Praktické cvičení č. 11 a 12 - doplněno



Podobné dokumenty
METABOLISMUS SACHARIDŮ

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN

FOTOSYNTÉZA. Princip, jednotlivé fáze

FOTOSYNTÉZA. CO 2 a vody. - soubor chemických reakcí. - probíhá v rostlinách a sinicích. - zachycení a využití světelné energie

FOTOSYNTÉZA. soubor chemických reakcí,, probíhaj v rostlinách a sinicích. z CO2 a vody jediný zdroj kyslíku ku pro život na Zemi

Biosyntéza sacharidů 1

Fotosyntéza (2/34) = fotosyntetická asimilace

Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron).

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie

FOTOSYNTÉZA. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková

Název: Fotosyntéza, buněčné dýchání

DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy

Autor: Katka Téma: fyziologie (fotosyntéza) Ročník: 1.

Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení

Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje.

FOTOSYNTÉZA Správná odpověď:

Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD

Energetický metabolizmus buňky

METABOLISMUS SACHARIDŮ

Inovace profesní přípravy budoucích učitelů chemie

Digitální učební materiál

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech

ANABOLISMUS SACHARIDŮ

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal ::

Digitální učební materiál

Metabolismus příručka pro učitele

Metabolismus krok za krokem - volitelný předmět -

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Fotosyntéza světelná fáze. VY_32_INOVACE_Ch0214.

fce jater: (chem. továrna, jako 1. dostává všechny látky vstřebané GIT) METABOLICKÁ (jsou metabolicky nejaktivnější tkání v těle)

Konsultační hodina. základy biochemie pro 1. ročník. Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa

Otázka: Základní děje na buněčné úrovni. Předmět: Biologie. Přidal(a): Growler. - příjem látek buňkou

Energetika a metabolismus buňky

Efektivní adaptace začínajících učitelů na požadavky školské praxe

Didaktické testy z biochemie 2

Předmět: KBB/BB1P; KBB/BUBIO

Fyziologie rostlin - maturitní otázka z biologie (3)

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.

B4, 2007/2008, I. Literák

Řízení metabolismu. Bazální metabolismus minimální látková přeměna potřebná pro udržení života při tělesném i duševním klidu

35.Fotosyntéza. AZ Smart Marie Poštová

Eva Benešová. Dýchací řetězec

14. Fyziologie rostlin - fotosyntéza, respirace

Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké

Vyjádření fotosyntézy základními rovnicemi

ení k tvorbě energeticky bohatých organických sloučenin

- metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy a jejich životním prostředím

Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa

Metabolismus. Source:

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík,

Sacharidy a polysacharidy (struktura a metabolismus)

Přehled energetického metabolismu

9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy

Číslo a název projektu Číslo a název šablony

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308

LÁTKOVÝ A ENERGETICKÝ METABOLISMUS

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN

Intermediární metabolismus. Vladimíra Kvasnicová

Katabolismus - jak budeme postupovat

Dýchací řetězec (Respirace)

FOTOSYNTÉZA ZÁKLAD ŽIVOTA NA ZEMI

VESMÍR. za počátek vesmíru považujeme velký třesk před 13,7 miliardami let. dochází k obrovskému uvolnění energie, která se rozpíná

Projekt realizovaný na SPŠ Nové Město nad Metují

Metabolismus, taxonomie a identifikace bakterií. Karel Holada khola@lf1.cuni.cz

16a. Makroergické sloučeniny

Cukry (Sacharidy) Sacharidy a jejich metabolismus. Co to je?

AUTOTROFNÍ A HETEROTROFNÍ VÝŽIVA ROSTLIN, VODNÍ REŽIM ROSTLIN, RŮST A POHYB ROSTLIN

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

Biochemie. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Platnost: od do

DUM VY_52_INOVACE_12CH33

Dýchací řetězec. Viz též přednášky prof. Kodíčka (snímky a blány v levém sloupci)

VY_32_INOVACE_ / Projevy a podmínky života Život na Zemi Projevy života

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, Biologie 6, 2015/2016, Ivan Literák

Pokuste se vlastními slovy o definici pojmu Sacharidy: ? Které sacharidy označujeme jako cukry?

FOTOBIOLOGICKÉ POCHODY

ANOTACE vytvořených/inovovaných materiálů

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, Biologie 8, 2017/2018, Ivan Literák

Buňka. Kristýna Obhlídalová 7.A

Úvod do buněčného metabolismu Citrátový cyklus. Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1. LF UK

Metabolismus. - soubor všech chemických reakcí a příslušných fyzikálních procesů, které souvisejí s aktivními projevy života daného organismu

Přednáška 6: Respirace u rostlin

Regulace metabolických drah na úrovni buňky

žák zvládne základní informace o glukóze, sacharóze a škrobu, pochopí základní schéma fotosyntézy Spec. vzdělávací potřeby Stupeň a typ vzdělávání

Digitální učební materiál

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách

Biochemie Ch52 volitelný předmět pro 4. ročník

Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:

1- Úvod do fotosyntézy

Sylabus pro předmět Biochemie pro jakost

Vymezení biochemie moderní vědní obor, který chemickými metodami zkoumá biologické děje (bios = řecky život) spojuje chemii s biologií poznatky velmi

Metabolismus mikroorganismů

ROSTLINNÁ BUŇKA A JEJÍ ČÁSTI

1. anabolismus (syntéza, asimilace) přeměna látek jednodušších na látky složitější

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně

CZ.1.07/1.5.00/ Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT

NEŽIVÁ PŘÍRODA. 1. Spoj čarami NEŽIVOU přírodu a její složky: Název materiálu: Opakování- vztahy mezi organizmy Autor: Mgr.

Přírodní látky pracovní list

Transkript:

Praktické cvičení č. 11 a 12 - doplněno Téma: Metabolismus eukaryotické buňky Pomůcky: pracovní list, učebnice botaniky Otázky k opakování: Co je anabolismus a co je katabolisimus? Co jsou enzymy a jak fungují? (co je to substrátová a funkční specifita enzymu) Co je ATP, co je makroergní (makroergická) vazba, kolik je v ATP makroergních vazeb a jak souvisí ATP s nukleovými kyselinami? Jak se značí makroergní vazba? Co je to ADP a co je to fosforylace? Jak vzniká ATP? Se kterými látkami jeho vznik souvisí? Jak je to s přeměnami ATP ADP při anabolismu a jak při katabolismu? (kdy vzniká co z čeho) Hlavní katabolická dráha Rozklad živin (glukózy) - dýchání Rozklad živin na jednoduché anorganické látky. a je nejdůležitější katabolickou dráhou v buněčném metabolismu. Tuto dráhu si vysvětlíme prostřednictvím rozkladu glukózy (pozn. Zdrojem energie mohou být i další živiny např...,, V určité fázi se metabolismus různých skupin živin sbíhá a další kroky při jejich odbourávání jsou již stejné. Obrázek vpravo ukazuje přehled: 4 etapy rozkladu glukózy se jmenují anaerobní glykolýza aerobní dekarboxylace pyruvátu krebsův cyklus dýchací řetězec. Na základě obrázku rozhodni o pravdivostí tvrzení (A/N piš před výrok) Kyselina pyrohroznová (pyruvát) vzniká za anaerobních podmínek Kyselina pyrohroznová vždy pokračuje do Krebsova cyklu V Krebsově cyklu vzniká voda Dýchací řetězec probíhá za přístupu kyslíku AcKoA (acetyl koenzym A) vstupuje do dýchacího řetězce Doplň: Výsledkem anaerobní fáze rozkladu glukózy je.. nebo Výsledkem aerobní dekarboxylace pyruvátu je.. a. V Krebsově cyklu vzniká a.. V dýchacím řetězci vzniká.. Tato dráha probíhá v/ve buňkách..

Pracuj s učebnicí, doplň text Anaerobní glykolýza (substrátová fosforylace) je úvodním krokem v rozkladu glukózy. Probíhá v a na jejím počátku stojí glukóza neboli cukr s.. C. Tato látka se štěpí na..molekuly s uhlíky (C) které nazýváme kyselina pyrohroznová neboli pyruvát. Při tomto štěpení vznikly. Molekuly ATP. Na počátku reakce bylo však nutné.. molekuly spotřebovat, takže výsledným výtěžkem tohoto kroku jsou.. molekuly ATP na jednu molekulu glukózy. Pozn. Pokud začíná glykolýza z glykogenu, spotřebuje se na pořásku jen ATP, takže výsledný výtěžek je.. ATP. Buňka nemá kyslík: pyruvát se mění na energeticky bohatý konečný produkt např. nebo. Tento děj se jmenuje. Buňka má kyslík: Od pyruvátu se odštěpí CO 2 vzniká molekula se C zvaná. a ta je zároveň transportovaná přes membránu do mitochondrie. Proces se nazývá. Krebsův cyklus (cyklus kyseliny citronové) probíhá v vstupuje do něj který se váže na. (látka se. C)za vzniku (má.. C). Acetyl koenzym A je látka, která je tvořena třemi prvky a to.,.,. (piš značky prvků). V Krebsově cyklu se: váže do a.. ;.. váže do a ;.. váže do. a.... Na konci cyklu je opět.. uhlíkatý., připravený k vazbě další molekuly Uvolněná energie se váže do Dýchací řetězec je vázán (probíhá) na. Vstupuje do něj látka...vzniklá v Krebsově cyklu, která slouží jako dopravník pro atomy Dýchací řetězec patří z hlediska typu reakce k reakcím oxidoredukčním, tzn. že v reakci jde o přenos Atomy vodíku jsou rozděleny na..., které se předávají mezi jednotlivými enzymy v membráně (tyto enzymy se jmenují..) a.které jsou pumpovány přes membránu do prostoru mezi membránami (při každém předání elektronů dojde k přenosu několika do mezimembránového prostoru). Kladně nabité, které se mezi membránami nahromadily, pak protékají zpět přes vnitřní membránu speciálním kanálem (jediné místo které je pustí dovnitř), a z jejich průtoku vzniká energie, která dává vzniknout. Tuto reakci řídí enzym. Vodík, kterému byla odebrána energie se sloučí s. Které mu byly odebrány a dále s ze V reakci vzniká., což je druhý z konečných produktů procesu rozkladu glukózy. Pozn. Aerobní dekarboxylace pyruvátu + Krebsův cyklus + dýchací řetězec = OXIDATIVNÍ FOSFORYLACE. Při té vzniká. molekul ATP na 1 molekulu glukózy. Celkový výtěžek celého rozkladu je tedy. molekul ATP. Pozn. 2 ATP odpovídají cca 100kJ. Při spálení 1 molekuly glukózy vzniká energie odpovídající 2700 kj. Při metabolismu se z této energie ve formě ATP získá.. kj což je asi..% z celkové energie. Zbytek uniká ve formě..

Hlavní anabolická dráha Fotosyntéza V praktickém cvičení č. 8 jsme se seznámili s anabolickou dráhou, při které v buňce vznikají bílkoviny. Tato dráha se nazývala.. a probíhá ve. buňkách. Fotosyntéza je anabolická dráha, která je hodnocená jako nejvýznamnější reakce v přírodě. Je typická pouze pro některé organismy. Z eukaryot jsou to. Následující pojmy: H 2 O; CO 2, glukóza (C 6 H 12 O 6 ), O 2, energie hrají roli v obou procesech (dýchání i fotosyntéze). Šipkami od organel či k organelám označ, které z těchto pojmů jsou v obou procesech vstupem a výstupem z dráhy. U energie ještě doplň její formu (mechanická, chemická, světelná, tepelná) Teď už bude hračka doplnit definici fotosyntézy: Fotosyntéza je sled reakcí, které probíhají v..za využiti energie ze. Vzniká z jednoduchých anorganických látek. a látka organická. Vedlejším produktem této reakce je který Podmínkou pro fotosyntézu jsou speciální barviva fotosyntetické pigmenty, které lapají částice světla zvané.. Jsou to např. žlutočervené (oranžové)... žlutohnědé či modročervené.. ovšem nejdůležitější jsou zelené.. a z nich pak zejména, který jako jediný ví, co si chycenou částicí světla počít. Světlo je elektromagnetické vlnění, které má značný rozsah vlnových délek. Pro fotosyntézu je důležité to o vlnových délkách mezi. a.. nanometry, kterému říkáme Když toto světlo, které se jeví jako bílé (průhledné) rozložíme, vznikne nám tzv. barevné spektrum, které má pořadí barev (vybarvi a pojmenuj) na konce tabulky napiš krajní vlnové délky z intervalu. Takto rozložené světlo můžeme v běžném životě vidět např... To, že jsou pigmenty různě barevné, jim umožňuje lapat fotony různých vlnových délek (světlo různých barev). Fotosyntézu jako reakci můžeme rozdělit na dvě etapy: Primární procesy fotosyntézy -. fáze (protože může probíhat jen za Tato fáze probíhá (přesné umístění reakce).. Sekundární procesy.. fáze není na světle přímo závislá a probíhá v.. Tato fáze však také závisí na světle (i když nepřímo) může probíhat pouze do té doby, dokud má rostlina k dispozici látky, které vytvořila při primárních procesech.

Světelná fáze primární procesy fotosyntézy Podmínkou této fáze je přítomnost fotosyntetických pigmentů (barviv) zvláště pak chlorofylu typu. Pigmenty jsou vázány (přesné umístění v buňce). Kde tedy probíhá světelná fáze. Při světelné fázi probíhají dvě reakce, kterým říkáme cyklická necyklická fosforylace. Obě reakce probíhají současně a jsou propojené (není to tedy tak, že by probíhala v některých rostlinách čí buňkách reakce cyklická a v jiných necyklická. Významnou vlastností chlorofylu A je skutečnost, že při pohlcení fotonu se dokáže dostat do tzv. excitovaného stavu což znamená, že.. Ve světelné fázi probíhají reakce, ve kterých dochází k přenosu elektronů. Takovým reakcím říkáme.. Molekula, která elektorny uvolňuje se nazývá. molekula která elektrony přijímá se nazývá Cyklická fosforylace (také 1. světelná reakce) probíhá v tzv. Fotosystému I. Začíná v molekule chlorofylu označovaného jako P700 (pigment 700), který po excitaci fotony uvolní.. a stává se tak..elektronů. Prvním akceptorem je systém označený FRS. FRS je jakousi křižovatkou (viz obrázek dole), kde se elektrony mohou rozhodnout, kudy dál půjdou. Pokud jdou červenou cestou vrací se vlastně tam, odkud vyšly čili konečným akceptorem putujících elektronů je opět molekula Energie, která se z putujících elektronů cestou uvolní slouží k tvorbě molekul.. (proto se reakce jmenuje.) a vzhledem k tomu, že elektrony oběhnou kolečko a vrátí se odkud vyšly, tak se reakci říká.. Při této reakci je tedy jen jeden produkt a to je vznikající energie vázaná do (světelná energie se mění na chemickou energii makroergních vazeb) Při necyklické fosforylaci je to složitější, kromě fotosystému I se zapojuje i tzv.. a současně s první světelnou reakcí probíhá i druhá světelná reakce. Ve fotosystému II. je důležitou molekulou chlorofyl A označovaný jako P680. Probíhá to takto: Začátek je stejný až po křižovatku zvanou FRS. Tady se uvolněné elektrony z vydávají po zelené cestě a jejich konečným akceptorem je látka označená jako.. Protože ale původní molekule P700 teď chybí elektrony, musí si je doplnit. Doplní si je z 2. světelné reakce. Tam se elektrony uvolňují z molekuly.., která se také umí excitovat při dopadu Cestou se opět uvolněná energie váže do Protože teď zase chybějí elektrony molekule P680, probíhá v 2. Světelné reakci ještě rozklad.. (jde o rozklad působením světla, který se nazývá..). Molekula se rozkládá na. Které doplní molekulu P680;.. který se váže do NADPH+H + a.. který se jako odpadní produkt vylučuje do ovzduší. Reakce se jmenuje fosforylace proto, že.. a necyklická pak proto, že.... Produktem světelné fáze jsou 3 látky. Energie ve formě (které využijeme v další fázi), vodík vázaný do molekuly (také vodík budeme dále používat) a který je odpadním produktem a v molekulové formě se uvolňuje do ovzduší. Pozn. ATP, které vznikne ve světelné fázi, se opět při temnostní fázi spotřebuje. Fotosyntéza tedy není zdrojem ATP pro další buněčné činnosti, kryje svojí potřebu. Rosltinná buňka musí pro zisk ATP provádět rozklad živin katabolismus.

Temnostní fáze sekundární procesy fotosyntézy Temnostní fáze může probíhat za světla i za tmy. Není na světlo přímo vázaná. Aby mohla probíhat musí mít buňka dostatek vstupních surovin. 2 z těchto surovin vznikají při světelné fázi jsou to. a. Pokud tyto suroviny dojdou, nemůže temnostní fáze pokračovat a musí opět počkat, až se při světle tyto dvě suroviny vyrobí. Třetí surovinou, která je pro temnostní fázi potřebná, je plyn, který rostlina bere ze vzduchu. Jedná se o a rostlina jej přijímá Pokud jsou..zavřené (třeba z důvodu nedostatečného turgoru rostlina je zvadlá) nemohou buňky tento plyn přijímat a nemůže tedy probíhat tato část reakce. V této fázi tvoří rostlina základní organickou látku... (její souhrnný vzorec je.) K její stavbě potřebuje tedy 3 prvky:., jehož zdrojem je ;. Jehož zdrojem je... a jehož zdrojem je. V temnostní fázi probíhá reakce zvaná... Na začátku reakce se CO 2 ze vzduchu se váže do molekuly s C, zvané. A vznikají 2 stejné molekuly látky zvané. (každá z těchto molekul má.. C. Molekuly se pak redukují z, vzniká látka zvaná. Která má stále.. uhlíky. Část těchto molekul (1/6) se mění přes šestiuhlíkatý meziprodukt na finální produkt temnostní fáze cukr, většina (5/6 pokračuje v cyklu dál amění se zpět na.. který je připraven k vazbě další molekuly.. Reakce zobrazená na obrázku vpravo je typická pro tzv. C3 rostliny (produktem po vazbě CO 2 je totiž molekula se 3 C). U jiné skupiny rostlin (C4 rostliny) se CO 2 váže přes látku nazvanou fosfoenolpyruvát (PEP). Po jeho navázání vzniká molekula oxalacetátu, která má C (tato látka už vystupovala v Krebsově cyklu, počet C si můžeš ověřit). Sukulenty pak patří mezi tzv.... Mají zvláštní přizpůsobení velkým suchům. Protože se musí chránit před ztrátami vody, zavírají průduchy. Při zavřených průduších nemohou.. Proto si schraňují uvolněný při dýchání v (váží jej do jablečnanu), takže fotosyntéza není závislá na příjmu CO2 ze vzduchu a může tedy probíhat i při zavřených průduších. Fotorespirace Fotorespirace (světelné dýchání) je proces, který je vlastně opakem fotosyntézy. Rostlina přijímá.. uvolňuje (v tomto je proces shodný s dýcháním. Na rozdíl od mitochondriálního dýchání však nevzniká Fotorespirace tedy není pro rostlinu přínosem, ale z hlediska látkově energetického spíš ztrátou (odbourává organické látky vzniklé fotosyntézou, ale netvoří při tomto odbourávání energii). Význam fotorespirace není zcela objasněn (existují různé hypotézy o tom, k čemu je tato reakce dobrá), je však známé, že různé skupiny rostlin mají různou míru fotorespirace a tedy větší nebo menší ztráty. Jak souvisí její intenzita s rostlinami C3 a C4? Které mají větší a které menší ztráty? V souvislosti s předchozí otázkou vysvětli význam fotorespirace prakticky na dvou rostlinách, které rostou stejnou dobu v našich podmínkách (provnej pšenici a kukuřici kolik která vytvoří za stejnou dobu hmoty biomasy? Proč?) Jaké rostliny převažují v našich podmínkách (v mírném pásu)? Proč? A na závěr ještě 4 otázky: Jak ovlivňuje fotosyntézu dostupnost vody? Jak jí ovlivňuje teplota? Jak jí ovlivňuje množství CO2 ve vzduchu? Dá se těchto vlivů nějak využít pro zlepšení výnosů rostlin? Jak? Uveď příklady. Zdroj obrázků: Biologie pro II. ročník gymnázií Bašovská a kol. SPN Praha1985