Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1
|
|
- Dagmar Moravcová
- před 9 lety
- Počet zobrazení:
Transkript
1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, Praha 4 - Komořany sosna@chmi.cz, tel Abstrakt: Referát stručně seznamuje s nejdůležitějšími vlastnostmi časových řad výšky hladiny vody v mělkých vrtech pozorovací sítě Českého hydrometeorologického ústavu. Důraz je kladen na grafické znázornění vlastností dat. Klíčová slova: statistická analýza, časové řady, podzemní vody 1. Základní vlastnosti časových řad Výšky hladiny vody v mělkých vrtech pozorovací sítě Českého hydrometeorologického ústavu jsou měřeny v metrech nadmořské výšky nejčastěji s periodou jeden týden, postupně se zaváděním automatického měření se přechází na denní měření. Časový režim výšek hladin vody ve vrtech je užitečné rozložit na tři složky. První představuje dlouhodobé kolísání hladin, nejlépe se charakterizuje pomocí časové řady ročních průměrů nebo mediánů. Druhou představuje roční chod hladin a třetí složku tvoří velmi krátkodobé děje (vliv vydatných srážek, čerpání v blízkosti objektu, vliv blízkého toku a podobně). Na Obr.1 je příklad režimu vrtu, u kterého je prakticky zcela potlačena složka ročního chodu. Graf jeho autokorelační funkce je na Obr.3. Opačný extrém je patný na Obr.2. U tohoto objektu je složka ročního chodu velmi silně zastoupena. Potvrzuje to i graf jeho autokorelační funkce na Obr. 4. Objekt je měřen s týdenním krokem, to představuje 52 až 53 měření ročně a tomu odpovídá i lokální maximum autokorelační funkce. Většina pozorovaných objektů vykazuje režimy, které leží mezi dvěma výše popsanými extrémy. Výška [ m n.m.] Objekt: VP Obrázek 1 Graf výšky hladiny vody ve vrtu, ukázka objektu se zcela potlačeným ročním chodem. Výška [ m n.m.] Objekt: VP Obrázek 2 Graf výšky hladiny vody ve vrtu, ukázka objektu s výrazným ročním chodem.
2 Obrázek 3 Výstup z programu CTPA, graf autokorelační funkce dat z obrázku 1, objekt se zcela potlačeným ročním chodem Obrázek 4 Výstup z programu CTPA, graf autokorelační funkce dat z obrázku 2, objekt s výrazným ročním chodem
3 2. Roční chod Roční chod je možné názorně zobrazit například pomocí rozptylového diagramu měsíčních průměrů výšek hladin vody ve vrtu. Na Obr. 5 je ukázka takového diagramu pro vrt, jehož časový režim je zobrazen na Obr. 2 a to pro stejné časové období U naprosté většiny měřených objektů se během roku podstatně mění nejen střední hodnota, ale i rozptyl a šikmost dat. Například pro vrt VP0635 je podle Tab. 1 v březnu průměrná hodnota výšky 241,4m n.m., směrodatná odchylka 0,21m a šikmost -0,51. V září je průměr 240,8m n.m., směrodatná odchylka 0,24m a šikmost -0,74. Rozdíl průměrů března a září je tedy téměř třikrát větší, než je březnová směrodatná odchylka a březnový průměr je dokonce větší, než je největší zářijová, říjnová nebo listopadová hodnota. Tuto skutečnost je třeba respektovat při výpočtu takových charakteristik jako jsou kvantily, pravděpodobnosti překročení nebo křivky překročení. Vždy je třeba je vztahovat k určitému ročnímu období. Znalost charakteristik ročního chodu pro daný měřený objekt je důležitá pro krátkodobé předpovědi výšky hladin v daném roce. Pomocí znalosti jarního maxima je možné odhadnout vývoj v následujících několika měsících za předpokladu, že ve vegetační části roku nedojde k vydatným srážkám, povodni apod. Jednotlivé mělké vrty se od sebe liší podle toho, ve kterém měsíci u nich obvykle dosahuje hladina vody maxima nebo minima. Na Obr. 6 je mapa kalendářních měsíců s nejmenším dlouhodobým průměrem výšek hladin vody ve vrtu a na Obr. 7 pak s největším průměrem. Výška [m n.m.] Objekt: VP Měsíce Obrázek 5 Znázornění ročního chodu,rozptylový diagram měsíčních průměrů výšek hladin vody ve vrtuvp0635 pro období Měsíc Průměr Medián Směrodatná Koeficient odchylka šikmosti [--] [m n.m.] [m n.m.] [m] [---] Tabulka 1 Měsíční průměry, mediány, směrodatné odchylky a koeficienty šikmosti výšek hladin vody ve vrtu VP0365 pro období
4 Obrázek 6 Mapa kalendářních měsíců s nejmenším dlouhodobým průměrem výšek hladin vody ve vrtu pro období Obrázek 7 Mapa kalendářních měsíců s největším dlouhodobým průměrem výšek hladin vody ve vrtu pro období
5 3. Střednědobé trendy v datech Pro celkem 345 mělkých vrtů víceméně rovnoměrně rozložených na území Čech (odpovídá přibližně povodí Labe i s přítoky) byly vypočítány průměrné roční výšky hladin vody. Dále byla data průměrů roků pro každý objekt zvlášť normalizována odečtením celkového průměru řady a vydělena směrodatnou odchylkou. Byla tak pro každý vrt získána poměrná veličina vyjadřující odchylku od průměru vyjádřenou v násobku směrodatné odchylky. Pro takto normalizovaná data byl pro každý rok vypočítán průměr pro celou oblast Čech a zanesen do časového grafu na Obr.8. Na jeho základě si lze udělat alespoň přibližnou představu o typickém časovém průběhu ročních průměrů hladin vrtů v oblasti Čech. Pomocí podrobnější analýzy lze vysledovat především tyto skutečnosti: Data jsou závislá. Mezi po sobě následujícími roky existuje silná autokorelace, jak je patrné z autokorelační funkce na Obr. 10 i z výsledku testu na Obr. 11. V důsledku toho jsou v grafech patrné vlny (pseudoperiody). Během třicetiletí lze vysledovat celkem tři výraznější pseudoperiody. Nadprůměrné výšky hladin byly naměřeny v létech , a S postupující dobou se podprůměrná období prodlužují na úkor nadprůměrných. Celkový trend je tedy spíše klesající (pro velkou závislost v datech a krátké období měření to ale lze těžko dokázat pomocí běžných statistických testů, určitým pokusem o to je výsledek testu na Obr. 12, kde pořadový koeficient korelace vychází záporný a lze tedy předpokládat klesající trend v datech). Stejným způsobem byl sestrojen i graf pro oblast povodí Moravy na Obr. 9 a také pro 16 dalších menších oblastí. Relativní odchylka od průměru Oblast: Čechy Rok y Obrázek 8 Graf relativních odchylek ročních průměrů výšek hladin vody ve vrtech.průměr pro oblast Čechy. Relativní odchylka od průměru Oblast: Morava Roky Obrázek 9 Graf relativních odchylek ročních průměrů výšek hladin vody ve vrtech.průměr pro oblast Morava
6 Obrázek 10 Výstup z programu CTPA, Graf autokorelační funkce dat z obrázku 8 (oblast Čechy) Testy náhodnosti, počet iterací Soubor : CECHY.txt Stanice : - Počet dat: n = 30 Proměnná: - Období : K odhalení změny spíše periodického charakteru Kritické hodnoty: na hladině významnosti pro n1 <= 20 a n2 <= 20 Výsledky: počet iterací = 8 n1 = 15 n2 = 15 Hypotéza H0 : uspořádání řady je náhodné Alternativa H1 : uspořádání řady není náhodné Interpretace výsledků: Hypotézu H0 vzhledem k H1 zamítáme Obrázek 11 Výstup z programu CTPA, iterační test náhodnosti dat z obrázku 8 (oblast Čechy) Testy náhodnosti, Kendallův koeficient pořadové korelace Soubor : CECHY.txt Stanice: - Počet dat: n = 30 Proměnná: - Období : Zaměřen na posuzení existence systematického posunu Kritická hodnota = na hladině významnosti Výsledky: Kendallův koeficient = hodnota testové statistiky = Hypotéza H0: uspořádání řady je náhodné Alternativa H1: uspořádání řady není náhodné Interpretace výsledků: Hypotézu H0 zamítáme Obrázek 12 Výstup z programu CTPA, test náhodnosti-kendalův koeficient pořadové korelace data z obrázku 8 (oblast Čechy) Seznam použitého programového vybavení: Procházka, M., Deyl, M. (2000): Program CTPA ArcView GIS 3.2, ESRI 2000 Kupka. K. (2004): QC.Expert V2.7, TriloByte Pardubice
Hydrologie (cvičení z hydrometrie)
Univerzita Karlova v Praze Přírodovědecká fakulta Katedra fyzické geografie a geoekologie Hydrologie (cvičení z hydrometrie) Zhodnocení variability odtokového režimu pomocí základních grafických a statistických
VíceNa květen je sucho extrémní
14. května 2018, v Praze Na květen je sucho extrémní Slabá zima v nížinách, podprůměrné srážky a teplý a suchý duben jsou příčinou současných projevů sucha, které by odpovídaly letním měsícům, ale na květen
VíceZápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
VíceČíselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
VíceTECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar
VícePŘÍSPĚVEK K HODNOCENÍ SUCHA NA JIŽNÍ MORAVĚ
PŘÍSPĚVEK K HODNOCENÍ SUCHA NA JIŽNÍ MORAVĚ Jiří Sklenář 1. Úvod Extrémy hydrologického režimu na vodních tocích zahrnují periody sucha a na druhé straně povodňové situace a znamenají problém nejen pro
VíceHydrologické sucho v podzemních a povrchových vodách
Hydrologické sucho v podzemních a povrchových vodách Setkání vodoprávních úřadů s odborem ochrany vod MŽP Ing. Eva Soukalová, CSc. Nové Město na Moravě 2. 3. dubna 25 Obsah přednášky Pozorovací síť podzemních
VíceStanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )
Příklad č. 1 Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Zadání : Stanovení manganu ve vodách se provádí oxidací jodistanem v kyselém prostředí až na manganistan. (1) Sestrojte
VíceVzorová prezentace do předmětu Statistika
Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota
VíceJEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
VíceLineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
VíceUNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie na téma Tvorba nelineárních regresních modelů v analýze dat Vedoucí licenčního studia Prof. RNDr.
VíceHydrologické sucho v podzemních a povrchových vodách
Hydrologické sucho v podzemních a povrchových vodách Konference Podzemní vody ve vodárenské praxi Ing. Eva Soukalová, CSc. Dolní Morava. 2. dubna 25 Obsah přednášky Pozorovací síť podzemních vod Aktuální
VíceUNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce ANOVA 2015
VíceSimulace. Simulace dat. Parametry
Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,
VíceMann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
VícePlánování experimentu
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Ing. Radek Růčka Přednášející: Prof. Ing. Jiří Militký, CSc. 1. LEPTÁNÍ PLAZMOU 1.1 Zadání Proces
VíceMáme se dál obávat sucha i v roce 2016?
Máme se dál obávat sucha i v roce 2016? V našich geografických podmínkách nelze spolehlivě predikovat vznik sucha v horizontu několika týdnů či měsíců. To, zda hrozí sucho i v roce 2016, bude dáno vývojem
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
VíceStav sucha pokračuje i v říjnu
Datum: 17. 10. 2018 Místo: Praha-Komořany TISKOVÁ ZPRÁVA Stav sucha pokračuje i v říjnu Srážkový deficit z letních měsíců pokračuje i nadále, do poloviny října představovaly srážkové úhrny na území České
VíceTestování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
VíceCharakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
VícePředpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2
Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
VíceUniverzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel
VíceSEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík
SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách
VíceUNIVERZITA KARLOVA Přírodovědecká fakulta. Hydrometrie. Hodnocení variability odtokového režimu pomocí základních grafických a statistických metod
UNIVERZITA KARLOVA Přírodovědecká fakulta Hydrometrie Hodnocení variability odtokového režimu pomocí základních grafických a statistických metod (cvičení z hydrologie) 12.4.26 Pavel Břichnáč 1.ročník.
VícePERIODICITA A PŘEDPOVĚDI VÝSKYTU SUCHA V PODZEMNÍCH VODÁCH. Ing. Eva Soukalová, CSc. Ing. Radomír Muzikář, CSc.
PERIODICITA A PŘEDPOVĚDI VÝSKYTU SUCHA V PODZEMNÍCH VODÁCH Ing. Eva Soukalová, CSc. Ing. Radomír Muzikář, CSc. Srpen -Květen Doba opakování Klimatická změna a PZV Danube River Basin Climate Change Adaption
VíceTabulka 1. Výběr z datové tabulky
1. Zadání domácího úkolu Vyberte si datový soubor obsahující alespoň jednu kvalitativní a jednu kvantitativní proměnnou s alespoň 30 statistickými jednotkami (alespoň 30 jednotlivých údajů). Zdroje dat
VíceStatistické zpracování naměřených experimentálních dat za rok 2012
Statistické zpracování naměřených experimentálních dat za rok 2012 Popis dat: Experimentální data byla získána ze tří měřících sloupů označených pro jednoduchost názvy ZELENA, BILA a RUDA. Tyto měřící
VíceStatistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni
Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni Kvantifikace dat Pro potřeby statistického zpracování byly odpovědi převedeny na kardinální intervalovou
VíceUniverzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA. Semestrální práce
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015 Doc. Mgr. Jan Muselík, Ph.D.
VícePorovnání dvou výběrů
Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů
VícePříloha P.1 Mapa větrných oblastí
Příloha P.1 Mapa větrných oblastí P.1.1 Úvod Podle metodiky Eurokódů se velikost zatížení větrem odvozuje z výchozí hodnoty základní rychlosti větru, definované jako střední rychlost větru v intervalu
VíceNeparametrické metody
Neparametrické metody Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální rozdělení. Např. Grubbsův test odlehlých hodnot
VíceMetodologie pro ISK II
Metodologie pro ISK II Všechny hodnoty z daného intervalu Zjišťujeme: Centrální míry Variabilitu Šikmost, špičatost Percentily (decily, kvantily ) Zobrazení: histogram MODUS je hodnota, která se v datech
Víceveličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
VícePopisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
VíceStatistické vyhodnocení průzkumu funkční gramotnosti žáků 4. ročníku ZŠ
Statistické vyhodnocení průzkumu funkční gramotnosti žáků 4. ročníku ZŠ Ing. Dana Trávníčková, PaedDr. Jana Isteníková Funkční gramotnost je používání čtení a psaní v životních situacích. Nejde jen o elementární
VíceZáklady biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Vícevzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291
Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených
VícePRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA)
PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA) Reprezentativní náhodný výběr: 1. Prvky výběru x i jsou vzájemně nezávislé. 2. Výběr je homogenní, tj. všechna x i jsou ze stejného
VíceNormální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
VíceNárodní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality Využití metody bootstrapping při analýze dat II.část Doc. Ing. Olga TŮMOVÁ, CSc. Obsah Klasické procedury a statistické SW - metody výpočtů konfidenčních
VíceUNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE
UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT V OSTRAVĚ 20.3.2006 MAREK MOČKOŘ PŘÍKLAD Č.1 : ANALÝZA VELKÝCH VÝBĚRŮ Zadání: Pro kontrolu
VíceModul Základní statistika
Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití
VíceStatistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
VíceChyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
VíceMonitoring sucha z pohledu ČHMÚ. RNDr. Filip Chuchma Český hydrometeorologický ústav pobočka Brno
Monitoring sucha z pohledu ČHMÚ RNDr. Filip Chuchma Český hydrometeorologický ústav pobočka Brno SUCHO v ČR Ve střední Evropě se sucho vyskytuje NAHODILE jako důsledek nepravidelně se vyskytujících období
VíceUniverzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 3.3 v analýze dat Autor práce: Přednášející: Prof. RNDr. Milan Meloun, DrSc Pro
VíceKORELACE. Komentované řešení pomocí programu Statistica
KORELACE Komentované řešení pomocí programu Statistica Vstupní data I Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
Více5. Hodnocení vlivu povodně na podzemní vody
5. Hodnocení vlivu povodně na podzemní vody Podzemní vody jsou součástí celkového oběhu vody v povodí. Proto extrémní srážky v srpnu 2002 významně ovlivnily jejich režim a objem zásob, které se v horninovém
VíceZákladní statistické charakteristiky
Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické
VíceStatistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
VíceMATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),
VíceNormální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
VíceVŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL
VíceYou created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
VíceN-LETOST SRÁŽEK A PRŮTOKŮ PŘI POVODNI 2002
N-LETOST SRÁŽEK A PRŮTOKŮ PŘI POVODNI 2002 MARTIN STEHLÍK* * Oddělení povrchových vod, ČHMÚ; e-mail: stehlikm@chmi.cz 1. ÚVOD Povodeň v srpnu 2002 v České republice byla způsobena přechodem dvou frontálních
VíceUNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
VícePravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
VíceTvorba nelineárních regresních
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Tvorba nelineárních regresních modelů v analýze dat Zdravotní ústav
VíceAnalýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
VícePOPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
VíceStatistika pro geografy
Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických
VíceUNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ
VíceP13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
VíceStatistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
VíceZpracování hydrologických dat
Zpracování hydrologických dat RNDr. Milada Matoušková, Ph.D. Katedra fyzické geografie a geoekologie, PřF UK v Praze matouskova@natur.cuni.cz HYDROMETRIE měření hydrologických jevů (monitoring) počítačové
VícePlánování experimentu
SEMESTRÁLNÍ PRÁCE Plánování experimentu 05/06 Ing. Petr Eliáš 1. NÁVRH NOVÉHO VALIVÉHO LOŽISKA 1.1 Zadání Při návrhu nového valivého ložiska se v prvotní fázi uvažovalo pouze o změně designu věnečku (parametr
VíceTvorba nelineárních regresních modelů v analýze dat
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Tvorba nelineárních regresních modelů v analýze dat Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza
VíceInovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Regrese Závislostproměnných funkční y= f(x) regresní y= f(x)
VícePravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
VíceDVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
Více4. Zpracování číselných dat
4. Zpracování číselných dat 4.1 Jednoduché hodnocení dat 4.2 Začlenění dat do písemné práce Zásady zpracování vědecké práce pro obory BOZO, PÚPN, LS 2011 4.1 Hodnocení číselných dat Popisná data: střední
VíceTECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA
TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA Semestrální práce Semestrální práce z předmětu Statistický rozbor dat z dotazníkového šetření Vypracoval: Bonaconzová, Bryknarová, Milkovičová, Škrdlová
VícePravděpodobnost a statistika
Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,
VíceAnalytické znaky laboratorní metody Interní kontrola kvality Externí kontrola kvality
Analytické znaky laboratorní metody Interní kontrola kvality Externí kontrola kvality RNDr. Alena Mikušková FN Brno Pracoviště dětské medicíny, OKB amikuskova@fnbrno.cz Analytické znaky laboratorní metody
Více2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení
2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků
VíceNáhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
Více5 HODNOCENÍ PŘEDPOVĚDÍ TEPLOT A SRÁŽEK PRO OBDOBÍ JARNÍCH POVODNÍ V ROCE 2006
HODNOCENÍ PŘEDPOVĚDÍ TEPLOT A SRÁŽEK PRO OBDOBÍ JARNÍCH POVODNÍ V ROCE 26 Jedním z nejdůležitějších vstupů pro tvorbu meteorologických předpovědí počasí jsou tzv. numerické předpovědní modely, které simulují
VíceSemestrální práce. 3.3 Tvorba nelineárních regresních modelů v analýze dat
Semestrální práce 1 3.3 Tvorba nelineárních regresních modelů v analýze dat Ing. Ján Lengyel, CSc. Centrální analytická laboratoř Ústav jaderného výzkumu Řež, a. s. Husinec Řež 130 250 68 Řež V Řeži, únor
VíceANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
VícePrůzkumová analýza dat
Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se
VíceKorelace. Komentované řešení pomocí MS Excel
Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne
VíceTEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT
EXPLORAČNÍ ANALÝZA DAT TEST Z TEORIE 1. Test ze Statistiky píše velké množství studentů. Představte si, že každý z nich odpoví správně přesně na polovinu otázek. V tomto případě bude směrodatná odchylka
VíceRegresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
VícePraktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Více31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
VíceNeuronové časové řady (ANN-TS)
Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci
VíceTECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce z předmětu Statistický rozbor dat z dotazníkového šetření Jméno: Lucie Krechlerová, Karel Kozma, René Dubský, David Drobík Ročník: 2015/2016
VíceMÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
VíceStručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
VíceZáklady popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních
VíceNejčastější chyby v explorační analýze
Nejčastější chyby v explorační analýze Obecně doporučuju přečíst přednášku 5: Výběrová šetření, Exploratorní analýza http://homel.vsb.cz/~lit40/sta1/materialy/io.pptx Použití nesprávných charakteristik
Více