Regulátory tlakového rozdílu jako nástroj k optimalizaci tepelných soustav

Podobné dokumenty
Regulátor ECL Comfort 110 Pro střídavé napětí 230 V a 24 V

AVTI Multifunkční přímočinný regulátor

Základní parametry regulačních ventilů

ECL Comfort V AC a 24 V AC

Datový list Nezávislý regulátor tlaku s integrovaným omezovačem průtoku AVQM (PN 25) montáž do vratného a přívodního potrubí

Regulátor průtoku s integrovaným regulačním ventilem (PN 16, 25, 40*) AFQM, AFQM 6 montáž do vratného a přívodního potrubí

Datový list Regulátor průtoku s integrovaným regulačním ventilem AVQM (PN 16) montáž do vratného a přívodního potrubí

Regulátor diferenčního tlaku (PN 16) AVPL - pro montáž do vratného potrubí, měnitelné nastavení

Kombinovaný automatický vyvažovací ventil AB-PM ventil DN 15-25, PN 16

Regulátor diferenčního tlaku a průtoku (PN 16) AVPQ montáž do vratného potrubí, měnitelné nastavení AVPQ-F montáž do vratného potrubí, pevné nastavení

DN k VS Rozsah nastavení Δp Připojení (mm) (m 3 /h) (bar) 1,6. Rozsah nastavení Δp (mm) (m 3 /h) (bar) (bar) 1,6. Připojení

AVPQ 4. DN (mm) k vs (m 3 /h) Připojení 0,4

Připojení. 4,0 Válcový vnější ISO 228/1. Připojení 1,6 25 8,0 G 1¼ A 003H H H G 1¾ A 003H H H6428

Oscilace tlaku v zařízeních dálkového vytápění

- pro montáž do přívodního a vratného potrubí, měnitelné nastavení AVP-F - pro montáž do přívodního a vratného potrubí, stálé nastavení AVP-F

Regulátor průtoku s integrovaným regulačním ventilem (PN 16) AVQM montáž do vratného a přívodního potrubí

LINEÁRNÍ VENTILY + POHONY

2. Základní teorie regulace / Regulace ve vytápění

TECHNICKÝ KATALOG Ballorex Thermo - termostatický cirkulační ventil

ČVUT v Praze Fakulta stavební Katedra technických zařízení budov. Regulace. Co je to regulace?

Ventily s tlakovou kompenzací (PN 25) VM 2 dvoucestný ventil, vnější závit VB 2 dvoucestný ventil, příruba

Ventily s tlakovou kompenzací (PN 25)

Regulátor diferenčního tlaku (PN 16)

AVPQ 4. Regulátor AVPQ (montáž do vratného potrubí) DN (mm) k VS (m 3 /h) Připojení. 2,5 Válcový

KÓD TYP OBĚHOVÉ ČERPADLO PE IVAR.MUL-C 20 E Qmax 3,3 m³/h; Hmax 6,0 m

Vliv zateplení objektů na vytápěcí soustavu, nové provozní stavy a topné křivky

TERMOREGUL s.r.o. Sídlo : U Bažantnice 428, Praha 5, tel./fax. : / TECHNICKÁ ZPRÁVA

AVPQ 4. DN k VS Připojení nastavení Δp Kódové č. nastavení Δp Kódové č. (mm) (m 3 /h) (bar) (bar) 2.5 Válcový. Příruby PN 25, dle EN

Základní parametry a návrh regulačních ventilů

Projekční podklady - LOGOaktiv

Regulátor průtoku s integrovaným regulačním ventilem (PN 16) AHQM Montáž do vratného a přívodního potrubí

Termostatická hlavice K

AVP-F. Rozsah nastavení p Obrázek. DN k VS Rozsah nastavení p. Kódové č. Kódové č. (mm) (m 3 /h) (bar) (bar) (bar) 003H6200

Prostorové regulátory s tříbodovým výstupem a jejich aplikace

Výrobek je elektronickou řídicí jednotkou pro:

Regulátor diferenčního tlaku s omezovačem průtoku a integrovaným regulačním ventilem (PN 16) AHPBM-F montáž na přívodní větev, pevné nastavení

Průtokem řízený regulátor teploty AVTQ DN 15

DN k VS 1, ,5 G 1¾ A 0,2-1,0 003H6449 0,3-2,0 003H G 2 A 003H H G 2½ A 003H H ,5

Regulátor průtoku s integrovaným regulačním ventilem (PN 16) AHQM montáž do přívodního a vratného potrubí

Třícestné regulační ventily, vyvažování portů třícestných regulačních ventilů

Závěsné kotle. Modul: Kondenzační kotle. Verze: 03 VU 156/5-7, 216/5-7, 276/5-7 ecotec exclusive 03-Z2

Dokonalé řešení pro hydronické vyvážení budov

Předávací stanice pro rodinné domy, dvojdomky, řadové domy a pro byty

NÁVOD K POUŽITÍ 1) Výrobek: BYTOVÝ MODUL PRO PŘÍPRAVU TEPLÉ VODY OVLÁDANÝ TERMOSTATICKÝM ČLENEM 2) Typ: IVAR.M-SAT 3) Instalace:

TECH ICKÉ PŘIPOJOVACÍ PODMÍ KY

Obsah: 1. Úvod. 2. Podklady. 3. Stávající stav. 4. Navrhované řešení

Tlakově nezávislý regulační ventil s omezovačem průtoku s lineární regulační charakteristikou

TBV. Vyvažovací ventil koncových jednotek ENGINEERING ADVANTAGE

Regulátor diferenčního tlaku (PN 25) AVP montáž do přívodního a vratného potrubí, měnitelné nastavení

Dimenzování vodní otopné soustavy - etážová soustava s nuceným oběhem -

Regulátor průtoku (PN 16) AVQ - montáž do vratného a přívodního potrubí

Výrobek je elektronickou řídicí jednotkou pro:

Měření a regulace vytápění

Adresa: UNITHERM,s.r.o. Vedlejší 25, č.p.88 Jablonec nad Nisou PSČ 46604

TERMOSTATICKÉ SMĚŠOVACÍ VENTILY

Nezávislý regulační ventil s integrovaným omezovačem průtoku AVQM (PN 16) montáž do vratného a přívodního potrubí

KTCM 512. Kombinované regulační a vyvažovací ventily pro malé koncové jednotky Tlakově nezávislý vyvažovací a regulační ventil

LOGOeco tlakově nezávislá stanice

NÁVOD K POUŽITÍ 1) Výrobek: BYTOVÝ MODUL PRO PŘÍPRAVU TEPLÉ VODY - ovládaný termostatickým členem 2) Typ: IVAR.M-SAT 3) Instalace:

TBV. Vyvažovací ventily Vyvažovací ventil koncových jednotek

Kombinovaný automatický vyvažovací ventil AB-PM ventil DN 10-32, PN 16

V5001P Kombi-Auto Automatický vyvažovací ventil

Průtokem řízený regulátor teploty AVTQ DN 20

Třícestný přepínací ventil. 3-cestné termostatické ventily Pro vytápěcí a chladicí systémy

Plynule nastavitelný regulátor tlakové diference

6-cestný kulový kohout HS 523

Předávací stanice tepla v soustavách CZT (III) Tlakově nezávislé předávací stanice

Regulátor průtoku s integrovaným regulačním ventilem (PN 25) AVQM - montáž do vratného a přívodního potrubí

NOVINKA. energeticky úsporné čerpadlo vestavěná ekvitermní regulace plynulá regulace výkonu snadné a intuitivní ovládání

Ventilová tělesa RA-N s integrovaným přednastavením

Maxi S - sek. Tlakově závislá kompaktní předávací stanice pro vytápění a přípravu teplé vody

SYMPATIK Vila Aku. Obrázek RD

- kondenzační kotel pro vytápění a přípravu teplé vody v externím zásobníku, provedení turbo

Armatura VHS s integrovaným přednastavením, uzavíratelná a s vypouštěním

Regulátor průtoku DN 15, kvs

Vysokokapacitní těleso ventilu, typ RA-G

Regulační ventily (PN 16) VRG 2 2-cestný ventil, vnější závit VRG 3 3-cestný ventil, vnější závit

Regulátor teploty AVTB (PN 16)

Kotel je vybaven dvoustupňovým oběhovým čerpadlem s rychloodvzdušňovačem,

s ohřevem vody a hydraulickým modulem ARIANEXT - 8 kw (připravujeme 10 a 12 kw)

Armatury + systémy Premium Regulační ventil Cocon Q Ventil pro hydraulické vyvážení a pro regulaci ve chladicích a vytápěcích systémech

Třícestný přepínací ventil

TBV-CM. Kombinované regulační a vyvažovací ventily pro malé koncové jednotky Pro proporcionální regulaci

THERM 17 KD.A, KDZ.A, KDZ5.A, KDZ10.A

Regulátor diferenčního tlaku (PN 16) AHP - montáž do vratného potrubí, měnitelné nastavení

Komponenta Vzorce a popis symbol propojení Hydraulický válec jednočinný. d: A: F s: p provoz.: v: Q přítok: s: t: zjednodušeně:

Regulační a vyvažovací ventil pro proporcionální regulaci

Regulační technika 04-R2. Modul: Sekce: Modulární solární ekvitermní regulátor auromatic 620/2. Ekvitermní regulace

Tlakově nezávislý vyvažovací a regulační ventil

TACOTHERM DUAL PIKO MODULÁRNÍ VYSOCE FLEXIBILNÍ BYTOVÁ PŘEDÁVACÍ STANICE

Kombiventil pro otopná tělesa

Bronzové ventily řady VG7000 s vnitřním závitem. 3-cestný ventil VG7000 s el. pohonem VA Vlastnosti a výhody

VICTRIX Zeus Superior ErP. Závěsné kondenzační kotle s vestavěným zásobníkem TUV

Acvatix vynikající kombiventily s vysokou energetickou účinností

Technický list pro tepelné čerpadlo země-voda HP3BW-model B

AVQMT. Regulátor AVQT je možné kombinovat s termostatickými pohony AVT nebo STM.

Oběhová čerpadla R2CE(D) - R4CE(D) s frekvenčním měničem

ThermoClean Soustava ohřevu teplé užitkové vody, vybavená systémem termické dezinfekce, která zamezuje množení bakterií rodu legionela

Termostatický pohon QT

Transkript:

Regulátory tlakového rozdílu jako nástroj k optimalizaci tepelných soustav v přívodní síti a na spotřebě v soustavě. Regulátory tlakového rozdílu se rovněž velmi často používají k vytvoření hydraulické rovnováhy v síti. Nejpoužívanější aplikace regulátorů tlakového rozdílu: Ing. Herman Boysen, manažer pro aplikaci produktů Jedna z podmínek dobře fungující regulace tepelné soustavy je správná volba regulátoru tlakového rozdílu pro regulaci tlakového rozdílu v celé tepelné soustavě. Nesprávnou volbou regulátoru tlakového rozdílu riskujete tyto problémy: funkce neplní svůj účel, špatná funkce regulovaného zařízení, oscilace tlaku v soustavě. Regulátor tlakového rozdílu je možné zvolit v různých kombinacích, tedy s omezením průtoku nebo bez omezení a s regulací průtoku. Aby tento článek nebyl příliš obsáhlý, zabývám se zde pouze regulací tlakového rozdílu. Regulátory tlakového rozdílu Aplikace Regulátory tlakového rozdílu se používají hlavně k zajištění konstantního tlakového rozdílu v soustavě nezávisle na změnách externího tlakového rozdílu regulace v sekundárních soustavách, regulace tlakového rozdílu ve stanicích dálkového vytápění, regulace tlaku a tlakového rozdílu v sítích dálkového vytápění. Všeobecné výhody Jestliže se ve stanici účastníka používají regulátory tlakového rozdílu, je možné udržovat konstantní tlakový rozdíl ve stanici ve statickém vztahu bez ohledu na změny síťového tlakového rozdílu. To je přínosem pro koncové uživatele domácí stanice i pro společnost poskytující dané služby. Výhody pro koncové uživatele Regulátor tlakového rozdílu vybraný k regulaci tlakového rozdílu v dané stanici umožňuje přesné stanovení velikosti regulačního ventilu. To pak nabízí lepší možnosti ovládání regulačních ventilů, což poskytuje koncovému uživateli tyto výhody: - stabilizace teplotní regulace (lepší autorita ventilu a nižší nárůst teplotyv soustavě), - nízká úroveň hlučnosti a omezenírizika kavitace v regulačním ventilu, p disp p v Obr.1 Regulace tepelné soustavy regulačním ventilem bez regulátoru tlakového rozdílu. 1

Obr. 2 Regulace bytové tepelné soustavy s regulačním ventilem a regulátorem tlakového rozdílu. - jednoduché nastavení uživatelské stanice, - delší životnost regulačního zařízení. Výhody pro společnost poskytující dané služby Používání regulátorů tlakového rozdílu ve stanicích a v síti dálkového vytápění vytvoří v síti hydraulickou rovnováhu. Ta pak znamená: - dobrou distribuci vody v přívodní síti (spokojení spotřebitelé), - je možné dosáhnout požadované úrovně tlaku v síti (snížené riziko oscilace tlaku v síti), - množství cirkulující vody v síti může být omezeno (snížené náklady na cirkulaci vody). Regulační faktory Tento článek popisuje vliv regulátoru tlakového rozdílu na správné fungování domácí stanice dálkového vytápění. Tento vliv má významný dopad na výhody uvedené výše. Abychom dosáhli správně fungující soustavy, jsou důležité znalosti následujících regulačních faktorů: 1. Stanovení velikosti ventilu 1.1 Stanovení velikosti regulačního ventilu 1.2 Stanovení velikosti regulátoru tlakového rozdílu 1.3 Regulační poměr 1.4 Výkonnostní poměr 2. Nastavení soustavy 3. Hlučnost v regulačním ventilu 4. Hydraulická rovnováha v přívodní síti 4.1 Omezení průtoku 4.2 Přesnost omezení průtoku 1. Stanovení velikosti ventilu Správně zvolená velikost ventilu je základem stabilní teplotní regulace vytápěcí soustavy a soustavy ohřevu vody. 1.1 Stanovení velikosti regulačního ventilu Představte si, že máte stanovit velikost regulačního ventilu pro vytápěcí soustavu v rámci soustavy dálkového vytápění. Soustava není vybavena regulátorem tlakového rozdílu ( obr. 1). Výkon soustavy je 220 kw. Jestliže je v soustavě teplotní rozdíl oběhové vody t = 50 K, je možné vypočítat průtok v soustavě Q = 3,78 m 3 /h. Ke stanovení velikosti regulačního ventilu se k výpočtu kv používá vztah kv Q pv kv = Q. (100 / pv) 0,5, (1) je jmenovitý průtok ventilem (m 3 /h) potřebný průtok ventilem (m 3 /h) tlakový rozdíl na ventilu (kpa). Dispoziční minimální tlakový rozdíl v síti je pdisp = 100 kpa. Tlakový rozdíl p ve zbývající části zařízení se uvažuje 30 kpa. Průtok se počítá na základě výkonu soustavy. Dostupný tlakový rozdíl pro regulační ventil se stanovuje obtížněji kvůli změnám tlaku v síti. Tlakový rozdíl v síti může kolísat do takové míry, že dostupný tlakový rozdíl pro regulační ventil může být od 100 až po 500 kpa. Jestliže je pro ventil dostupný tlakový rozdíl pv = 70 kpa, vypočítaná hodnota kv pro ventil bude kv = 3,78. (100 / 70) 0,5 = 4,52 m 3 /h. Těmto podmínkám bude vyhovovat regulační ventil DN 25 s kvs = 6,3 m 3 /h, což je jmenovitý průtok plně 2

otevřeného ventilu. Dostupný tlakový rozdíl pro regulační ventil pv je 70 kpa. Nyní můžeme vypočítat pv potřebný pro tento ventil pv = 100. (Q / kv) 2 (2) pv = 100. (3,78 / 6,3) 2 = 36 kpa. Jestliže pdisp v síti vzroste na hodnotu 500 kpa, dostupný pv na ventilu je 500-30 = 470 kpa, pak potřebné kv bude pouze kv = 3,78. (100 / 470) 0,5 = 1,74 m 3 /h. V tomto případě má dostatečný výkon regulační ventil, který má DN 15 a kvs = 2,5 m 3 /h. Z výpočtu je vidět, že ventil DN 25 s maximálním výkonem a max. pv bude fungovat s kvs / kv = 6,3 / 1,74 = 3,6, což je zhruba třetina jeho max. průtoku. Jestliže tlakový rozdíl v soustavě vzroste, ventil se začne uzavírat a fungovat v dolní části charakteristiky ventilu (obr. 4). 1.2 Stanovení velikosti regulátoru tlakového rozdílu Jestliže je pro soustavu zvolen regulátor tlakového rozdílu, mohl by výpočet ventilu vypadat následovně. Dispoziční minimální tlakový rozdíl v síti je pdisp = 100 kpa. Tlakový rozdíl p v ostatním zařízení se uvažuje 30 kpa a tlakový rozdíl pv na regulačním ventilu 30 kpa. Dostupný tlakový rozdíl pro regulátor tlakového rozdílu je pr = 40 kpa. Průtok na regulačním ventilu je 3,78 m 3 /h. Regulační ventil bude mít hodnotu kv = 3,78 (100 / 30) 0,5 = 6,9 m 3 /h. Zvolený regulační ventil má DN 32 a kvs = 10 m 3 /h, přičemž pv = 100. (3,78 / 10) 2 = 14 kpa. Dostupný tlakový rozdíl pr pro regulátor tlakového rozdílu = 100 + 30 + 14 = 56 kpa, takže kv = 3,78 (100 / 56) 0,5 = 5,05 m 3 /h. V této situaci je možné zvolit regulátor tlakového rozdílu DN 25, který má kvs = 6,3 m 3 /h. Při maximálním pdisp v soustavě bude regulátor tlakového rozdílu pracovat s pr = 500 + 30 + 14 = 456 kpa, přičemž bude kv = 3,78. (100 / 456) 0,5 = 1,76 m 3 /h. Obr. 3 ukazuje, že regulační odchylka regulátoru tlakového rozdílu bude 5,9 kpa (při kv = 5,05 m 3 /h a při pr = 56 kpa). Dále že regulační odchylka poklesne na 1,9 kpa (při kv = 1,76 m 3 /h a při pr = 456 kpa). Celková odchylka regulace při změně tlaku v rozmezí 100 až 500 kpa bude tedy 5,9-1,9 = 4 kpa. Obr. 3 Pásmo X p a regulační odchylka X p (kpa) regulátorů tlakového rozdílu Danfoss typu APV. Nyní lze zjistit, že jsou-li změny p v síti od 100 do 500 kpa, budou odchylky pv na regulačním ventilu ( obr. 2) pouze Xp = 4 kpa. To znamená, že jestliže je v soustavě instalován regulátor tlakového rozdílu, bude udržovat pv takřka konstantní bez ohledu na změny tlakového rozdílu v síti. Obr. 4 ukazuje závislost mezi potřebným jmenovitým průtokem kv a dispozičním tlakovým rozdílem v síti s regulátorem tlakového rozdílu a bez něj. Čím nižší je poměr průtoků v soustavě bez regulátoru tlakového rozdílu, tím vyšší je riziko oscilace tlaku v důsledku provozu pod kvr. Aby se zabránilo oscilaci tlaku v soustavě, je nutné vzít v úvahu: - nastavení parametrů v elektronickém regulátoru, - typ charakteristiky ventilu, - autoritu ventilu. Nastavení regulátoru Obr. 4 Otevírání ventilu v souvislosti s tlakovým rozdílem v soustavě s regulátorem tlakového rozdílu a bez něj. Nastavení regulačních parametrů v elektronickém regulátoru je velmi důležité, chceme-li oscilaci zabránit. Toto nastavení se může zjednodušit, jestliže zvolíme regulátor s funkcemi jako je autoladění a ochrana pohonu [3]. Regulační ventil musí mít charakteristiky uzpůsobené provoznímu pohonu a topné aplikaci. U bytových tepelných soustav a soustav ohřevu vody bude optimální možností SPLIT (dělená) charakteristika ( obr. 5). Split charakteristika se vytváří podle výkonu tepelného výměníku typického pro teplotní nastavení užívané v aplikacích soustav dálkového vytápění [1] a [2]. 3

1.3 Regulační poměr Německé doporučení VDI/VDE 2173 stanoví pravidla definování regulačního poměru ventilu. Regulační poměr ventilu je zde definován jako vztah mezi hodnotami kvs a kvr ventilu. Definice regulačního poměru R zní R = kvs / kvr, (3) kvs je max. jmenovitý průtok daného regulačního ventilu (m 3 /h) kvr nejnižší jmenovitý průtok ventilu, při kterém je sklon regulační charakteristiky v rámci dané tolerance (m 3 /h). Další text vysvětluje, že čím vyšší je regulační poměr regulačního ventilu, tím lepší je regulační schopnost ventilu. Split charakteristika ventilu Hodnota Qmin je podle definice regulačního poměru nejnižší hodnota kv ventilu, při níž je možné očekávat, že regulovaná teplota bude stabilní. Obr. 6 Výkonový poměr závisející na tlakovém rozdílu v soustavě. Výpočet je založen na t = 50 K. Jestliže se používá regulátor tlakového rozdílu, je možné nastavit soustavu tak, aby ventil pracoval s kvs při P100. Kvůli pohodlí při odběru teplé vody, musí být její teplota velmi stabilní. Jestliže byla vybrána soustava s průtočným ohřevem vody, musí být schopen regulovat i nízký výkon za stabilní teploty. zdvih ventilu S (%) S max Odpovídající požadavek na nejnižší výkon ohřevu vody je takový, aby její teplota byla stabilní i když se sprchuje pouze jeden člověk. V tomto případě by i při minimálním požadovaném průtoku měla být udržena stabilní teplota v souvislosti se sprchou a současně kompenzována ztráta tepla v souvislosti s cirkulací teplé vody. Odpovídající výkon závisí na typu soustav. Obr. 5 Příklad split (dělené) charakteristiky regulačního ventilu a hodnoty k vr. Sklon charakteristiky (obr. 5) od bodu odpovídajícímu hodnotě kvr dolů k bodu uzavření je velmi strmý. Proto bude nárůst v regulační smyčce (průtok/zdvih ventilu) relativně vysoký. V důsledku toho regulace teploty v soustavě tepelného výměníku a směšovací smyčce může způsobit pokles regulované teploty při otevíracích stupních ventilu pod hodnoty, které odpovídají kvr. To znamená, že jmenovitý průtok odpovídající jmenovitému průtoku při kvr představuje za normálních okolností nejnižší stupeň otevření, při němž je možné očekávat stabilní regulaci. Ventily s lineárním regulačním poměrem typicky mají vysoký regulační poměr R = 100 až 200, zatímco typický regulační poměr exponenciálních a logaritmických ventilů je R = 30 až 50. 1.4 Výkonový poměr Definici výkonového poměru je možné vyjádřit jako poměr mezi max. výkonem P100 a výkonem Pkvr při kvr, při němž je stabilní teplotní regulace P100/Pkvr (obr. 6). Hodnota kv ventilu při 100% zatížení závisí na tlakovém rozdílu na ventilu. Čím vyšší je tlakový rozdíl, tím nižší je potřebná hodnota kv při P100 (obr. 4). V seriové soustavě průtočného ohřevu, se v zimě studená voda předehřívá od zpátečky tepelné soustavy, bude odpovídající potřebný průtok teplé vody po zahřátí 0,20 m 3 /h [4]. V paralelních soustavách bude odpovídající kapacita 0,33 m 3 /h. průtok (m 3 /h) Průtok (m 3 /h) při k vr s regulátorem p a bez něj 0,50 0,45 0,40 výkon teplé cirkulační vody a jedné sprchy v paralelní soustavě 0,35 0,30 min. výkon bez regulátoru p 0,25 0,20 výkon teplé cirkulační vody a jedné sprchy v seriové soustavě 0,15 0,10 min. výkon s regulátorem p 0,05 0,00 0,3 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 tlakový rozdíl p v (bar) Obr. 7 Min. regulovaný průtok v závislosti na tlakovém rozdílu p v. Z obr. 7 je zřejmé, že soustava vybavená regulátorem tlakového rozdílu může tento výkon regulovat. Rovněž je zřejmé, že limit pv v soustavě bez regulátoru tlakového rozdílu je přibližně 100 kpa u seriových soustav a 270 kpa u paralelních soustav. 2. Nastavení soustavy Nastavení uživatelské stanice zajišťuje nejvyšší možný stupeň otevření ventilu při 100% zatížení. Jestliže se v soustavě používá regulátor tlakového rozdílu, je možné konečné nastavení provést snadno a správně. 4

Stabilní regulace teploty se dosahuje v okamžiku, kdy regulační ventil funguje v celé šíři charakteristiky ventilu. To je předpokladem k získání plného rozsahu regulačního poměru ventilu, neboť regulační poměr se počítá na základě hodnoty kvs regulačního ventilu. Normálně se velikost ventilu stanovuje výpočtem hodnoty kv na základě průtoku ventilem a zvoleného poklesu tlaku na ventilu, přičemž se berou v úvahu schopnosti ventilu. V závislosti na vypočítané hodnotě kv se vybere ventil s vhodnou hodnotou kvs, tedy s hodnotou, která je často o málo vyšší než je vypočítaná hodnota. Proces nastavení pak pokračuje nastavením regulátoru tlakového rozdílu tak, aby regulační ventily byly při 100% zatížení plně otevřené. Protože je často obtížné simulovat situaci při 100% zatížení, je možné vypočítat nastavovací tlakový rozdíl pv pomocí rovnice pro pv (vztah 2). 3. Hlučnost v regulačním ventilu Hlučnost v regulačním ventilu je velmi často důsledkem příliš vysokého tlakového rozdílu na regulačním ventilu. Jestliže soustava není vybavena regulátorem tlakového rozdílu, musí regulační ventil velmi často odolávat hlavní části tlakového rozdílu v síti. To může vést k hlučnosti v soustavě. Typickým typem kategorií hlučnosti u regulačních ventilů s vysokým pv jsou: - průtokový hluk, - mechanický hluk, - kavitace. Uvedené kategorie hlučnosti mohou být nepřijatelné. Prvé dvě kategorie závisí na typu ventilů, designu a velikosti. Poslední kategorie závisí na typu a designu ventilu. Kavitace vede k explozi vzduchových bublin ve ventilu, což zní jako nárazy. Kavitace velmi často závisí na tlakovém rozdílu na ventilu a na úrovni statického tlaku ovlivněného oběhovým čerpadlem a na teplotě vody ve ventilu. Jestliže známe tlakové podmínky kolem ventilu a teplotu vody, můžeme vypočítat hodnotu kavitačního faktoru z (-) ze vztahu z = (p1 - p2) / (p1 - ps), (4) p1 je tlak na vstupu do ventilu (kpa) p2 tlak na výstupu z ventilu (kpa) ps tlak syté páry odpovídající dané teplotě vody (kpa). Jak je uvedeno na obr. 8, kavitace hodně závisí na tlakovém rozdílu v soustavě a na úrovni tlaku. Kavitační faktor regulačního ventilu je normálně mezi 0,5 až 0,6 dle rozměrů ventilu. Regulátor tlakového rozdílu se může použít k volbě úrovně tlaku v regulačním ventilu i ke snížení tlakového rozdílu na ventilu a tím i k eliminaci hlučnosti ventilu. Obr. 8 Kavitační faktor v závislosti na p 1 a p v. 4. Hydraulická rovnováha v přívodní síti Soustava dálkového vytápění je v hydraulické rovnováze, jestliže je přívod vody k jednotlivým spotřebitelům přesně takový, jaký je zapotřebí k bytovému vytápění a k ohřevu vody. Jestliže soustava není v hydraulické rovnováze, může tomu tak být z těchto důvodů: - příliš velké regulační ventily, - spotřeba neodpovídá specifikacím, - není možné nastavovat rozsah průtoku, - soustava nebyla nastavena. Podle specifikace znamená hydraulická rovnováha omezení rozsahu průtoku v soustavě na průtokovou míru, která odpovídá skutečné spotřebě. 4.1 Omezení průtoku Regulátory tlakového rozdílu ve stanici se mohou použít jako omezovače průtoku. Nastavení regulátoru tlakového rozdílu se dá vypočítat pomocí vztahu 2 pset = 100. (Qmax / kv) 2, (5) pset je nastavení regulátoru tlakového rozdílu (kpa) Qmax průtok ve stanici při 100% zatížení (m 3 /h). Hodnota kv se vztahuje na regulační smyčku regulátoru tlakového rozdílu, což je část stanice mezi body, jsou připojeny impulsní trubice. Jestliže regulátor tlakového rozdílu reguluje pouze tlakový rozdíl na jednom ventilu (obr. 2), používá se hodnota kvs ventilu. Jestliže se ve stanicích používají regulátory tlakového rozdílu a jestliže jsou tyto regulátory nastaveny na max. průtoky, bude v síti dosaženo hydraulické rovnováhy. To znamená, že průtok ve stanici je omezen podle max. nastaveného průtoku. 4.2 Přesnost omezení průtoku Očekávaná přesnost omezení průtoku závisí na změnách tlaku v části soustavy mezi body, jsou připojeny impulsní trubice. Protože regulátor tlakového rozdílu je proporcionální regulátor, změny tlaku, které bude možné pozorovat, budou změny v regulační odchylce regulátoru Xp při změnách v tlakovém rozdílu v přívodní síti. Přesnost ve změně průtoku Q se může vypočítat. 5

Změna Q při zvýšeném tlakovém rozdílu v síti bude Q = Q1 - Q2, Q = Q1 - kv. [( pset - Xp) / 100] 0,5, Q = Q1 - Q1. [( pset - Xp) / pset] 0,5, Q / Q1 = 1 - [( pset - Xp) / pset] 0,5. Závěr Aplikace regulátorů tlakového rozdílu v uživatelské stanici je nejdůležitějším krokem ke splnění podmínek uvedených výše. Jinými slovy regulátor zajišťuje správné nastavení soustavy. Díky němu je možné zajistit nejlepší úroveň regulace se stabilní regulací teploty, s vysokým výkonovým poměrem a s nízkou hlučností. Správně nastavená soustava je rovněž důležitou součástí sítě dálkového vytápění, je hydraulická rovnováha vysoce důležitá. Správně nastavená soustava znamená omezení průtoku na max. spotřebu a regulátor tlakového rozdílu je jednoduchým nástrojem k tomuto účelu. Obr. 9 Přesnost omezení průtoku v závislosti na tlakovém rozdílu. Z výpočtu je zřejmé, že odchylka průtoku Q / Q1 závisí na pset a na Xp (obr. 9). Obr. 9 ukazuje vypočítanou přesnost omezení průtoku, jestliže se regulátor tlakového rozdílu používá jako omezovač průtoku. Přesnost je vyšší při zvýšeném regulovaném tlakovém rozdílu pset. Provoz s nižším Xp může zvýšit přesnost omezení průtoku. Čím nižší je však Xp, tím větší jsou dimenze rozdílu. Seznam použité literatury: 1. Optimální regulace tepelných výměníků Autor: Atli Benonysson a Herman Boysen 2. Ventilové charakteristiky motorizovaných ventilů v dálkovém vytápění Autor: Atli Benonysson a Herman Boysen 3. Autoladění a ochrana motoru jako součást procesu přednastavení v tepelné soustavě Autor: Herman Boysen Zpravodaj z DBDH (Dánská rada pro dálkové vytápění) 3/2000 4. Stanice dálkového vytápění a volba regulačních ventilů Autor: Herman Boysen Zpravodaj z DBDH (Dánská rada pro dálkové vytápění) 2/1999 Pro více informací kontaktujte: Hanuš Kny: telefon: 283 014 216, e-mail: Hanus.Kny@danfoss.com Ing. Dita Machaňová: mobil: 602 241 008, e-mail: Dita.Machanova@danfoss.com 6