Univerzita Tomáše Bati ve Zlíně Fakulta technologická Ing. Ondřej Hudeček Ing. Tomáš Sedláček, PhD. 1
Obsah Úvod do problematiky Dostupná technologická zařízení Pracující v podtlaku Pracující při atmosférických tlacích Podpůrné plyny využívané při plazmatických procesech Aplikace plazmy Využití plazmy jako zdroje pro úpravu povrchových vlastností Využití plazmy jako zdroje pro úpravu povrchových vlastností implementací Plazmové leptání Plasmové depozice 2
Úvod do problematiky 3
Plazma Definice Čtvrté skupenství hmoty Ionizovaný plyn Kvazineutrální avšak silně vodivá Ve vesmíru více jak 99 % Vznik Odtržení elektronu z elektronového obalu atomů plynu, resp. roztržením molekul (ionizace) dodáním energie či srážkami mezi sebou. Nejběžněji dodávaná energie původu elektrického -> elektrony -> naráží do neutrálních částic: Elastické srážky změna kinetické energie Plastické srážky vznik excitovaných neutrálních částic resp. iontů Klasifikace Elektronová hustota Teplota plasmy Horká (9 700 C) - vysoká elektronová hustota; plastické kolize mezi elektrony a částicemi vytváří reaktivní částice, elastické zahřívají těžké částice a tak se energie elektronů spotřebovává Studená (27 730 C) nízká elektronová hustota; plastické srážky způsobují chemické změny plazmatu, menší množství elastických srážek lehce zahřívá těžké částice 4
Plazma Definice Čtvrté skupenství hmoty Ionizovaný plyn Kvazineutrální avšak silně vodivá Ve vesmíru více jak 99 % Vznik Odtržení elektronu z elektronového obalu atomů plynu, resp. roztržením molekul (ionizace) dodáním energie či srážkami mezi sebou. Nejběžněji dodávaná energie původu elektrického -> elektrony -> naráží do neutrálních částic: Elastické srážky změna kinetické energie Plastické srážky vznik excitovaných neutrálních částic resp. iontů Klasifikace Elektronová hustota Teplota plasmy Horká (9 700 C) - vysoká elektronová hustota; plastické kolize mezi elektrony a částicemi vytváří reaktivní částice, elastické zahřívají těžké částice a tak se energie elektronů spotřebovává Studená (27 730 C) nízká elektronová hustota; plastické srážky způsobují chemické změny plazmatu, menší množství elastických srážek lehce zahřívá těžké částice Obr. 1 Fáze vzniku plazmatu 5
Plazma Definice Čtvrté skupenství hmoty Ionizovaný plyn Kvazineutrální avšak silně vodivá Ve vesmíru více jak 99 % Vznik Odtržení elektronu z elektronového obalu atomů plynu, resp. roztržením molekul (ionizace) dodáním energie či srážkami mezi sebou. Nejběžněji dodávaná energie původu elektrického -> elektrony -> naráží do neutrálních částic: Elastické srážky změna kinetické energie Plastické srážky vznik excitovaných neutrálních částic resp. iontů Klasifikace Elektronová hustota Teplota plasmy Horká (9 700 C) - vysoká elektronová hustota; plastické kolize mezi elektrony a částicemi vytváří reaktivní částice, elastické zahřívají těžké částice a tak se energie elektronů spotřebovává Studená (27 730 C) nízká elektronová hustota; plastické srážky způsobují chemické změny plazmatu, menší množství elastických srážek lehce zahřívá těžké částice 6
Dostupná technologická zařízení 7
Dostupná technologická zařízení Pracující v podtlaku <1,3 kpa Středně-nízké tlaky <1,3.10-2 ; 1,3> kpa Nízké tlaky <1,3.10-2 ; 1,3.10-5 > kpa Velmi nízké tlaky <1,3.10-5 kpa Pracující při atmosférických tlacích Korónový výboj Dielektrický bariérový výboj (tichý) Doutnavý výboj Obloukový výboj 8
Plazma ve středně-nízkých tlacích Paralelně uložené elektrody 9
Plazma ve středně-nízkých tlacích Magnetronové plazmatické zdroje 10
Plazma ve středně-nízkých tlacích Indukčně spřažené plazmatické zdroje 11
Plazma v nízkých tlacích Zdroj plasmy založený na ostřelování elektrony 12
Plazma v nízkých tlacích Plazma generovaná mikrovlnným zářením 13
Plazma ve velmi nízkých tlacích Aplikací, které by vyžadovaly práci při tak nízkých tlacích mnoho není a proto je tato varianta velmi ojedinělá Technologické řešení těchto systémů je velmi podobné výše jmenovaným Mikroelektronika díky velmi dlouhé střední volné dráze mezi atomy je možno dosahovat extrémních přesností kupříkladu přesná mřížka leptaných procesorů (64 nm, 32nm atd.) a dalších mikroelektronických komponent Pro napařování či depozici, protože takto dopravované částice razí dráhu od zdroje přímo na substrát bez nežádoucích kolizí Nevýhodou je značná rozptýlenost částic v plynu a tím vysoce snížená pravděpodobnost vzniku dostatečného množství plastických srážek Ke zvýšení účinnosti je nezbytné zapojit do systému soustavu magnetů usměrňující tok částic v komoře 14
Plazma při atmosférických tlacích Korónový výboj 15
Plazma při atmosférických tlacích Dielektrický bariérový výboj (tichý) 16
Plazma při atmosférických tlacích Doutnavý výboj 17
Plazma při atmosférických tlacích Obloukový výboj 18
Podpůrné plyny využívané při plazmatických procesech 19
Podpůrné plyny využívané při plazmatických procesech Inertní plyny Převážně He, Ar, Ne Velmi kvalitní a homogenní plazma Energie vzniká především srážkami Rozprašování, ale také na předúpravy a čistění Zlepšují adhezi, štěpí nebo navazují H Kyslíkaté plyny Nejčastěji na modifikaci povrchů O 2 reaguje s mnoha polymery za vzniku karboxylových, karbonylových, hydroxylových aj. Dochází k fyzikálnímu narušování povrchu Mimo kyslík také CO, CO 2, SO 2 nebo H 2 O plazma Dusíkaté a fluoridové plyny Smáčivost, tiskuschopnost, biokompatibilita Nejčastěji N 2, NH 3 Dále pak F 2, HF pro zvýšení hydrofobity Uhlovodíkové plyny Metan, etan, etylén, acetylén a benzen Generace hydrogenovaných uhlíkatých filmů Mimořádná mikrotvrdost, antireflexivní, nepropustnost pro páry Organosilikátové plyny Především pro plazmovou polymeraci Opouzdření na mikroelektroniku a dielektrika, antireflexivní povlaky, tenkostěnné povlaky vedoucí světlo v integrované optice Silany (Si), disilany (SiSi), disiloxany (SiOSi), disilanazaty (SiNHSi) a disilthiany (SiSSi) 20
Aplikace plazmy 21
Využití plazmy jako zdroje pro úpravu povrchových vlastností Většinou korónový nebo doutnavý výboj Úprava jen několika málo prvních monomolekulárních vrstev materiálu I přes šetrnost úpravy lze výrazně měnit - Povrchovou energii Obr. 2 Změna kontaktního úhlu PET vystaveného různým trváním CO 2 OAUGDP plasmou jako funkce času ve dnech po úpravě Obr. 3 Změna povrchové energie PP netkané textilie (34 g/m 2 ) vystavené různým trváním CO 2 OAUGDP plasmou jako funkce času ve dnech po úpravě 22
Využití plazmy jako zdroje pro úpravu povrchových vlastností I přes šetrnost úpravy lze výrazně měnit - Navlhavost Obr. 4 SEM snímek PP vlákna a) neupraveného b) upraveného OAUGDP plazmou po dobu 30 s s CO 2 podpůrným plynem 23
Využití plazmy jako zdroje pro úpravu povrchových vlastností I přes šetrnost úpravy lze výrazně měnit - Navlhavost Obr. 5 Fotografie PET fólie zachycující vodní kontaktní úhel a) neupraveného b) upraveného vzorku OAUGDP plazmou po dobu 10 s s CO2 podpůrným plynem při frekvenci 3 khz a napětí 9 kv 24
Využití plazmy jako zdroje pro úpravu povrchových vlastností I přes šetrnost úpravy lze výrazně měnit - Navlhavost Obr. 6 Schéma MOD VIII reaktoru pracujícím na principu OAUGDP (CO 2, VF zdroj 3 khz, napětí 7,5 kv RMS ) 25
Využití plazmy jako zdroje pro úpravu povrchových vlastností I přes šetrnost úpravy lze výrazně měnit - Potiskovatelnost, barvitelnost, omyvatelnost Obr. 7 Fotografie zachycující předúpravy plastových dílců: před tiskem, flokováním či lakováním pomocí technologie APPJ 26
Využití plazmy jako zdroje pro úpravu povrchových vlastností I přes šetrnost úpravy lze výrazně měnit - Přilnavost či kohezní vlastnosti Obr. 8 Fotografie zachycující předúpravy plastových dílců:před druhým vstřikováním, zvyšovaní adheze datových nosičů pomocí technologie APPJ 27
Využití plazmy jako zdroje pro úpravu povrchových vlastností I přes šetrnost úpravy lze výrazně měnit - Sterilnost resp. čistotu Obr. 9 TEM snímek buněk E. Coli před a) a po b) 30 s vystavení plazmatem v rámci technologie OAUGDP při 10 kv RMS a 7,1 khz a vzduchem jako podpůrným plynem Obr. 10 Schéma zmiňované aparatury OAUGDP 28
Využití plazmy jako zdroje pro úpravu povrchových vlastností Podstata úpravy Přidáním/ubráním povrchové vrstvičky nebo povrchového náboje Změna chemické struktury povrchu Změna povrchových vlastností po fyzikální stránce Nikdy Nepoškozuje nebo nemění vlastnosti v objemu materiálu Neimplementuje do povrchu ionty či atomy Neodstraňuje větší množství materiálu z povrchu Nepřenáší na povrch více jak několik monovrstev Upravuje Objemné výrobky Tenké filmy či fólie Tkaniny a netakané textilie Přírodní či syntetická vlákna Sypké směsi Dělení Aktivní - substrát zastupuje pozici elektrody Pasivní substrát je obstřelován 29
Využití plazmy jako zdroje pro úpravu povrchových vlastností implementací Většinou se využívá plazmy o vysoké hustotě se záporným potenciálem ke stěnám komory Ionty se urychlují a vpravují do materiálu Ještě častěji je, ale využíváno vzniku radikálů štěpením polymerního povrchu Zde se penetruje hlouběji do povrchu takže už se nejedná jen o modifikaci povrchu Velmi hojně využíváno v metalurgii, pro zlepšování tribologických vlastností, odolnosti vůči korozi, tepelné odolnosti atd. Často také v mikroelektronice, biomedicíně (implantáty, katétry aj.), úpravě plastových povrchů z hlediska změny navlhavosti, adheze a elektroforetických vlastností 30
Využití plazmy jako zdroje pro úpravu povrchových vlastností implementací Obr. 14 Schéma ilustrující zamezení trombózy okolo PET katetru (vlevo) upraveného pomocí amonné plazmové implementace (vpravo) 31
Využití plazmy jako zdroje pro úpravu povrchových vlastností implementací Obr. 15 Postup úpravy PE povrchu k dosažení antibakteriální aktivity jak vůči gram negativním tak gram pozitivním bakteriím 32
Plazmové leptání Velmi tenká hranice od předešlého čistění povrchu Využití převážně v mikroelektronice Jak ve vakuu tak při atmosférických podmínkách i při nízkých teplotách Pro leptání plastů nejčastěji Ar, He, Ne v kombinaci s O 2 nebo N 2 33
Plazmové leptání Obr. 16 Chemické děje mezi He a O 2 při jejich pobytu v plazmatu Obr. 17 Leptání iontovým paprskem z Ar plazmy Obr. 18 Chemické děje mezi He a N 2 při jejich pobytu v plazmatu 34
Plazmové leptání Obr. 19 Využití plazmatického leptání při výrobě mikroprocesorů 35
Plazmové leptání Obr. 20 Naleptaný křemíkový plátek 36
Plazmové leptání Obr. 21 a) SEM snímek PMMA povrchu upraveného metodou přímého plazmatického leptání b) vykazující velmi dobré antireflexivní vlastnosti (průchod svetla) Obr. 22 Příklad využití antireflexního nano-strukturovaného povrchu (PMMA) na krycí sklo přístrojové desky Audi A6 (vlevo neupravený, vpravo upravený povrch) 37
Plasmové depozice Rozdíl od implementace se na povrch nanáší vrstva naprosto odlišných vlastností Deponuje se procesy polymerace a kopolymerace v plazmatu, napařováním a rozprašováním plazmy Filmy mohou disponovat vlastnostmi: Vodivé/nevodivé Anti/Reflexivní Vhodnými pro optické a magnetické datové nosiče Výjimečnými dekorativními vlastnostmi Zajišťujícími vysokou oděruvzdornost a antikorozivní odolnost Velmi nízkou propustností pro plyny a vodní páry Dostatečnou biokompatibilitu s tkání Rozlišujeme Napařování Fyzikální podstaty Naprašování Chemická depozice napařováním Chemické podstaty 38
Plasmové depozice - Napařováním Obr. 23 Schéma systému umožňujícího depozici materiálu sprejováním v plazmatu Obr. 24 Schéma plazmového VF hořáku 39
Plasmové depozice - Naprašováním Obr. 25 Schéma systému umožňujícího depozici materiálu jeho obstřelováním ve formě terčíku ionty uniklými z plazmy 40
Chemická depozice napařováním V tomto případě se jedná o depozici využívající chemických procesů mezi plazmou a jednoho nebo více druhů hmoty mezi sebou Rozlišujeme Přímé napařování Nepřímé napařování Prekurzor je nejčastěji v plynném skupenství, ale také jemné částice Nanášet se tak mohou Oxidy (SiO x, SiO2, InOx, SnOx, TiO2, CaO2 atd.) Polymery (polyoelfiny, fluoropolyemry, silikonové polymery) Uhlíkové povlaky (DLC uhlík, nanotuby atd.) Plasmové polymerace vytvoření tenké vrstvy na povrchu substrátu díky polymeraci organického monomeru, jako CH 4, C 2 H 6, C 2 F 4 a C 3 F 6, přítomných v plazmatu Lze rozlišovat polymeraci Plazmatem iniciovanou Polymerace probíhající přímo v plazmatu Vzniklý polymer kratší makromolekuly, náhodně větvené a především vysoce síťované 41
Chemická depozice napařováním Obr. 26 Schéma systému plazmou asistované depozice napařováním ve vakuu Obr. 27 Schéma systému APPJ umožňující depozici tenkých vrstev při atmosférickém tlaku 42
Chemická depozice napařováním Obr. 28 Různé varianty průmyslového využití APPJ Obr. 27 Schéma systému APPJ umožňující depozici tenkých vrstev při atmosférickém tlaku 43
Plazmové depozice Aplikace Mikroelektronika Optika Biomedicína (Ne)permeabilní membrány Automobilový průmysl Obalový průmysl Nábytkářský průmysl Petrochemický průmysl Textilie a vlákna 44
Plazmové depozice Obr. 29 Schéma vysoce tvrdým polymerem potažené optické vlákno 45
Plazmové depozice Obr. 30 Mikro-indentační zkouška tvrdosti na povlaku připraveného plazmovou depozicí na PMMA substrát. 46
Plazmové depozice Obr. 31 SEM snímek zachycující deponovanou vrstvu směsi etylenu a CO 2 do níž byly následně zakomponovány stříbrné nanočástice 47
Plazmové depozice Obr. 32 Plazmovou depozicí potáhnutý stent, výrazně zvyšující jeho biokompatibilitu s lidskou tkání 48
Plazmové depozice Obr. 33 Plastový substrát potisknutý plazmovým naprašováním (vlevo); využití této technologie při výrobě ohebných OLED displejů (vpravo) 49
Plazmové depozice Obr. 34 Příklady využití plazmové depozice v praxi 50
Závěr Šetrnost k opracovávaným materiálům i přes tuto skutečnost velmi efektivní Konvečními metodami nenapodobitelné procesy (deponování, změna povrchových vlastností, nano-povrchy, biokompatibilita) Zároveň mnohdy výrazně šetrnější k životnímu prostředí Někdy vyšší cena zařízení redukována výraznou úsporou materiálových nákladů 51
52