LIKVIDACE VÝPALKŮ Z VÝROBY BIOLIHU



Podobné dokumenty
MODERNÍ METODY LIKVIDACE PRASEČÍ KEJDY

Klasifikace vod podle čistoty. Jakost (kvalita) vod. Čištění vod z rybářských provozů

VYUŽITÍ FERMENTAČNÍCH ZBYTKŮ ANAEROBNÍ DIGESCE JAKO PALIVA APPLICATION OF FERMENTED ANAEROBIC DIGESTION REMAINDERS AS FUEL

RESEARCH OF ANAEROBIC FERMENTATION OF ORGANIC MATERIALS IN SMALL VOLUME BIOREACTORS

LANDFILL LEACHATE PURIFICATION USING MEMBRANE SEPARATION METHODS ČIŠTĚNÍ PRŮSAKOVÝCH VOD ZE SKLÁDEK METODAMI MEMBRÁNOVÉ SEPARACE

Seminář projektu Rozvoj řešitelských týmů projektů VaV na Technické univerzitě v Liberci. Registrační číslo projektu: CZ.1.07/2.3.00/30.

6.Úprava a čistění vod pro průmyslové a speciální účely

PEMZA, ALTERNATIVNÍ FILTRAČNÍ MATERIÁL VE VODÁRENSTVÍ

Hodonín, Czech Republic TECHNICKÉ DODACÍ PODMÍNKY A PROJEKTOVÉ PODKLADY. Alfa. modifikace: Classic DA/mod

STS Technologie s.r.o. Hodonín, Czech Republic TECHNICKÉ DODACÍ PODMÍNKY A PROJEKTOVÉ PODKLADY. Alfa. modifikace: Classic - DO/mod

SYSTÉMY BIOLOGICKÉHO ODSTRAŇOVÁNÍ NUTRIENTŮ

ODPADNÍ VODY ODPADNÍ VODY. další typy znečištění. Ukazatele znečištění odpadních vod. přehled znečišťujících látek v odpadních vodách

PYROLÝZA ODPADNÍ BIOMASY

Denitrifikace odpadních vod s vysokou koncentrací dusičnanů

Membránové bioreaktory

ENERGIE Z ODPADNÍCH VOD

Využití lihovarnických výpalků

Cíle. Seznámit studenta s technickými zařízeními bioplynových stanic.

VLIV IRADIACE ULTRAZVUKEM NA PRODUKCI BIOPLYNU

Zvýšení rentability provozu mlékárny využitím metodiky čistší produkce

ČIŠTĚNÍ TECHNOLOGICKÝCH VOD A VÝPUSTNÉ PROFILY CHÚ

MODERNÍ PŘÍSTUPY V PŘEDÚPRAVĚ PITNÝCH A PROCESNÍCH VOD

obchodní oddělení Nitranská 418, Liberec , /fax ,

Technika a technologie bioplynového hospodářství

Nasazení hyperboloidních míchadel v různých fázích úpravy vody

LIKVIDACE SPLAŠKOVÝCH ODPADNÍCH VOD

Nová technologie na úpravu kapalné frakce digestátu

(syrovátka kyselá). Obsahuje vodu, mléčný cukr, bílkoviny, mléčnou kyselinu, vitamíny skupiny B.

SNÍŽENÍ EUTROFIZACE VODNÍCH TOKŮ DÍKY SEPARACI VOD U ZDROJE A VYUŽITÍ NUTRIENTŮ

Výzkumné centrum Pokročilé sanační technologie a procesy

Datum: v 9-11 hod. v A-27 Inovovaný předmět: Pěstování okopanin a olejnin

Velké. problémy s odpadní vodou. zahrada zaměřeno na

AGRITECH S C I E N C E, 1 1 KOMPOSTOVÁNÍ KALŮ Z ČISTÍREN ODPADNÍCH VOD

STABILIZACE KALŮ. Anaerobní stabilizace. Definice. Metody stabilizace kalů. Anaerobní stabilizace kalů. Cíle anaerobní stabilizace

1) Pojem biotechnologický proces a jeho fázování 2) Suroviny pro fermentaci 3) Procesy sterilizace 4) Bioreaktory a fermentory 5) Procesy kultivace,

Praktické zkušenosti s provozováním komunální ČOV s MBR. Daniel Vilím

PROJEKT BIOPLYNOVÉ STANICE

Technologie pro úpravu bazénové vody

Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav zemědělské, potravinářské a environmentální techniky.

BIOLOGICKÉ ODBOURÁNÍ KYSELIN. Baroň M.

TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ)

Kalová problematika úpraven pitných vod

VYUŽITÍ A LIKVIDACE ODPADŮ ZEMĚDĚLSKO- POTRAVINÁŘSKÉHO KOMPLEXU (N324009)

CHEMIE. Pracovní list č. 12 žákovská verze Téma: Závislost rychlosti kvašení na teplotě. Mgr. Lenka Horutová

AERACE A MÍCHÁNÍ AKTIVAČNÍCH NÁDRŽÍ

Chemické procesy v ochraně životního prostředí

Ing. Dagmar Sirotková. Výsledky řešení výzkumného záměru

Získávání dat Metodiky laboratorních testů pro popis vlastností aktivovaného kalu a odpadní vody

ČISTÍRNA ODPADNÍCH VOD AS-VARIOcomp K PROVOZNÍ DENÍK

ZJIŠŤOVÁNÍ MOŽNOSTI ZVÝŠENÍ PRODUKCE BIOPLYNU Z FERMENTÁTU POMOCÍ PŘÍPRAVKU GASBACKING

Recyklace energie. Jan Bartáček. Ústav technologie vody a prostředí

ODSTRAŇOVÁNÍ LÉČIV MEMBRÁNOVÝMI PROCESY

Membránová separace aktivovaného kalu

5. Bioreaktory. Schematicky jsou jednotlivé typy bioreaktorů znázorněny na obr Nejpoužívanějšími bioreaktory jsou míchací tanky.

Klasifikace znečišťujících látek

IX. KONFERENCE Ekologie a nové stavební hmoty a výrobky Materiály příznivé pro životní prostředí POPÍLKOVÝ BETON

VLIV IRADIACE ULTRAZVUKEM NA PRODUKCI BIOPLYNU

ENERGETICKÉ VYUŽITÍ BIOMASY

2 Primární zdroje energie. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

POUŽITÍ EKOTOXIKOLOGICKÝCH TESTŮ

KOPYROLÝZA HNĚDÉHO UHLÍ A ŘEPKOVÝCH POKRUTIN. KAREL CIAHOTNÝ a, JAROSLAV KUSÝ b, LUCIE KOLÁŘOVÁ a, MARCELA ŠAFÁŘOVÁ b a LUKÁŠ ANDĚL b.

ANAEROBNÍ FERMENTACE

Vysoká škola chemicko-technologická v Praze ÚCHOP

Velká Hradební 3118/48, Ústí nad Labem Odbor životního prostředí a zemědělství. Flexfill s.r.o. Siřejovická ulice Lovosice

NOVÉ EVROPSKÉ TRENDY NAKLÁDÁNÍ S BIODEGRADABILNÍMI ODPADY NEW EUROPEAN TRENDS OF DISPOSAL OF BIODEGRADABLE WASTE

POMALÉM PÍSKOVÉM. Ing. Lucie Javůrková, Ph.D. RNDr. Jana Říhová Ambrožová, Ph.D. Jaroslav Říha

Role aditiv. a chemických. KOVÁ, Hugo KITTEL. rská a.s., Wichterleho 809, Kralupy nad Vltavou.

Zkušenosti z provozu vybraných membránových bioreaktorů

Mohamed YOUSEF *, Jiří VIDLÁŘ ** STUDIE CHEMICKÉHO SRÁŽENÍ ORTHOFOSFOREČNANŮ NA ÚČOV OSTRAVA

Kyselina fosforečná Suroviny: Výroba: termický způsob extrakční způsob

Popis technologií a legislativní požadavky na čistírny odpadních vod

Očekávané změny v legislativě hnojiv. Ing. Michaela BUDŇÁKOVÁ

Revolvingový fond Ministerstva životního prostředí. Výukové materiály projektu NAUČÍME VÁS, JAK BÝT EFEKTIVNĚJŠÍ VÝROBA BIOPLYNU

VYHODNOCENÍ ZKUŠEBNÍHO PROVOZU ÚV LEDNICE PO REKONSTRUKCI

integrované povolení

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

Ing. Radim Staněk, prof. Ing. Jana Zábranská CSc. Čištění odpadních vod z výroby nitrocelulózy

Stručné shrnutí údajů uvedených v žádosti

Témata bakalářských prací

ČIŠTĚNÍ ODKALIŠTNÍCH VOD NA ZÁVODĚ GEAM DOLNÍ ROŽÍNKA

Studie zpracování odpadních vod z obce Úhonice

PERSPEKTIVES OF WEGETABLE WASTE COMPOSTING PERSPEKTIVY KOMPOSTOVÁNÍ ZELENINOVÉHO ODPADU

Anaerobní proces. Anaerobní rozklad organických látek. Bioplyn

NÁVRH REKONSTRUKCE ÚPRAVNY VODY PETRODVOREC KONKRÉTNÍ ZKUŠENOSTI S PROJEKTOVÁNÍM V RUSKU

Využití biomasy pro výrobu biopaliva Bakalářská práce

FOTOKATALYTICKÁ OXIDACE BIOLOGICKY OBTÍŽNĚ ODBOURATELNÝCH ORGANICKÝCH LÁTEK OBSAŽENÝCH V NADBILANČNÍCH VODÁCH ZE SKLÁDEK KOMUNÁLNÍHO ODPADU

Výstavba komunálních bioplynových stanic s využitím BRKO

PROVOZOVÁNÍ ČISTÍREN ODPADNÍCH VOD BĚHEM PODZIMNÍ VINAŘSKÉ KAMPANĚ

Katalog odběrových zařízení a vzorkovačů OCTOPUS Verze 11.1.

Elektrická dvojvrstva

Používání kukuřičných výpalků (DDGS) ve výživě hospodářských zvířat

Obnovitelné zdroje energie Budovy a energie

Hydrosféra - (vodní obal Země) soubor všeho vodstva Země povrchové vody, podpovrchové vody, vody obsažené v atmosféře a vody v živých organismech.

SIZE DISTRIBUTION REARRANGEMENT VIA TRANSPORT ROADS IN THE SAND TRANSPORT APPLICATION. Petr Bortlík a Jiří Zegzulka b

Sortiment, kvalita a užitné vlastnosti pohonných hmot do roku 2020 Kulatý stůl Hotel Pramen Ing.Vladimír Třebický

Programy prevence vzniku odpadů

Základní údaje o čistírně odpadních vod

Technologický reglement

Transkript:

LIKVIDACE VÝPALKŮ Z VÝROBY BIOLIHU Ing. Martin Rosol Školitel: Prof. Ing. Pavel Ditl DrSc. Abstrakt Výroba lihu je v poslední době velmi aktuální vzhledem k rozšíření výroby biolihu pro energetické účely. Zatímco vlastní technologie výroby lihu je zvládnuta, zůstává otevřeným problémem likvidace odpadů výpalků, které představují vodní suspenzi využitého substrátu a uhynulých mikroorganismů o celkové koncentraci pevné fáze cca 8% suš. Existuje řada technologií, které byly vyzkoušeny, avšak žádná z nich neřeší zcela uspokojivě tento problém. Přirozená cesta by byla aplikace biologického čištění. Toto však není možné vzhledem k vysokému stupni znečištění a hlavně vzhledem k přítomnosti těžko odbouratelného lepku v odpadu. Námi předběžně odzkoušená technologie umožňuje biologické čištění v kombinaci s chemickou předúpravou, při které je podstatná část lepku rozložena a část nečistot chemicky vysrážena. Chemickou předúpravou jsme docílili snížení původní hodnoty CHSK na polovinu a prokázali jsme, že pak lze odseparovaná řídká část čistit biologickou cestou s dobou zdržení 15-2 dní. Výstupem z ČOV je odpadní voda (CHSK 14-16mg/l), kterou lze na systému lagun dočistit až na hodnoty přípustné pro vypuštění do vodoteče. Keywords CZ: výpalky, destilační zbytek, silně znečistěné odpadní vody, CHSK, biolíh, líh, etanol, bioetanol, výroba etanolu, hydrolýza, fermentace škrobu, reverzní osmóza, aerobní proces, aerobní digesce, aerobní proces, termofilní, mezofilní, zpracování odpadu AN: stillage, slops, distillery wastewater, high-strength wastewater, COD, bioethanol, ethanol, spirit, ethanol production, hydrolysis, starch fermentation, reverse osmosis, aerobic biodegradation, anaerobic digestion, anaerobic processes, termophilic, mesophilic, waste treatment

Úvod Výroba alkoholu je po staletí známý proces, především z důvodu hlavní přísady do celé řady nápojů. S rozvojem techniky nalezl líh širokou řadu uplatnění téměř ve všech odětvích průmyslu. V posledních letech významně vzrostl podíl použití lihu jakožto alternativního paliva. Hlavním důvodem není jen rostoucí spotřeba fosilních paliv, ale i omezenost přírodních zdrojů. Při spalování fosilních paliv vzniká celá řada toxických látek, které zatěžují životní prostředí a přispívají k tvorbě skleníkového efektu. Využití biolihu se stalo politickou záležitostí, mnoho států přijímá opatření pro ustanovení rovnováhy mezi zemědělskými přebytky na jedné straně a mezi zvyšující se poptávkou pohonných hmot na straně druhé. Hlavními přínosy využití biolihu jako přísady do pohonných hmot jsou zejména: získání alternativního zdroje energie, snížení závislosti na dovozu ropy, podpora zemědělství, zajištění dalších pracovních míst, snížení emisí CO2, snížení vlivu emisí na skleníkový efekt. Nevýhodou je vznik velkého množství odpadu. Základní odpadní produkt z výroby biolihu je destilační zbytek tzv. lihovarské výpalky. V důsledku potřeb fermentačního procesu se při výrobě 1 m 3 lihu vyprodukuje 1-14 m 3 lihovarských výpalků. Optimální koncentrace cukrů předurčuje minimální objem destilačního zbytku. Složení odpadu silně závisí na použité vstupní surovině, způsobu přípravy zápary, vlastní fermentaci a na kvalitě destilačního procesu. Zpracováním sacharidických surovin dojde k částečné spotřebě škrobu, dextrinů a monosacharidů. Zůstanou téměř všechny složky původní suroviny, které jsou vlivem fermentace obohaceny o biomasu kvasinek. Sušina odpadu se pohybuje mezi 5-8% hm., ph 3.6-4.2, CHSK 4 9 g/l. Vzhledem k obtížnosti likvidace většina producentů biolihu výpalky zahušťuje. Zahuštěná část má podstatně menší objem a lze ji dále využít k výrobě krmiv, hnojiv a paliv. Řídká část, zejména brýdový kondensát, další využití nemá a je zpravidla likvidován na ČOV. Tento proces je energeticky velice náročný. Existuje celá řada způsobů likvidace např: DDGS(sušení), spalování, zkrmování, využití jako hnojivo, anaerobní digesce v BPS,... Vhodnost využití těchto variant je odvislé od celé řady faktorů: vstupní surovina, umístění lihovaru, kapacita recipientu a v neposlední řadě velikost lihovaru. Cílem naší práce je navržení technologie, která splní všechny ekologická kritéria na likvidaci výpalků a bude finančně výhodnější. Hlavní výhodou varianty s chemickou předúpravou jsou relativně nízké investiční náklady. Ekonomické porovnání známých variant včetně metody chemické předůpravy zpracoval V. Sajbrt 29.

Popis metody Výpalky tvoří koloidní směs, která je mechanicky téměř neodseparovatelná. Po chemické předúpravě dojde k podstatnému snížení obsahu látek ve výpalcích. Tato metoda spočívá v chemickém srážení rozpustných organických i anorganických látek, jejich případné sorpci na vhodný nosič a flokulací organickým flokulantem. Po předúpravě je umožněno odseparovat na odstředivce nejen biomasu kvasinek, zdrtky a nezfermentovaná zrna ale sníží se i hodnoty sumárního dusíku a CHSK. Hodnoty CHSK se sníží o 4-5%. Při optimálním dávkování vstupních složek lze docílit snížení až o 55%. Výsledky několika měření jsou vyneseny do grafu (obr.3). Vznikající kal je separován a společně s biologickým kalem vhodně zpracováván kompostací, nebo bude využit na výrobu bioplynu. Užité chemikálie nejsou ekologickou zátěží, přispívají ke zlepšení sorpčních vlastností půdy. Celý technologický proces může být zcela zautomatizován. Tato metoda je dále schematicky nakreslena na obr. 1. Obr. 1. Blokové schéma biologického čištění s chemickou předúpravou

Organické polykoagulanty (flokulanty) Volba vhodného organického polykoagulantu současně s reglementem úpravy je důležitýmbodem navržené technologie, protobyla výběru polykoagulantu věnována velká pozornost. Vhodnost polykoagulantu jsem stanovil experimentálně z dostupných produktů na trhu v ČR. Směsný vzorek výpalků jsem vytemperoval na požadovanou zkušební teplotu. Do vzorků takto připravených výpalků o objemu 5 ml jsem přidával pracovní roztoky. Postupně jsem měnil objem přídavku pracovních roztoků. Výslednou sraženinu jsem posuzoval vizuálně a jednoduchou separační zkouškou. Měřil jsem čas filtrace a objem získaného filtrátu. Do jednotlivých vzorků po 5ml vytemperovaných výpalků na zkušební teplotu (4 C, 5 C, 7 C, 9 C) jsem přidal 2ml roztoku A, 4ml roztoku B a 1ml roztoku jednotlivých flokulantů. Sestavil jsem filtrační aparaturu pro měření za konstantního podtlaku. Jednotlivé vzorky jsem filtroval při podtlaku 24kPa a měřil jsem závislost objemu filtrátu na čase. Výsledky pro měření při 5 C jsem vynesl do grafu viz (obr.2). Filtrační křivka 5 C, podtlak 24kPa 6 objem [ml] 5 4 3 2 1 sokoflok S59 sokoflok S56 sokoflok S68 sokoflok S68 při 7 C XPC 4H sokoflok S2 sokoflok S54 sokoflok S26 XPC 2H XPC 3H XPC 46 bez úpravy 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 čas [min] Obr. 2. Filtrační test pro výběr vhodného polykoagulantu Nejvhodnější flokulant pro zadané účely je SOKOFLOK 68. Podobné vlastnosti vykazoval SOKOFLOK 59, kterým by bylo možné S 68 nahradit. Vlivem rostoucí teploty se velikost vzniklých vloček zmenšuje, porozita filtračního koláče je menší a koláč se dříve zbortí. Vzhledem k teplotě se mění i viskozita a proto u některých vzorků, navzdory špatné porozitě vrstvy, proběhla filtrace za stejný čas jako při nižší teplotě. Z výsledku testů vyplývá, že flokulanty s rostoucí teplotou ztrácí účinnost. Většina flokulantů při teplotě nad 6 C nepracuje téměř vůbec. Vzhledem k podobným cenám produktů a vzhledem k ceně celé předúpravy, není pro výběr flokulantů cena rozhodujícím faktorem.

Chemická předúprava V průběhu roku jsem navzorkoval výpalky z různých směsí vstupních surovin. Každý vzorek výpalků jsem vytemperoval na požadovanou zkušební teplotu 4 C. Do vzorku o objemu 5 ml jsem přidal 2ml roztoku A, 4ml roztoku B a 1ml roztoku flokulantu. Fotometricky jsem měřil hodnoty CHSK výpalků před chemickou předúpravou a upraveného odseparovaného vzorku. Provedl jsem 9 měření, výsledné hodnoty jsem vynesl do grafu 2. Hodnoty CHSK výstupní předčištěné vody se po cemické předúpravě rsníží o 4-5%. Při optimálním dávkování vstupních složek lze docílit snížení až o 55% (vzorek 8). Metoda stanovení CHSK č.14 555, použitý přístroj fotometr MERC SQ118 Chemická předúprava 7 6 CHSKcr mg/l 5 4 3 2 výpalky řídká frakce 1 1 2 3 4 5 6 7 8 9 č. vzorku Obr. 3. Porovnání CHSK před a po chemické předúpravě Podstatnou výhodou chemické předúpravy jsou nízké investiční náklady a jednoduchost provozní linky (ve srovnání s ostatními metodami likvidace). Výstupem je biologicky odbouratelná odpadní voda.

Biologické čištění Cílem měření bylo ověřit, zda dosažené předčištění po chemické úpravě je dostačující pro správnou funkci biologického čištění. Do laboratorního modelu biologické čistírny odpadních vod jsem vsadil 5% obj. odseparované řídké frakce výpalků po chemické předůpravě a 5%obj. kalové vody z čistírny odpadních vod lihovaru v Blanici. Výsledné CHSK takto vytvořené směsi bylo 171mg/l a vstupní ph směsi jsem upravil roztokem NaOH z hodnoty ph 3,7 na ph 6,1. Postupným odbouráváním se ph v bioreaktoru zvyšovalo viz (obr.6). Z důvodu správné funkce jsem v průběhu experimentu ph snižoval kys. trihydrogenfosforečnou. Při kontinuálním nátoku na ČOV a při vhodném ředení vstupní vody problématika úpravy ph odpadne. Denní úbytky CHSK jsou patrné z výsledků měření zanesených do grafu (obr.4). Denní přírůstek kalu jsem vyhodnocoval na sedimantačním kuželu za 6 hodin sedimentace, výsledky přírůstku biomasy jsem vynesl do grafu (obr.5). Vzhledem k masivnímu nárůstu biomasy je třeba z biologického stupně kal separovat a dále samostatně zpracovávat, nebo odvodnit a kompostovat společně s tuhou frakcí z chemického stupně. Výstupem experimentu byla předčištěná voda o CHSK 16 mg/l. Na základě zkušeností a výzkumu Prof. Ditla a Dr. Nápravníka předpokládáme, že lze snížit zbylé CHSK v systému lagun na parametry pro vypuštění do vodoteče. (Ditl, Nápravník 25) Před realizací v provozu je třeba biologické čištění experimentálně ověřit na kontinuálním poloprovozním zařízení. CHSK CHSK 18 16 14 12 1 8 6 4 2 5 1 15 2 25 Obr. 4. Odbourávání CHSK v závislosti na čase

Sedimentační kužel 1l 6hod ml kalu 1 9 8 7 6 5 4 3 2 1 5 1 15 2 25 Obr. 5. Nárůst biomasy v závislosti na čase ph 9 8,5 8 ph 7,5 7 6,5 6 5,5 5 1 15 2 25 Obr. 6. Změna ph v závislosti na čase (ph jsem v průběhu experimentu upravoval viz text )

Další experimentální měření jsem založili ve 12l nádobách. Do aktivace č.1 a č.2 jsem vsadil kalové vody z čistírny odpadních vod lihovaru v Blanici, zajistil jsem aeraci a v denních dávkách jsem reaktor zatěžoval viz graf (obr.7). Reaktor č.1. jsem zatěžoval odseparovanými výpalky z chemické předůpravy. Reaktor č.2. jsem zatěžoval neupravenými výpalky z destilační kolony. Výsledné CHSK takto vytvořené směsi bylo denně vzorkováno a vyneseno do grafu viz (obr.7). Vstupní ph směsi nebylo nutno upravovat. Průběžným odbouráváním se ph v bioreaktoru nezvyšovalo viz (obr.9). Denní hodnoty CHSK jsou patrné z výsledků měření zanesených do grafu (obr.7). Denní přírůstek kalu jsem vyhodnocoval na sedimantačním kuželu za 3 min sedimentace, výsledky přírůstku biomasy jsem vynesl do grafu (obr.8). Vzhledem k masivnímu nárůstu biomasy je třeba z biologického stupně kal separovat a dále samostatně zpracovávat, nebo odvodnit a kompostovat společně s tuhou frakcí z chemického stupně. Experimentem byla prokázána schopnost dočištění na biologickém stupni i při velké zátěži. Dalším krokem by bylo dočištění na systému lagun a po dosažení hodnot CHSK 8 mg/l možné vypuštění do vodoteče. CHSK 35 3 25 CHSK 2 15 1 5 1 2 3 4 5 6 7 8 9 111121314151617181922122232425262728293 upravené výpalky [mg/l] neupravené výpalky [mg/l] denní dávky [ml/den] Obr. 7. Odbourávání CHSK v závislosti na čase

Sedimentační kužel 1l 3min ml kalu 1 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 1516 17 18 19 2 21 22 23 24 25 26 27 28 29 3 upravené výpalky neupravené výpalky Obr. 8. Nárůst biomasy v závislosti na čase ph 9 8,5 8 ph 7,5 7 6,5 6 5,5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 upravené výpalky neupravené výpalky Obr. 9. Změna ph v závislosti na čase

Závěr: Experimentálně jsme prokázali, že po chemické úpravě dle vlastního reglementu lze značnu část tuhé frakce výpalků mechanicky separovat. Na poloprovozním zařízení jsme separaci ověřili a docílili jsme snížení původní hodnoty CHSK cca na polovinu. Dále jsme experimentálně prokázali, že odseparovanou řídkou frakci lze dočistit klasickou biologickou cestou. Výstupem z ČOV je odpadní voda s hodnotou CHSK 14-16mg/l. Tyto vody lze na systému lagun dočistit až na hodnoty přípustné pro vypuštění do vodoteče. Z výsledků provedených experimentů vyplývá, že varianta chemické předúpravy v sobě nabízí zajímavou a levnou alternativu k dosavadním rozšířeným variantám likvidace výpalků zejména pro malé a střední lihovary. Použitá literatura: [1] Dohányos, M., Zábranská, J., Jeníček, P.: Anaerobic treatment of waste biomass from fermentation industry, Industrial waste water, 2, Kyjov. [2] Nápravník, J., Ditl, P.: Modern methods of disposal of pig slurry In: Actual problems in pig breeding. Česká zemědělská univerzita, 24, Praha, s. 79-91. ISBN 8-213-1176-2. [3] Paradovský, T.: What will we decide for: food, livestock feed or fuel?, Mikrob Čebín a.s., 8/27, http://www.mikrop.cz/userfiles/file/pkp.pdf (5.8.29). [4] Párová, J.: Dry complete stillages from bioethanol production in livestock nutrition, Research institute of livestock nutrition s.r.o., 22, Pohořelice. http://www.keth.sweb.cz/krmivo%2vypalky.doc (5.8.9). [5] Sajbrt, V., Ditl, P.: Comparison of Stillages Disposal Methods: Case Study for Given Distillery, Biofuels for Energetics 29, ČVUT Praha. [6] Slabý, F.: Usage of stillages from bioethanol production, PROKOP INVEST a.s., Pardubice, 27.http://www.odpadoveforum.cz/symposium/TextyOF/493.pdf (5.8.9)