Počítačové sítě II. 13. Směrování. Miroslav Spousta, 2004

Podobné dokumenty
Počítačové sítě II. 13. Směrování Miroslav Spousta,

Představa propojení sítí

Počítačové sítě IP směrování (routing)

Nepřímé do jiných sítí (podle IP adresy sítě přes router - určitou gateway ) Default gateway (společná výchozí brána do všech dostupných sítí)

Počítačové sítě IP routing

Rodina protokolů TCP/IP, verze 2.3. Část 6: IP směrování

Směrování a směrovací protokoly

5. Směrování v počítačových sítích a směrovací protokoly

Směrovací protokoly, propojování sítí

Směrování. static routing statické Při statickém směrování administrátor manuálně vloží směrovací informace do směrovací tabulky.

Síťová vrstva. RNDr. Ing. Vladimir Smotlacha, Ph.D.

Internet a zdroje. (ARP, routing) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. listopadu

Rodina protokolů TCP/IP. Rodina protokolů TCP/IP. verze 3. Téma 6: Směrování v IP sítích. Jiří Peterka

BEZTŘÍDNÍ SMĚROVÁNÍ, RIP V2 CLASSLESS ROUTING, RIP V2

směrovací algoritmy a protokoly

Vnější směrovací protokoly

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Směrovací protokol OSPF s využitím systému Mikrotom. Ing. Libor Michalek, Ph.D.

TÉMATICKÝ OKRUH Počítače, sítě a operační systémy

Programování síťové služby Sniffer OSPFv2 a OSPFv3

X36PKO Úvod Protokolová rodina TCP/IP

Budování sítě v datových centrech

Ladislav Pešička KIV FAV ZČU Plzeň

Počítačové sítě Směrovací protokol OSPF. Jak se směruje v globálním Internetu. Leoš Boháč Jan Kubr

Možnosti vylaďování subsecond konvergence EIGRP

Petr Grygárek, FEI VŠB-TU Ostrava, Směrované a přepínané sítě,

Josef J. Horálek, Soňa Neradová IPS1 - Přednáška č.8

Směrování IP datagramů

Nové LSA v topologické databází OSPFv3

Směrování- OSPF. Směrování podle stavu linek (LSA) Spolehlivé záplavové doručování

Propojování sítí,, aktivní prvky a jejich principy

Technologie počítačových sítí 7. přednáška

1. Směrovače směrového protokolu směrovací tabulku 1.1 TTL

Route reflektory protokolu BGP

Počítačové sítě I. 9. Internetworking Miroslav Spousta,

Lekce 8: Síťová vrstva a směrování

Internet se skládá ze o Segmentů, kde jsou uzly propojeny např. pomocí Ethernetu, Wi-Fi, atd. a tvoří autonomní oblasti 10.1.x.x x.x Atd.

Počítačové sítě. Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI. přednášky

PDF created with pdffactory Pro trial version Směrování -BGP. Border GatewayProtocol (BGP) Historie BGP

Jiří Tic, TIC080 Lukáš Dziadkowiec, DZI016 VŠB-TUO. Typy LSA v OSPF Semestrální projekt: Směrované a přepínané sítě

Routování směrovač. směrovač

Typická využití atributu Community protokolu BGP - modelové situace

Směrování v lokálních a globálních sítích

EIGRP funkce Stub. Jiří Boštík (BOS031)

Inovace bakalářského studijního oboru Aplikovaná chemie

Základy směrování CCNA 1 / 10

Protokoly: IP, ARP, RARP, ICMP, IGMP, OSPF

4. Síťová vrstva. Síťová vrstva. Počítačové sítě I. 1 (6) KST/IPS1. Studijní cíl. Představíme si funkci síťové vrstvy a jednotlivé protokoly.

JAK ČÍST TUTO PREZENTACI

Projektování distribuovaných systémů Lekce 2 Ing. Jiří ledvina, CSc

Konfigurace síťových stanic

Architektura TCP/IP je v současnosti

Směrování. 4. Přednáška. Směrování s částečnou znalostí sítě

Inovace bakalářského studijního oboru Aplikovaná chemie

metodický list č. 1 Internet protokol, návaznost na nižší vrstvy, směrování

Počítačové sítě 1 Přednáška č.8 Problematika směrování

VŠB Technická univerzita Ostrava Fakulta elektroniky a informatiky. Semestrální práce. BGP Routing Registry - principy a využití Zdeněk Nábělek

íta ové sít TCP/IP Protocol Family de facto Request for Comments

IPv6. RNDr. Ing. Vladimir Smotlacha, Ph.D.

Budování sítě v datových centrech

Počítačové sítě. Ing. Petr Machník, Ph.D. Ing. Libor Michalek, Ph.D.

Počítačové sítě II. 15. Internet protokol verze 6 Miroslav Spousta, 2006

Počítačová síť. je skupina počítačů (uzlů), popřípadě periferií, které jsou vzájemně propojeny tak, aby mohly mezi sebou komunikovat.

Aktivní prvky: brány a směrovače. směrovače

Přepínaný Ethernet. Virtuální sítě.

Počítačové sítě IP multicasting

BIRD Internet Routing Daemon

Část l«rozbočovače, přepínače a přepínání

Distribuované systémy a počítačové sítě

Multicast Source Discovery Protocol (MSDP)

Topologie počítačových sítí Topologie = popisuje způsob zapojení sítí, jejich architekturu adt 1) Sběrnicová topologie (BUS)

Počítačové sítě pro V3.x Teoretická průprava II. Ing. František Kovařík

Obsah. O autorech 9. Předmluva 13. KAPITOLA 1 Počítačové sítě a Internet 23. Jim Kurose 9 Keith Ross 9

Testy kompatibility BGP a OSPF mezi Cisco a Mikrotik

12. Virtuální sítě (VLAN) VLAN. Počítačové sítě I. 1 (7) KST/IPS1. Studijní cíl. Základní seznámení se sítěmi VLAN. Doba nutná k nastudování

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

L2 multicast v doméně s přepínači CISCO

IP směrovací protokoly. Leoš Boháč

Dynamické směrování Michal Minařík, Y36SPS

Úvod Bezpečnost v počítačových sítích Technologie Ethernetu

OpenVPN. Uvedené dílo podléhá licenci Creative Commons Uved te autora 3.0 Česko. Ondřej Caletka (CESNET, z.s.p.o.) OpenVPN 3. března / 16

Průzkum a ověření možností směrování multicast provozu na platformě MikroTik.

Obsah Počítačová komunikace Algoritmy a mechanismy směrování v sítích Řízení toku v uzlech sítě a koncových zařízeních...

MPLS MPLS. Label. Switching) Michal Petřík -

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Směrování VoIP provozu v datových sítích

e1 e1 ROUTER2 Skupina1

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Základní principy obrany sítě II. Michal Kostěnec CESNET, z. s. p. o.

Směrování. Kapitola 7

Internet protokol, IP adresy, návaznost IP na nižší vrstvy

ZÁKLADNÍ ANALÝZA SÍTÍ TCP/IP

Semestrální projekt do předmětu SPS

3.17 Využívané síťové protokoly

Protokol GLBP. Projekt do předmětu Správa počítačových systémů Radim Poloch (pol380), Jan Prokop (pro266)

Lekce 9: Síťová vrstva a směrování

32-bitová čísla Autonomních Systémů v protokolu BGP

Komunikace v sítích TCP/IP (1)

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

VLSM Statické směrování

Transkript:

Počítačové sítě II 13. Směrování Miroslav Spousta, 2004 1

Představa propojení sítí sítě jsou propojeny pomocí směrovačů mezi každými dvěma uzly existuje cesta přes mezilehlé sítě a směrovače většinou více různých cest je potřeba vybrat, kudy bude směrován provoz po síti pro každé dva uzly v Internetu to může být jinak 2

Směrování neboli volba směru pro další předání datagramu obsahuje několik podúkolů: výpočet optimální cesty algoritmus pro výpočet nejkratší cesty v grafu uchování informací o cestách v grafu směrovací tabulka předávání paketů udržování směrovacích informací distribuce a aktualizace směrovacích tabulek existují různé přístupy k řešení jednotlivých částí 3

Směrovač zařízení, které pracuje na síťové vrstvě spojuje sítě, je připojený do několika sítí přijímá datagramy, rozhoduje o dalším směru datagramu sítí předává datagramy dalším směrovačům nebo posílá data koncové stanici v přímo připojené lokální síti směrovač směrování (nalezení cesty) datagramy na vstupu posílání paketů datagramy na výstupu 4

Přímé a nepřímé směrování Přímé směrování do přímo připojené IP sítě (má stejnou síťovou adresu) nic se nesměruje přímo se vyšle do lokální sítě Nepřímé směrování síťová adresa je různá od všech sítí rozhraní směrovače je potřeba najít v síti další směrovač, který je blíž cílové síti 5

Přímé směrování 192.168.33.4/24 vysílající uzel rozdělí cílovou adresu podle masky vlastní sítě 192.168.33.5/24 192.168.33.4 192.168.33.0/24 AND = + 255.255.255.0 192.168.33 4 zjistí, jestli cílový uzel je ve stejné síti (má stejnou síťovou adresu, jako vysílající uzel) pokud ano, zjistí pomocí ARP protokolu cílovou MAC adresu pošle rámec na zjištěnou MAC adresu 6

Nepřímé směrování pokud uzel zjistí, že adresa není lokální (má jinou síťovou složku, než všechny sítě na rozhraních stanice), je nutné předat IP datagram směrovači kterému, to rozhodne směrovací tabulka pomocí přímého směrování odešle datagram směrovači 192.168.33.1/24 10.0.0.1/8 192.168.33.0/24 local 10.0.0.0/8 192.168.33.1 192.168.33.0/24 10.0.0.0/8 192.168.33.5/24 10.0.0.44/8 7

Statické a dynamické směrování Statické směrování směrovací tabulky se nemění (jsou statické) je nutné nastavit směrovací tabulky ručně imunní vůči změnám v síti administrativně náročné (musí se udržovat, náchylné na chyby) vhodné pro malé sítě se stálou topologií implicitní cesta cesty, které nejsou jinak inzerovány (skrz firewall) Dynamické směrování obsah směrovacích tabulek se mění bez zásahu správce většinou je základ tabulky nastaven staticky (implicitní cesta) cesty do ostatních sítí se aktualizují pomocí speciálních protokolů dva základní druhy protokolů vector distance link state 8

Směrovací tabulka základní data směrovače ve směrovací tabulce je: cílová síťová adresa metrika adresa nejbližšího směrovače směrem k síti (musí být dostupný přes síť jednoho z rozhraní směrovače) koncový uzel má směrovací tabulku stejně jako směrovač, ale neúčastní se výměny směrovacích informací je pasivní většinou zná svoji síť a implicitní cestu jak aktualizovat směrovací informace? původně v Internetu měly Core Gateways úplnou informaci o sítích to bylo neúnosné => vznik autonomních systémů 9

Algoritmus směrování vezmi cílovou IP adresu projdi směrovací tabulku od nejspecifických k méně specifickým pokud záznam vyhovuje, podíváme se, zda je síť lokální (přímo připojená) ano, datagram pošleme na MAC adresu příjemce ne, datagram pošleme na MAC adresu sousedního směrovače pokud se dostaneme na konec tabulky, může tam být impliciní cesta (default route) použijeme ji nenašli jsme cestu sítí => vygenerujeme ICMP zprávu Destination Unreachable 10

Autonomní systémy jádro Internetu AS 1 AS 2 11

Autonomní systém neinzeruje ven detailní informace pouze sdružené sítě typicky je to informace sítě od této IP adresy po tuto IP adresu jak směruje a udržuje směrovací informace v rámci AS je na správci směrovací politika původně musela být hierarchie AS přísně stromovitá dnes v podstatě libovolná takže můžeme mít peering 12

EGP Exterior Gateway Protocols původně (v počátcích Internetu) se používal Exterior Gateway Protocol vyžadoval stromovou strkturu AS a jednu páteřní síť Internetu dnes se používá BGP (Border Gateway Protocol) umožňuje obecné zapojení AS (už ne pouze do stromu) podporuje CIDR několik verzí (dnes se používá verze 4) umožňuje nastavení priorit pro jednotlivé AS např. na základě rychlosti linek, vytížení, smluv,... 13

IGP Interior Gateway Protocols protokol používaný v rámci jednoho AS obecné označení pro různé protokoly směrování v rámci jednoho AS politika směrování (aktualizace směrovacích tabulek) je jednotná v rámci AS v IP se používají hlavně dva protokoly: RIP a OSPF RIP (Router Information Protocol) vyvinut firmou Xerox používá algoritmus vector-distance (poprvé použit už v ARPANETu, 1969) vhodné jen pro malé a střední sítě OSPF (Open Shortest Path First) používá princip link state používá se i ve větších sítích 14

IGP Interior Gateway Protocols protokol používaný v rámci jednoho AS obecné označení pro různé protokoly směrování v rámci jednoho AS politika směrování (aktualizace směrovacích tabulek) je jednotná v rámci AS v IP se používají hlavně dva protokoly: RIP a OSPF RIP (Router Information Protocol) vyvinut firmou Xerox používá algoritmus vector-distance (poprvé použit už v ARPANETu, 1969) vhodné jen pro malé a střední sítě OSPF (Open Shortest Path First) používá princip link state používá se i ve větších sítích 15

RIP firma Xerox v PARC, 1981 RFC 2452 (RIPv2) populární protokol, implementován v UNIXu na konci osmdesátých let v podstatě norma pro směrování v IP sítích distribuovaný algoritmus podílí se na něm všechny směrovače v síti konvergence = doba, než se ustálí informace ve směrovacích tabulkách typu vector-distance směrovače si předávají aktualizace tvořené směrovým vektorem a vzdáleností vektor je vlastně adresa sítě a vzdálenost je podle metriky používá UDP protokol, port 520 velmi jednoduchý na konfiguraci daemon aplikační úroveň 16

RIP aktualizace ve směrovací tabulce je: síťová cílová adresa metrika (vzdálenost k cíli) adresa směrovače (musí být dostupný přes jednu ze sítí) časovač (doba od poslední aktualizace záznamu) RIP jako metriku používá počet směrovačů na cestě k cíli (hops) maximum je 15, nekonečno je 16 tedy je možné mít v jednom AS maximálně 15 směrovačů směrovač vysílá svoji tabulku sousedům každých 30 sekund podle příchozích informací si upravuje svoji vlastní směrovací tabulku k informacím od sousedů přičte jedničku a uloží si ji do své tabulky 17

RIP 10.1.0.0 10.2.0.0 10.3.0.0 10.4.0.0 A B C E0 S0 S0 S1 S0 E0 10.1.0.0 E0 0 10.2.0.0 S0 0 10.2.0.0 S0 0 10.3.0.0 S1 0 10.3.0.0 S0 0 10.4.0.0 E0 0 10.1.0.0 E0 0 10.2.0.0 S0 0 10.3.0.0 S0 1 10.2.0.0 S0 0 10.3.0.0 S1 0 10.1.0.0 S0 1 10.4.0.0 S1 1 10.3.0.0 S0 0 10.4.0.0 E0 0 10.2.0.0 S0 1 10.1.0.0 E0 0 10.2.0.0 S0 0 10.3.0.0 S0 1 10.4.0.0 S0 2 10.2.0.0 S0 0 10.3.0.0 S1 0 10.1.0.0 S0 1 10.4.0.0 S1 1 10.3.0.0 S0 0 10.4.0.0 E0 0 10.2.0.0 S0 1 10.1.0.0 S0 2 18

RIP konvergence časovač se používá pro zneplatnění neaktuálních informací pokud do 180 s nepřijde od souseda informace, nastaví se v tabulce na nekonečno pokud nepřijde do dalších 120 s, informace se z tabulky odstraní (garbage collection) RIP má problém s pomalou konvergencí změna v síti se z jednoho konce sítě na druhý může propagovat dlouho maximálně 15*30s = 450s, cca 7,5 min. triggered update: při změně v topologii se propagují co nejdříve problém se smyčkami ve směrovacích tabulkách zacyklení uživatelských paketů vzniká pomalou konvergencí, způsobuje vážné problémy 19

RIP smyčky 10.1.0.0 10.2.0.0 10.3.0.0 10.4.0.0 A B C E0 S0 S0 S1 S0 E0 10.1.0.0 E0 0 10.2.0.0 S0 0 10.3.0.0 S0 1 10.4.0.0 S0 2 10.2.0.0 S0 0 10.3.0.0 S1 0 10.1.0.0 S0 1 10.4.0.0 S1 1 10.3.0.0 S0 0 10.4.0.0 E0 0 10.2.0.0 S0 1 10.1.0.0 S0 2 10.1.0.0 10.2.0.0 10.3.0.0 10.4.0.0 A B C E0 S0 S0 S1 S0 E0 10.1.0.0 E0 0 10.2.0.0 S0 0 10.3.0.0 S0 1 10.4.0.0 S0 2 10.2.0.0 S0 0 10.3.0.0 S1 0 10.1.0.0 S0 1 10.4.0.0 S1 1 10.3.0.0 S0 0 10.4.0.0 E0 10.2.0.0 S0 1 10.1.0.0 S0 2 20

RIP smyčky 10.1.0.0 10.2.0.0 10.3.0.0 10.4.0.0 A B C E0 S0 S0 S1 S0 E0 10.1.0.0 E0 0 10.2.0.0 S0 0 10.3.0.0 S0 1 10.4.0.0 S0 2 10.2.0.0 S0 0 10.3.0.0 S1 0 10.1.0.0 S0 1 10.4.0.0 S1 1 10.3.0.0 S0 0 10.4.0.0 S0 2 10.2.0.0 S0 1 10.1.0.0 S0 2 10.1.0.0 10.2.0.0 10.3.0.0 10.4.0.0 A B C E0 S0 S0 S1 S0 E0 10.1.0.0 E0 0 10.2.0.0 S0 0 10.3.0.0 S0 1 10.4.0.0 S0 4 10.2.0.0 S0 0 10.3.0.0 S1 0 10.1.0.0 S0 1 10.4.0.0 S1 3 10.3.0.0 S0 0 10.4.0.0 S0 2 10.2.0.0 S0 1 10.1.0.0 S0 2 21

RIP smyčka omezení zvyšování metriky do nekonečna RIP zavedl explicitní omezení na 16 split horizon směrovač neposílá do daného síťového rozhraní informace o cestách, které mu přišly z tohoto rozhraní poison reverse zpět po stejném rozhraní posílá metriku nekonečno (16) hold down směrovač po obdržení informace o nedostupnosti sítě po určitou dobu nebere v potaz další informace o změně směru a metriky pro danou síť minimalizace dopadu směrovacích smyček triggered update 22

RIPv1 8b 8b 16b příkaz verze (1) 0 typ adresy (IP = 2) 0 IP adresa 0 0 metrika (vzdálenost k cíli) příkaz: výzva/směrovací informace IP adresa: adresa sítě metrika: počet hopů k síti 23

RIPv2 8b 8b 16b příkaz verze (2) 0 typ adresy (IP = 2) označení cesty (tag) IP adresa síťová maska adresa sousedního směrovače metrika (vzdálenost k cíli) podpora CIDR vysílání skupinovou (multicast) adresu 224.0.0.9 autentizace informací 24

Problémy RIP Omezená nejdelší možná cesta na 15 hopů počítání do nekonečna (16) fixní metrika jen hopy, žádná jiná možnost 1Mbps A A 33.6kbps 1Mbps B B 1Mbps nelze využít paralelních cest pro rozkládání zátěže RIPng: pro IPv6 (RFC 2080) v podstatě pouze změna IP adres zůstávají zachovány ostatní vlastnosti (a problémy) 25

OSPF Open Shortest Path First vychází ze staršího SPF RFC 1245 (z roku 1991), version 2: RFC 2328 (z roku 1998) pracuje přímo nad IP (číslo protokolu je 89) algoritmus typu link-state aktivně testuje stav linky k sousedním směrovačům tuto informaci posílá do celé sítě tyto informace rozesílá všem ostatním směrovačům každý směrovač v síti má úplnou informaci o celé topologii sítě počítá optimální cesty pomocí Dijkstrova algoritmu (sám za sebe) podporuje alternativní cesty, loadbalancing 26

OSPF metrika metrika: virtuální cena minimalizuje se (čím menší cena, tím větší šance, že se cesta zvolí) určená administrativně, měla by zahrnovat všechny potřebné vlastnosti (propustnost, vytížení, ceně) vztahuje se k rozhraní směrovače (=> může být asymetrická) umožňuje rozdělit AS na několik oblastí (area) analogie k AS, ale v jeho rámci informace o vnitřní struktuře se nešíří vně oblasti páteř, oblast 0 jedna oblast (0) je páteřní bez stanic, jsou k ní připojeny všechny ostaní oblasti oblast 1 oblast 2 oblast 3 oblast má mít max. 80 směrovačů 27

OSPF oblasti páteřní směrovače oblast 0 ASBR (AS Border Router) ABR (Area Border Router) ABR oblast 1 oblast 2 Autonomní systém 28

OSPF směrování SPF algoritmus se provádí zvlášť pro každou oblast směrování je vlastně dvoustupňové: v rámci oblasti a mezi oblastmi topologická databáze má tvar orientovaného grafu směrovač si udržuje databázi sousedů (každý jinou) sousedi se objeví pomocí tzv. Hello protokolu udržování sousedských vztahů výměna směrovacích informací vysílá se každých 10s dále si udržuje celkovou topologii sítě (všichni by měli mít stejnou) směrovací tabulky pro směrování datagramů mění se podle výpočtu nejkratších cest podle aktuální topologie sítě 29

OSPF aktualizace nový směrovač zjistí, kdo jsou jeho sousedi s každým sousedem si synchronizuje topologickou databázi poté oznámí všem ostatním směrovačům navázání sousedských vztahů již fungující směrovač kontroluje pomocí Hello paketů, zda linky k sousedům jsou OK každých 10s pokud nejsou změny, jednou za 30 minut vysílá informace o sousedských vztazích pokud je změna, ihned informuje 30

RIP vs OSPF posílá se RIP celá směrovací tabulka OSPF informace o přímo připojených segmentech kdy periodicky ihned po změně komu sousedům všem směrovačům škálovatelnost malá velká náročnost na konfiguraci malá velká náročnost na síť velká malá problémy smyčky, pomalá konvergence synchronizace 31