Modelové řešení revitalizace průmyslových regionů a území po těžbě uhlí na příkladu Podkrušnohoří



Podobné dokumenty
Neuronové sítě v DPZ

Využití neuronové sítě pro identifikaci realného systému

K možnostem krátkodobé předpovědi úrovně znečištění ovzduší statistickými metodami. Josef Keder

Vytěžování znalostí z dat

ČESKÝ HYDROMETEOROLOGICKÝ ÚSTAV ÚSEK HYDROLOGIE EXPERIMENTÁLNÍ POVODÍ JIZERSKÉ HORY HYDROLOGICKÁ ROČENKA

VYUŽITÍ NÁSTROJŮ GIS PŘI SRÁŽKO-ODTOKOVÉM PŘEDPOVĚDNÍM MODELOVÁNÍ

ROZVOJ PŘEDPOVĚDNÍ POVODŇOVÉ SLUŽBY V ČESKÉ REPUBLICE PO POVODNI RNDr. Radek Čekal, Ph.D. RNDr. Jan Daňhelka, Ph.D.

Neuronové časové řady (ANN-TS)

HYDROLOGICKÁ ROČENKA

ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz

Emergence chování robotických agentů: neuroevoluce

MODELOVÁNÍ PLANÁRNÍCH ANTÉN POMOCÍ UMĚLÝCH NEURONOVÝCH SÍTÍ

Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně

Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner

Testování neuronových sítí pro prostorovou interpolaci v softwaru GRASS GIS

Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby

METEOROLOGICKÉ PŘÍČINY VÝRAZNÝCH POVODNÍ V LETECH 2009 A na vybraných tocích na severu Čech

METODIKA ZPRACOVÁNÍ EKONOMICKÝCH ČASOVÝCH ŘAD S VYUŽITÍM SIMULÁTORŮ NEURONOVÝCH SÍTÍ

NG C Implementace plně rekurentní

Předpověď přívalových povodní Fuzzy model Flash Floods Forecasting Fuzzy Model

Neuronové sítě Ladislav Horký Karel Břinda

STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST

PREDIKCE POČTU UCHAZEČŮ O STUDIUM S VYUŽITÍM NEURONOVÝCH SÍTÍ

Klíčová slova : malá povodí, využívání půdy, odtokové poměry, čísla odtokových křivek (CN)

Umělá inteligence a rozpoznávání

4 VYHODNOCENÍ MANUÁLNÍCH HYDROLOGICKÝCH PŘEDPOVĚDÍ

FORTANNS. 22. února 2010

3. Vícevrstvé dopředné sítě

Inteligentní systémy a neuronové sítě

Moderní systémy pro získávání znalostí z informací a dat

PŘÍSPĚVEK K HODNOCENÍ SUCHA NA JIŽNÍ MORAVĚ

ŘÍZENÍ NÁDRŽÍ A VODOHOSPODÁŘSKÝCH SOUSTAV V PROSTŘEDÍ MATLAB

ČESKÁ REPUBLIKA.

SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík

Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc

Algoritmy a struktury neuropočítačů ASN - P1

Neuronové sítě. 1 Úvod. 2 Historie. 3 Modely neuronu

Modernizace a inovace výpočetní kapacity laboratoří ITE pro účely strojového učení. Jiří Málek

Umělé neuronové sítě

Návrhové srážky pro potřeby hydrologického modelování

Metodika pro posuzování akcí zařazených do programu Podpora retence vody v krajině rybníky a vodní nádrže

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence

Trénování sítě pomocí učení s učitelem

IV. Processing of data and its publication

Český hydrometeorologický ústav

KLASIFIKÁTOR MODULACÍ S VYUŽITÍM UMĚLÉ NEURONOVÉ SÍTĚ

Lineární diskriminační funkce. Perceptronový algoritmus.

PB016 Úvod do umělé inteligence ZÁKLADY Z TEORIE A PRAXE. David Kabáth

CHARAKTERISTIKY M-DENNÍCH A MINIMÁLNÍCH PRUTOKŮ POSKYTOVÁNÍ HYDROLOGICKÝCH DAT DLE ČSN HYDROLOGICKÉ ÚDAJE POVRCHOVÝCH VOD

N-LETOST SRÁŽEK A PRŮTOKŮ PŘI POVODNI 2002

IV. ZPRACOVÁNÍ DAT A JEJICH POSKYTOVÁNÍ VEŘEJNOSTI IV. PROCESSING OF DATA AND ITS PUBLICATION

VYUŽITÍ UMĚLÉ NEURONOVÉ SÍTĚ PRO EMPIRICKÝ MODEL ŠÍŘENÍ SIGNÁLU

LOKALIZACE ZDROJŮ AE NEURONOVÝMI SÍTĚMI NEZÁVISLE NA ZMĚNÁCH MATERIÁLU A MĚŘÍTKA

3. přednáška. Výzkum a měření erozních procesů

Popis metod CLIDATA-GIS. Martin Stříž

VaV/650/6/03 DÚ 06 Statistická analýza řad maximálních průtoků DÚ 06 Statistical analysis of series of peak discharges

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013

Hydrologie (cvičení z hydrometrie)

IV. ZPRACOVÁNÍ DAT A JEJICH POSKYTOVÁNÍ VEŘEJNOSTI IV. PROCESSING OF DATA AND ITS PUBLICATION

IV. ZPRACOVÁNÍ DAT A JEJICH POSKYTOVÁNÍ VEŘEJNOSTI IV. PROCESSING OF DATA AND ITS PUBLICATION

Podkladová analýza pro následnou realizaci protipovodňových opatření včetně přírodě blízkých protipovodňových opatření v Mikroregionu Frýdlantsko

4 HODNOCENÍ EXTREMITY POVODNĚ

ADAPTACE PARAMETRU SIMULAČNÍHO MODELU ASYNCHRONNÍHO STROJE PARAMETR ADAPTATION IN SIMULATION MODEL OF THE ASYNCHRONOUS MACHINE

EXTRAPOLACE INTENZITNÍCH KŘIVEK PRO ÚČELY MODELOVÁNÍ SRÁŽKOODTOKOVÉHO PROCESU

ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ

Genetické programování 3. část

5.5 Předpovědi v působnosti RPP České Budějovice Vyhodnocení předpovědí Obr Obr Obr. 5.38

Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami

5. Umělé neuronové sítě. Neuronové sítě

IV. ZPRACOVÁNÍ DAT A JEJICH POSKYTOVÁNÍ VEŘEJNOSTI IV. PROCESSING OF DATA AND ITS PUBLICATION

Modelování hydrologických procesů II 3. Parametrizace přímého odtoku. 3. část. HEC-HMS parametrizace přímého odtoku

Učící se klasifikátory obrazu v průmyslu

Průvodce informacemi pro odbornou vodohospodářskou veřejnost

3. Srovnání plošných srážek a nasycenosti povodí zasažených srážkami v srpnu 2002 a červenci 1997

UŽIVATELSKÁ DOKUMENTACE VEŘEJNÝ INFORMAČNÍ PORTÁL (VIP)

NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1

Václav Matoušek KIV. Umělá inteligence a rozpoznávání. Václav Matoušek / KIV

HYDROLOGICKÁ ROČENKA

3 Bilanční posouzení srážek a odtoku

PUDIS a.s., Nad Vodovodem 2/3258, Praha 10 tel.: , fax: ,

Měření hodnoty g z periody kmitů kyvadla

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková

VYHODNOCENÍ SRÁŽKOVÝCH PŘEDPOVĚDÍ ALADIN A GFS PRO POVODÍ BĚLÉ

Povodeň na jaře 2006 & Předpovědní povodňová služba ČHMÚ

5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015

26 NÁVRH NA ODTĚŽENÍ A ULOŽENÍ NAPLAVENIN NA VTOKU DO VODNÍHO DÍLA DALEŠICE

Kompromisy při zpracování a hodnocení výsledků hydraulických modelů na příkladu hodnocení vodního zdroje Bzenec komplex

Projekt Brána do vesmíru. Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline

UNIVERZITA KARLOVA Přírodovědecká fakulta. Hydrometrie. Hodnocení variability odtokového režimu pomocí základních grafických a statistických metod

Vliv Mosteckého jezera na teplotu a vlhkost vzduchu a rychlost větru. Lukáš Pop Ústav fyziky atmosféry v. v. i. AV ČR

Využití profilových manuálních a automatických měření sněhu pro výpočet zásob vody ve sněhové pokrývce

Ekologická zranitelnost v povodí horní Nisy Ökologische Vulnerabilität im Einzugsgebiet der Oberen Neiße

Obr Průběh povodňové vlny na Dyji nad a pod nádrží Vranov

ROZPOZNÁVÁNÍ AKUSTICKÉHO SIGNÁLU ŘEČI S PODPOROU VIZUÁLNÍ INFORMACE

Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D.

ití empirických modelů při i optimalizaci procesu mokré granulace léčivl ková SVK ÚOT

Algoritmy a struktury neuropočítačů ASN - P11

Historie povodní na JM a povodňové škody

Martin Hanel DOPADY ZMĚN KLIMATU NA NEDOSTATKOVÉ OBJEMY A MOŽNOST JEJICH KOMPENZACE POMOCÍ TECHNICKÝCH OPATŘENÍ

Transkript:

Univerzita J. E. Purkyně, Fakulta životního prostředí Registrační číslo projektu: MMR WD-44-07-1 Modelové řešení revitalizace průmyslových regionů a území po těžbě uhlí na příkladu Podkrušnohoří Závěrečná zpráva o řešení Číslo aktivity: A421 Název aktivity: Predikce průtoků na řekách Doba řešení: 1. 4. 2007 30. 7. 2008 Řešitel: Martin Neruda,

ÚVOD Ve spolupráci s Ústavem informatiky Akademie věd (UI AV) ČR a Českým hydrometeorologickým ústavem v Ústí nad Labem (ČHMÚ) byly provedeny výpočty predikce průtoků na řece Sázavě a Ploučnici. Výpočty navazovaly na předešlé experimenty aplikované na povodí Ploučnice. Na rozdíl od doposavad využívaných denních dat (srážky, průtoky) jsme vyzkoušeli poprvé data hodinová. Hodinová srážková a průtoková data byla pořízena na ČHMÚ. Na povodí Sázavy jsme se zaměřili na časovou řadu 1. 8. 11. 9. 2002, zejména pro začlenění povodně z 14. 8. 2002. Byl použit softwarový model umělých neuronových sítí Bang, vyvinutý na Ústavu informatiky Akademie věd ČR v Praze a program Weka (Nový Zéland). Počítali jsme s vícevrstvou perceptronovou sítí s algoritmem backpropagation. TEORIE NEURONOVÝCH SÍTÍ Modely neuronových sítí jsou uspořádány do vrstev. Standardně se používají vstupní, mezilehlá (mezilehlé) a výstupní vrstvy. Neurony ze sousedních vrstev jsou navzájem propojeny. Sílu vícevrstvých neuronových sítí utváří spojení více vrstev a nelineárních přenosových funkcí jednotlivých neuronů. Kdybychom použili lineární přenosovou funkci, mohli bychom celou síť nahradit sítí perceptronů s vhodnými vahami. Často používanou přenosovou funkcí je sigmoidální přenosová funkce. U neuronových sítí se často používá algoritmus zpětného šíření back propagation. Při jeho použití se síť postupně učí pomocí korekce vah v závislosti na odchylce mezi zadanou a vypočtenou hodnotou výstupního signálu. Korekce signálů (vah) pak probíhá sítí zpětně odtud pochází název. Obr. 1 Vícevrstvá perceptronová síť POVODÍ SÁZAVY Byl vybrán úsek řeky Sázavy od pramene k uzávěrovému profilu Světlá nad Sázavou (viz obr. 2). Na této části povodí se nacházejí srážkoměrné stanice Světlá nad Sázavou, Humpolec, Habry a Horní Krupá. Plochy přiřazené k srážkoměrným stanicím pro výpočet váženého průměru srážek byly spočítány podle Thiessenových polygonů (tab. 1) Tab. 1 Rozdělení povodí Sázavy podle Thiessenových polygonů (data: ČHMÚ)

Název srážkoměrné stanice Plocha spočítaná podle Thiessenových polygonů (km 2 ) Habry 90 Světlá nad Sázavou 134 Horní Krupá 768 Humpolec 246 Celkem 1238 Obr. 2 Povodí Sázavy rozdělené podle Thiessenových polygonů (data: ČHMÚ) Hodinová data byla rozdělena na trénovací množinu (1. 8. 31. 8. 2002) a množinu testovací (1. 9. 11. 9. 2002). Statistická úspěšnost experimentů s neuronovými sítěmi byla spočítána podle koeficientu determinace (EC): EC = (Q Q 2 m p 1 ( 2 (Qm Q) ) ).100 ( % ) (1) kde Q m hodinové naměřené průtoky (m 3.s -1 ) Q p hodinové spočítané průtoky (m 3.s -1 ) Q průměrný naměřený hodinový průtok (m 3.s -1 ) Byly zkoušeny dvě varianty perceptronové neuronové sítě typu 3 7-1 s algoritmem zpětného šíření (back propagation). První s předpovědí 1 h dopředu, a to na základě průtoku a srážky v momentu výpočtu, a srážky pro jednohodinovou předpověď. Druhá s předpovědí 2 h dopředu, a to na základě srážek a průtoků v momentě předpovědi, a srážek 2 h dopředu. Data byla do programu upravena v intervalu < 0; 1>. Po zpětném převedení na průtoky v m 3.s -1 byly spočítány koeficienty determinace a sestrojeny výsledné grafy (obr. 3 5).

VÝSLEDKY Koeficient determinace u první varianty sítě (1 h předpověď) vychází pro období trénování 99,6 % a pro období testování 96,7 %. U druhé varianty sítě (2 h předpověď) to bylo 99,4 % při tréninku a 82,1 % při testování. Pro ověření spolehlivosti předpovědí je nutné provést další výpočty s různými architekturami sítí. V grafech řada 1 značí naměřené hodnoty a řada 2 hodnoty spočítané. Perceptronová síť 3-7-1 Řada1 Řada2 180 160 140 120 průtok m3/s 100 80 60 40 20 0 1 23 45 67 89 111 133 155 177 199 221 243 265 287 309 331 353 375 397 419 441 463 485 507 529 551 573 595 617 639 661 683 705 727 1.8.-31.8.2002 Obr. 3 Predikce sítě během trénování 1 h dopředu

Perceptronová síť 3-7-1 Řada1 Řada2 60 50 40 průtoky m3/s 30 20 10 0 1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 185 193 201 209 217 225 233 241 249 257 1.9.-11.9.2002 Obr. 4 Predikce sítě během testování 1h dopředu Perceptron 3-7-1 předpověď 2h testování 60 50 40 průtok m3/s 30 Řada1 Řada2 20 10 0 1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 185 193 201 209 217 225 233 241 1.9.-11.9.2002 Obr. 5 Predikce sítě 2h dopředu testování POVODÍ PLOUČNICE Na obr. 6 je vymezena část povodí Ploučnice použitá pro naše výpočty, od pramene k městu Mimoň. Plocha povodí je 1193,9 km 2 ; od pramene k Mimoni je to 267,9 km 2, délka toku je 106,2 km. Průtokové poměry na toku jsou vidět v tabulkách 2 a 3. Tab. 2 N-leté průtoky Mimoň (ČHMÚ)

1 2 5 10 20 50 100 m 3.s -1 21,7 31 45 57 70 88 103 Tab. 3 m-denní průtoky - Mimoň (ČHMÚ) Dny (m) 30 60 90 120 150 180 210 240 270 300 330 355 364 Q průtok [m 3.s -1 ] 4,47 3,29 2,68 2,28 1,98 1,75 1,56 1,39 1,24 1,1 0,96 0,81 0,7 Obr. 6 Část povodí Ploučnice (zdroj: ČHMÚ) A tabulka 4 uvádí výsledky posledních výpočtů na řece Ploučnici se srážko-odtokovými daty za roky 2006 2007. Architektura sítě Absolutní chyba- Absolutní chyba-

trénování testování 1 h historie dat 3;5;1 0.0394 0.009 3;10;1 0.0428 0.011 3;5;2;1 0.0394 0.013 2 h historie dat 6;5;1 0.0246 0.010 6;10;1 0.0253 0.015 6;5;2;1 0.0263 0.019 6;10;4;1 0.0267 0.022 3 h historie dat 9;5;1 0.0629 0.034 9;10;1 0.0581 0.033 9;5;2;1 0.0644 0.037 9;10;4;1 0.0682 0.042 Tab. 4 Výsledky modelování na Ploučnici (rok 2006 2007) VÝSLEDKY Při těchto experimentech jsme počítali s 1 hodinovou historií dat, 2 hodinovou historií dat a 3 hodinovou historií dat. Predikci průtoku jsme počítali 1 hodinu dopředu. Všeobecně, vícehodinová historie dat dává lepší výsledky než 1 hodinová historická data. Také se prokázalo, že 3 hodinová historie vyžaduje více času na učení, jelikož obsahuje více parametrů, které se musí stanovit během učení. Nicméně všechny sítě úspěšně zvládly proces učení u této úlohy. V současnosti probíhají práce na spuštění on-line aplikace přímo na pobočce ČHMÚ v Ústí nad Labem. Spolu s modelem neuronových sítí Bang byl vyzkoušen software Weka (Univerzita Waikata, Nový Zéland). V další práci budeme modely aplikovat na povodí Smědé v Jizerských horách, kde je v současnosti nakalibrovaný srážko-odtokový model Aqualog (ČHMÚ). Modely budou použity na několikahodinové (2, 3, 6 h) predikce průtoků s využitím predikce srážkových úhrnů. Pro vstupní data je využívána aquabáze on-line vstupů ze srážkoměrů a limnigrafů na povodí (ČHMÚ). Poslední výsledky byly prezentovány na konferenci HYDROLOGICAL EXTREMES IN SMALL BASINS, pořádanou Euromediterranean Network of Experimental and Representative Basins (ERB) 18. 20. 9. 2008 v Krakově. Článek byl opraven podle pokynů recenzenta a připravuje se k vydání ve sborníku UNESCO, IHF v Paříži. Roman Neruda přednesl přednášku "Computational Intelligence Runoff Modeling by Means of Multi agent Systems" na konferenci CMWR'08 v San Franciscu, 8. 7. 2008, kde uvedl výsledky srážko odtokového modelování. PUBLIKACE 1) BANG V. 3.2 (2004) Home page http://www.cs.cas.cz/bang3. 2) LIPPMANN, R., P. (1987) An introduction to computing with neural nets. IEEE ASSP Magazine, 4:4-22.

3) MINSKY M. L., PAPERT S. A. (1969) Perceptrons. MIT Press, Cambridge MA. 4) NACHÁZEL K., STARÝ M., ZEZULÁK J. (2004) Využití metod umělé inteligence ve vodním hospodářství, Academia Praha 5) NERUDA M., NERUDA R., KUDOVÁ P. (2007) Aplikace umělých neuronových sítí na zvolený úsek povodí Sázavy, Vodní hospodářství č. 4, s. 127 128. 6) NERUDA M. (2004) Využití matematických modelů srážko-odtokových procesů k hodnocení retence malých povodí v severních a východních Čechách, disertační práce, Lesnická a environmentální fakulta ČZU v Praze. 7) NERUDA M., NERUDA R., KUDOVÁ P. (2005) Forecasting runoff with Artificial Neural Networks, UNESCO, International Hydrological Programme, Progress in surface and subsurface water studies at plot and small basin scale, 10 th Conference of the Euromediterranean Network of Experimental and Representative Basins (ERB) Turin, Italy, 13 17. 10. 2004, IHP-VI, No. 77, Paris, France, s. 65 69 8) RUMELHART, D., E., MCCLELLAND, J., L. (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition I&II. MIT Press. Cambridge MA. 9) ŠEBLOVÁ H., STARÝ M. (1999) The operative predictions of flood, discharges in the Jihlava River basin. In: Sborník mezinárodní vědecké konference Krajina, meliorace a vodní hospodářství na přelomu tisíciletí, Brno, s. 279 287 10) ŠÍMA J., NERUDA R. (1997) Theoretical issues of neural networks. MatfyzPress, Charles University, Prague (in Czech).