Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)

Podobné dokumenty
Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)

Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)

Zoologická mikrotechnika - FLUORESCENČNÍ MIKROSKOPIE

Fluorescence (luminiscence)

Barevné principy absorpce a fluorescence

Využití a princip fluorescenční mikroskopie

Barevné principy absorpce a fluorescence

Fluorescenční mikroskopie

FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU

FIA fluorescenční imunoanalýza (fluorescence immuno-assay) CIA chemiluminiscenční imunoanalýza

F l u o r e s c e n c e

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence

Spektrometrické metody. Luminiscenční spektroskopie

Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi. Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi

Spektroskopické metody. převážně ve viditelné, ultrafialové a blízké infračervené oblasti

Moderní nástroje pro zobrazování biologicky významných molekul pro zajištění zdraví. René Kizek

(Návod k praktiku) Produkty. I.typ II.typ. X 1 Σ + g nm nm. Kyslík

Principy a instrumentace

ení s chemickými látkami. l rní optiky

ABSORPČNÍ A LUMINISCENČNÍ SPEKTROMETRIE V UV/Vis OBLASTI SPEKTRA

Fluorescenční mikroskopie

KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII. Pavla Pekárková

Úvod do spektrálních metod pro analýzu léčiv

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

Fluorescenční rezonanční přenos energie

ABSORPČNÍ A LUMINISCENČNÍ SPEKTROMETRIE V UV/Vis OBLASTI SPEKTRA

Využití a princip fluorescenční mikroskopie

4 Přenos energie ve FS

Vybrané spektroskopické metody

aneb Fluorescence chlorofylu jako indikátor stresu

Speciální spektrometrické metody. Zpracování signálu ve spektroskopii

Emise vyvolaná působením fotonů nebo částic

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)

ABSORPČNÍ A LUMINISCENČNÍ SPEKTROMETRIE V UV/VIS OBLASTI SPEKTRA

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,

Molekuly 2. Víceatomové molekuly s jedním centrálním atomem. Hybridizace. Hybridizace sp 3. Hybridizace

Přístrojové vybavení pro detekci absorpce a fluorescence

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie

FLUORESCENČNÍ MIKROSKOP

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state )

Fluorescenční vyšetření rostlinných surovin. 10. cvičení

12. Zhášení fluorescence

Spektroskopické é techniky a mikroskopie. Spektroskopie. Typy spektroskopických metod. Cirkulární dichroismus. Fluorescence UV-VIS

Metody spektrální. Metody molekulové spektroskopie. UV-vis oblast. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)

6. Metody molekulové spektroskopie spektrofotometrie, luminiscenční metody

Stručný úvod do spektroskopie

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření

Anizotropie fluorescence

13. Spektroskopie základní pojmy

Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie

VIBRAČNÍ SPEKTROMETRIE

Víceatomové molekuly s jedním centrálním atomem

Metody charakterizace nanomaterálů I

Spektrometrické metody. Reflexní a fotoakustická spektroskopie

Viková, M. : MIKROSKOPIE II Mikroskopie II M. Viková

INSTRUMENTÁLNÍ METODY

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti nm

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Doporučená literatura

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

Optické spektroskopie 1 LS 2014/15

Pokročilé biofyzikální metody v experimentální biologii

IMUNOFLUORESCENCE. Mgr. Petr Bejdák Ústav klinické imunologie a alergologie Fakultní nemocnice u sv. Anny a Lékařská fakulta MU

Základní parametry absorpčního spektra, vliv přístrojové funkce (spektrální šířky štěrbiny), vliv polohy kyvety a vlastní fluorescence vzorku

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK

Zdroje optického záření

MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ

Laserové technologie v praxi I. Přednáška č.2. Základní konstrukční součásti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Typy přechodů. Luminiscence a struktura látek E. Základní pravidla. Struktura organických molekul a luminiscence základní pravidla

Pokročilé cvičení z fyzikální chemie KFC/POK2 Vibrační spektroskopie

Barevné hry se světlem - co nám mohou říci o biomolekulách?

1. Principy fluorescenční spektroskopie

Přednáška IX: Elektronová spektroskopie II.


Přístrojové vybavení pro detekci absorpce a fluorescence

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

Dokumentace projektu. Fotoluminiscence. Autorky: Kateřina Limburská, Tereza Fleková Vedoucí projektu: Zdeněk Polák

Ustálená fluorescence (Steady State Fluorescence)

Příklady biochemických metod turbidimetrie, nefelometrie. Miroslav Průcha

Barevné hry se světlem - co nám mohou říci o biomolekulách?

DELFIA Dissociation-Enhanced Lanthanide Fluorescent ImmunoAssay

Absorpční fotometrie

Mikroskopické metody Přednáška č. 3. Základy mikroskopie. Kontrast ve světelném mikroskopu

Charakteristiky optického záření

Fyzikální podstata DPZ

Techniky mikroskopie povrchů

Lasery. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013

Využití UV/VIS a IR spektrometrie v analýze potravin

ATOMOVÁ SPEKTROMETRIE

Kmity a rotace molekul

10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová

Základy Mössbauerovy spektroskopie. Libor Machala

Vybrané metody spektráln. lní analýzy. Metody charakterizace nanomaterálů I

Luminiscence. Luminiscence = studené světlo Inkandescence = teplé světlo

Transkript:

Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence) mechanicky (mechanoluminiscence) Fluorescence sekundární záření po absorpci elektromagnetického záření (od fosforescence se liší dobou, po kterou trvá sekundární záření, když přestalo působit záření primární) tzv. dosvit fluorescence 10-8 až 10-5 s fosforescence 10-2 s až několik dní Anorganické sloučeniny - fluorescence poměrně zřídka (např. u solí vzácných zemin, uranylu, thallia). Organické látky - fluorescence častěji, nejintenzívnější a analyticky nejvíce využitelná u sloučenin s aromatickými cykly. 1

Fluorescence ze života tonik obsahuje chinin bankovky ochranné fluorescenční prvky fluorescenční barviva, uprostřed roztok chininsulfátu Fluorescence excitovaný stav Energie S 1 vibrační relaxace Energie S 1 Excitace Deexcitace λ a < λ e energie se ztratí Absorpce Fluorescence S 0 světlo λ a S 0 světlo λ e základní stav Fluorescenční spektrum fluorescenční spektrum je posunuto k delším vlnovým délkám než původní absorpční spektrum (Stokesův posun) a je k němu zrcadlově symetrické λ ν 2

Kam se ztrácí energie? vibrační relaxace absorpce rychlá 10-15 s geometrie se nemění vertikální přechod Frank-Condonův princip λ a < λ e energie se ztrácí do vibračních pohybů POZOR: u atomů platí λ a = λ e Monomolekulární procesy vyhasínání S 2 S 1 S 0 Absorption IC F IC Jablonského diagram ISC ISC ISC IC P T 2 T1 Nezářivé pochody IC Internal Conversion (vnitřní konverze) S S or T T nemění se spin ISC Inter-System Crossing (mezi-systémové křížení) S T or T S mění se spin Zářivé pochody F Fluorescence S 1 S 0 emise fotonu P Fosforescence T 1 S 0 emise fotonu Doby života - lifetimes S 1 ISC 1 laserový pulz F IC ISC P T1 I Fluor 1/e = 0.37 τ F čas τ F = doba života fluorescence τ F = 1-100 ns S 0 τ P = doba života fosforescence τ P = 1 ms - dny τ P >> τ F protože přechody Triplet-Singlet jsou spinově zakázány 3

Vlastnosti fluorescence 1. Aby látka emitovala fluorescenční světlo, musí světlo absorbovat 2. Vlnová délka fluorescenčního světla > vlnová délka excitačního světla (Stokesův zákon) λ emit > λ excit Delší λ menší E E fluorescence < E absorbované světlo 3. Intenzita fluorescence «intenzita excitačního světla 4. Fluorescenční světlo je emitováno všemi směry nezávisle na směru excitačního světla 5. Fluorescence postupně mizí 6. Intenzita fluorescence je úměrná intenzitě excitačního světla I 0, hustotě vzorku C a efektivnosti fluorescence (kvantový výtěžek kappa) 7. Každá látka má své charakteristické fluorescenční spektrum 8. Absorpční a fluorescenční spektra tvoří zrcadlové obrazy 9. Fluorescenční světlo má různý stupeň polarizace Kvantový výtěžek kvantový výtěžek fluorescence φ = N N emit absorb kvantové výtěžky fluorescence jsou výrazně nižší než 1 Kvantový výtěžek - standardy 4

Doba života nezbytná charakteristika látky a její interakce s okolím obtížně měřitelná (10 ns) měří se metodou pulzní harmonickou (fázová modulace) Zhášecí procesy kolizní procesy kolizí s jinou látkou, která zajistí nezářivou deexcitaci (O 2, I -, akrylamid) statické zhášení tvorba komplexu v základním stavu, který nefluoreskuje (jednotlivé složky ale samotné fluoreskují) přenos energie FRET fluorescenční (Försterův) rezonanční přenos energie reakce přenosu náboje fotochemické reakce po excitaci dochází k chemické reakci molekuly Využití kvalitativní analýza - podle zbarvení, resp. tvaru fluorescenčního spektra můžeme usuzovat na přítomnost dokazované látky kvantitativní analýza - podle intenzity záření na její množství fluorescenční detektory se používají i při některých separačních metodách časté využití v biovědách 5

Fluorescenční spektroskop měří se v kolmém směru k excitačnímu záření Fluorometr (fluorimetr) měří luminiscenci Luminometr např. chemiluminiscenci nebo její zhášení často bývá kombinován s fluorometrem např. Fluoroscan ascent 6

Detektory potřeba měřit nízké intenzity často potřeba měřit rychlé dosvity fotonásobiče (photomultiplier tube) Fluorescenční mikroskop Excitační paprsek dopadá na zrcadlo, odtud se odráží a přes čočky a excitační filtr dopadá na vzorek. Fluorescenční signál prochází přes čočky, zrcadlo a filtry do fotonásobiče, kde se fluorescenční signál transformuje na elektrický signál. Fluorescenční mikroskop schémata princip 1. absorbce 2. excitace 3. emise 7

Fluor. mikroskop - části Světelný zdroj: Ze světelného zdroje vychází světlo s různými vlnovými délkami od ultrafialové po infračervenou Excitační filtr: Tento filtr propouští pouze světlo, které je potřebné k fluorescenci vzorku, především obvykle s kratší vlnovou délkou. Ostatní světlo pohlcuje. Fluorescenční preparát: Vzorky, které reagují na dopadající světlo fluorescencí (většinou po přidání barviva-fluorochromu) Bariérový filtr: Tento filtr pohlcuje všechno excitační světlo, které nebylo použito k excitaci a propouští pouze fluorescenční světlo. Navíc je možné z fluorescenčního spektra nechat projít pouze jeho část. Fluorescenční mikroskop Fluorescenční mikroskop je založen na následujících dvou principech: Na vzorek dopadá pouze světlo v intervalu vlnových délek, které způsobují excitaci. K vytvoření obrazu se použije pouze nezbytně nutná část fluorescenčního světla, které obsahuje i neabsorbovanou část excitačního světla. Obraz se buď pozoruje, nebo se zachytí na mikrofotografii. Volba vlnové délky je velmi podstatná. Proto je ve fluorescenční mikroskopii důležitá volba vhodných optických filtrů. Filtry Filtry z barevného skla Tento typ filtrů se vyrábí přidáním pigmentu do skla. Tyto filtry jsou propustné pouze pro část spektra díky absorpci světla. Filtry z barevného skla jsou relativně levné. Nelze je použít k vytvoření úzkého pásma. Interferenční filtry Interferenční filtry jsou relativně drahé, ale mají ostré charakteristiky, kterých nelze dosáhnout pomocí barevných filtrů. 8

Fluor. mikroskop - využití Biologie (zoologie, botanika, mikrobiologie) Medicína (předepsané zkoušky, patologie, anatomie, neurologie, fyziologie, imunologie atd.) Farmacie, chemický průmysl, biochemický průmysl Výzkum a kontrola průmyslových aplikací (restaurátorství, defektoskopie, kontrola bankovek atd.) Fluor. metody v biovědách Proč? Vysoký poměr signál/šum, detekce až jednotlivých molekul, neinvazivní, flexibilní, časový profil... Organické látky produkují fluorescenci po dopadu ultrafialového záření. K vyvolání fluorescence se používají barviva a pak se pozoruje sekundární fluorescence fluorochromu. Pozorování autofluorescence (bez použití barviva) Pozorování sekundární fluorescence (metoda chemického barvení) Fluorescenční barvení protilátek (imunologické barvení) Pozorování autofluorescence (bez použití barviva) Při této metodě se pozoruje vlastní fluorescence preparátu. Autofluorescenční světlo produkují některé tkáně, buňky, mikroorganismy atd. Látka se identifikuje pomocí spektrofotometru, změřením emitovaného fluorescenčního spektra a někdy také současně změřením excitačního spektra. Aplikace: Identifikace vitamínů, studium neurotransmiterů, chlorofylu, porfyrinu, detekce a identifikace organického znečištění v oblasti průmyslu atd. 9

Pozorování sekundární fluorescence (metoda chemického barvení) Tato metoda je založena na pozorování fluorescenčního světla generovaného fluorochromem, kterým se obarví látka bez vlastní fluorescence (proteiny, sachyridy). Pokud se obarví pouze objekty, které chcete pozorovat, lze je pozorovat odděleně od tkáně a ostatních buněk. Aplikace: medicína (akridin + nukleová kyselina, auramin + bacil tuberkulózy, chinakrin mustard + chromozom atd.) Fluorescenční barvení protilátek (imunologické barvení) Tato metoda využívá skutečnosti, že reakce probíhá pouze mezi jedním druhem antigenu a jedním druhem protilátky. Protilátka se obarví fluorochromem. Množství respektive přítomnost antigenů se pak studuje po reakci antigen/protilátka. Hlavní použití fluorescenčních mikroskopů je v oblasti medicíny, biologie a veterinární medicíny. V těchto oblastech se právě nejvíce využívá fluorescenční metoda založená na protilátkách Ukázky 10

Fosforescence Fosforescenční spektrofotometr Anglické termíny lamp - lampa, zdroj sample - vzorek cuvette, cell - kyveta fiber optic - optické vlákno lens - čočka, lupa laser beam - laserový svazek ray - paprsek photomultiplier tube - fotonásobič dichroic mirror - polopropustné zrcadlo flash - záblesk, blesk 11