj. kombinace bainit BII, BII a martenzit, nebo bainit BII a BIII po kalení. Nezodpovezené zustávají otázky vnitrního pnuti po kalení, obtížné obrobitelnosti a stability zbytkového austenitu v bainitu. Uvedené problémy jsou v podstate urceny teplotou popouštení. S ohledem na výše uvedené výsledky by teplota popouštení nemela presahovat teplotu asi 300 o C s tím, že hodnoty meze kluzu a pevnosti v tahu budou stále ješte vysoké z hlediska obrobitelnosti. Predpokládaný výskyt mezilatkového zbytkového austenitu by mohl být vhodný z hlediska houževnatosti i pevnostních charakteristik 6. ZÁVER Na podklade zevrubných metalografických a fraktografických rozboru, které byly doplneny o orientacní rtg. fázovou analýzu a s uvážením vlivu použitých variant tepelného zpracování na mechanické vlastnosti železnicních kol o prumeru 730 a 920 mm, vyrobených z oceli 24CrMo5-4, jsme dospeli k temto poznatkum: Varianty tepelného zpracování 2(II)A a zejména 4(IV)A a 6A (nižší intenzita ochlazování z kalicí teploty) nejsou vhodné pro výskyt bainitu BI v kombinaci s tzv.m/a komponentou, které vedou k poklesu hodnot vrubové houževnatosti, a to i pri následném popouštení. Popouštení na teplote 450 o C vedlo ke zkrehnutí všech strukturních stavu, což se odrazilo v cetnejším výskytu krehkých lomu pri zkoušce rázem v ohybu. Pozorované zkrehnutí spojujeme s rozpadem zbytkového austenitu, s rozpadem tzv. M/A komponenty a s rozvojem nízkoteplotní popouštecí krehkosti v prípade výskytu martenzitu. Popouštení na teplote 620 o C vedlo k neprípustnému snížení pevnostních charakteristik. Optimální stav struktury po kalení by dle našeho názoru mel být tvoren kombinací bainitu BII a BIII až kombinací bainit BIII a martenzit. Pri respektování optimální kombinace pevnostních hodnot a houževnatosti by teplota popouštení mela nabývat hodnoty asi 300 o C. LITERATURA [1] POINTER, P. Materials for Wheel and Rails- is there a Solution for the Extraordinary Requirements? Proceedings of 6th International Conference on Contact Mechanics and Wear of Rail/Wheel Systeme, Gothenburg, Schweden, 203, p. 79-83. [2] OHTANI ET AL. Morphology and Properties of Low-Carbone Bainite. Metallurgical Transactions A, 1990, vol.21a, no. 4, p.877-888. [3] MAZANCOVÁ, E., WYSLYCH, P., MAZANEC K. Fyzikální metalurgie zrnitého bainitu, Kovové materiály, 1995. vol. 33, no.2, p.94-104. [4] BHADESHIA H.K.D.H., CHRISTIAN, J.W. Bainite in Steels, Metallurgical Transactions A, 1990, vol.21a, no. 4, p.767-797. [5] FORET, R. et al. Posouzení vlivu tepelného zpracování na vlastnosti železnicních kol. Výzkumná zpráva. FSI-VUT v Brne, 2000, 34s. 8