CONTRIBUTION TO MATHEMATICAL MODELLING OF MANGANESE DIFFUSION IN A WELDED JOINT OF TWO IRON-BASED MATERIALS

Podobné dokumenty
ON DETERMINATION OF THE DIFFUSION LAYER AND PENETRATION OF SUBSTITUTIVE ELEMENT IN WELDED JOINT OF TWO DIFFERENT STEELS

PŘÍSPĚVEK K METODICE VYHODNOCENÍ DIFÚZE SUBSTITUČNÍCH PRVKŮ VE SVAROVÉM SPOJI DVOU RŮZNÝCH OCELÍ

The Over-Head Cam (OHC) Valve Train Computer Model

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:

PŘÍSPĚVEK K TERMODYNAMICKÝM A DIFÚZNÍM INTERAKČNÍM KOEFICIENTŮM A JEJICH VZÁJEMNÉMU VZTAHU

Melting the ash from biomass

Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation

Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.

STUDIUM ODUHLIČENÍ POVRCHOVÝCH VRSTEV LOŽISKOVÝCH OCELÍ 100Cr6. RESEARCH OF DECARBURIZATION SURFACE LAYER OF BEARING STEEL 100Cr6

STŘEDNÍ PŘIROZENÉ DEFORMAČNÍ ODPORY PŘI TVÁŘENÍ OCELÍ ZA TEPLA - VLIV CHEMICKÉHO A STRUKTURNÍHO STAVU

Compression of a Dictionary

Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku

Litosil - application

DC circuits with a single source

SVAŘOVÁNÍ KOVOVÝCH MATERIÁLŮ LASEREM LASER WELDING OF METAL MATERIALS

MOŽNOSTI TVÁŘENÍ MONOKRYSTALŮ VYSOKOTAVITELNÝCH KOVŮ V OCHRANNÉM OBALU FORMING OF SINGLE CRYSTALS REFRACTORY METALS IN THE PROTECTIVE COVER

Výuka odborného předmětu z elektrotechniky na SPŠ Strojní a Elektrotechnické

EXACT DS OFFICE. The best lens for office work

PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I I

Effect of temperature. transport properties J. FOŘT, Z. PAVLÍK, J. ŽUMÁR,, M. PAVLÍKOVA & R. ČERNÝ Č CTU PRAGUE, CZECH REPUBLIC

CHAIN TRANSMISSIONS AND WHEELS

WORKSHEET 1: LINEAR EQUATION 1

Introduction to MS Dynamics NAV

DETERMINATION OF MECHANICAL AND ELASTO-PLASTIC PROPERTIES OF MATERIALS BY NANOINDENTATION METHODS

ASTM A694 F60 - TEPELNÉ ZPRACOVÁNÍ A MECHANICKÉ VLASTNOSTI ASTM A694 F60 HEAT TREATMENT AND MECHANICAL PROPERTIES

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ DISERTAČNÍ PRÁCE

SIMPLE MODELS DESCRIBING HOT DEFORMATION RESISTANCE OF SELECTED IRON ALUMINIDES

CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION

SLEDOVÁNÍ AKTIVITY KYSLÍKU PŘI VÝROBĚ LITINY S KULIČKOVÝM GRAFITEM

SIMULACE REDISTRIBUCE UHLÍKU V HETEROGENNÍM SVAROVÉM SPOJI P91/27NiCrMoV15-6

Transportation Problem

CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA

DUPLEXNÍ POVLAKOVÁNÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM DUPLEX COATING OF THE NIOBIUM-ALLOYED PM TOOL STEEL

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Summary. Mr. Andreas Molin

Využití hybridní metody vícekriteriálního rozhodování za nejistoty. Michal Koláček, Markéta Matulová

SPECIFICATION FOR ALDER LED

Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová

KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE

Obrábění robotem se zpětnovazební tuhostí

Transformers. Produkt: Zavádění cizojazyčné terminologie do výuky odborných předmětů a do laboratorních cvičení

Air Quality Improvement Plans 2019 update Analytical part. Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová

VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O.

CREEP AUSTENITICKÉ LITINY S KULIČKOVÝM GRAFITEM CREEP OF AUSTENITIC DUCTILE CAST IRON

VLIV OBSAHU NIKLU NA VLASTNOSTI LKG PO FERITIZAČNÍM ŽÍHÁNÍ EFFECT OF THE CONTENT OF NICKEL ON DI PROPERTIES AFTER FERRITIZATION ANNEALING

Uni- and multi-dimensional parametric tests for comparison of sample results

Jitka Malcharcziková a Miroslav Kursa b Josef Pešička c

These connections are divided into: a) with a form-contact b) with a force-contact

CZ.1.07/2.3.00/

LOGOMANUÁL / LOGOMANUAL

STLAČITELNOST. σ σ. během zatížení

HODNOCENÍ ZDRAVOTNÍCH RIZIK Z POŽITÍ A DERMÁLNÍHO KONTAKTU NAFTALENU V ŘECE OSTRAVICI

Klapka zpětná L10 DN , PN Swing check valve L10 DN , PN

POSSIBLE GENERALISATION OF DECREASE IN MECHANICAL PROPERTIES OF CARBON STEEL (ČSN ) ON OTHER STEELS

MODELY TUHNUTÍ A HETEROGENITY PLYNULE LITÉ BRAMY A JEJICH APLIKACE

PŘÍSPĚVEK K REDISTRIBUCI HLINÍKU VE SVARECH OCELÍ. ÚFM AV ČR Brno, Žižkova 22, Brno, ČR, million@ipm.cz

HODNOCENÍ VLASTNOSTÍ VÝKOVKŮ ROTORŮ Z OCELI 26NiCrMoV115

USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING

Aktivita CLIL Chemie III.

THE PREDICTION PHYSICAL AND MECHANICAL BEHAVIOR OF FLOWING LIQUID IN THE TECHNICAL ELEMENT

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů

Ja n T. Št e f a n. Klíčová slova: Řada knih, srovnání cen v čase, cena vazby a ocelorytové viněty, lineární regresní analýza.

GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník LII, řada strojní článek č.

Project Life-Cycle Data Management

VLIV ZMĚNY DRSNOSTI POVRCHU NA PŘILNAVOST ORGANICKÝCH POVLAKŮ INFLUENCE OF THE CHANGE OF THE SURFACE ROUGHNESS ON ADHESION OF ORGANIC COATINGS

A Note on Generation of Sequences of Pseudorandom Numbers with Prescribed Autocorrelation Coefficients

Oxide, oxide, co po tobě zbyde

TechoLED H A N D B O O K

VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace

CONTRIBUTION TO METALLURGICAL TECHNOLOGY CONTROL PROBLEMS PŘÍSPĚVEK K PROBLEMATICE ŘÍZENÍ METALURGICKÝCH TECHNOLOGIÍ

MIKROSTRUKTURNÍ VLASTNOSTI V DIFUZNÍCH SPOJÍCH Ni 3 Al-Ni A NiAl-Ni. Barabaszová K., Losertová M., Kristková M., Drápala J. a

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

AIC ČESKÁ REPUBLIKA CZECH REPUBLIC

Ventil zpětný Z15.1 DN 10 50, PN Piston check valve Z15.1 DN 10 50, PN

TKGA3. Pera a klíny. Projekt "Podpora výuky v cizích jazycích na SPŠT"

REDISTRIBUCE UHLÍKU A FOSFORU VE SVAROVÝCH SPOJÍCH UHLÍKOVÝCH OCELÍ ČSN ( ,1%P) A ( ,4%P) S AUSTENITICKOU OCELÍ ČSN

Mikrokvadrotor: Návrh,

Together H A N D B O O K

POVRCHOVÉ VYTVRZENÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM PLAZMOVOU NITRIDACÍ SURFACE HARDENING OF NIOBIUM-CONTAINING PM TOOL STEEL BY PLASMA NITRIDING

Friction drives have constant or variable drives (it means variators). Friction drives are used for the transfer of smaller outputs.

Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK. cz

Stabilizace břehů Bank Stabilization

TEORIE NETKANÝCH TEXTILIÍ. Kapky Kapilární délka. Simulace pomocí Isingova modelu. 7.přednáška

Problematika disertační práce a současný stav řešení

POČET ROČNÍKŮ JEHLIC POPULACÍ BOROVICE LESNÍ. Needle year classes of Scots pine progenies. Jarmila Nárovcová. Abstract

INFLUENCE OF CONSTRUCTION OF TRANSMISSION ON ECONOMIC PARAMETERS OF TRACTOR SET TRANSPORT

Chapter 7: Process Synchronization

Národní informační den společných technologických iniciativ ARTEMIS a ENIAC

DATA SHEET. BC516 PNP Darlington transistor. technický list DISCRETE SEMICONDUCTORS Apr 23. Product specification Supersedes data of 1997 Apr 16

Stojan pro vrtačku plošných spojů

Fytomineral. Inovace Innovations. Energy News 04/2008

STUDIUM ELEKTROCHEMICKÝCH KOROZNÍCH JEVŮ DVOUFÁZOVÝCH OCELÍ ZA POUŽITÍ METODY SRET.

ČSN EN ed. 3 OPRAVA 1

User manual SŘHV Online WEB interface for CUSTOMERS June 2017 version 14 VÍTKOVICE STEEL, a.s. vitkovicesteel.com

POSTUPY TERMICKÉHO ZPRACOVÁNÍ ODPADŮ S VYUŽITÍM PLAZMOVÉHO ROZKLADU ZA PŘÍTOMNOSTI TAVENINY ŽELEZA Zdeněk Bajger a Zdeněk Bůžek b Jaroslav Kalousek b

PAINTING SCHEMES CATALOGUE 2012

Czech Technical University in Prague DOCTORAL THESIS

VÝZKUM VLASTNOSTÍ SMĚSI TEKBLEND Z HLEDISKA JEJÍHO POUŽITÍ PRO STAVBU ŽEBRA

Transkript:

Ř Ř Acta Metallurgica Slovaca, 13, 2007, 4 (517-523) 517 CONTRIBUTION TO MATHEMATICAL MODELLING OF MANGANESE DIFFUSION IN A WELDED JOINT OF TWO IRON-BASED MATERIALS eháč ková L., Kalousek J.,Dobrovský L., Kursa M., Drápala J. FMME VŠB TU Ostrava, Czech Republic, lenka.rehackova@vsb.cz PŘ ÍSPĚ VEK K MATEMATICKÉMU MODELOVÁNÍ DIFÚZE MANGANU VE SVAROVÉM SPOJI DVOU MATERIÁLŮ NA BÁZI ŽELEZA eháč ková L., Kalousek J., Dobrovský L., Kursa M., Drápala J. FMMI VŠB TU Ostrava, Č eská republika, lenka.rehackova@vsb.cz Abstrakt Tato práce vychází z programu výzkumných prací zabývajících se studiem nových materiálů. Souč ástí tohoto studia jsou pokusy o využití numerického modelu tuhnutí př edlitků. Existují urč ité rozdíly mezi experimentálními výsledky a výsledky modelu. Ke zpř esně ní tě chto výsledků by mohly př ispě t informace o intervalu krystalizace. Př edpokládá se, že př i rozmezích chemického složení vzorků, které byly k dispozici, mů že mít na teplotu krystalizace nejvě tší vliv obsah uhlíku. Z hlediska etapy projektu, která se vě nuje transportním dě jů m v materiálech se př edpokládá provedení experimentu tak, že jako protikus ke každému vzorku se vybere vzorek č istého materiálu a obě č ásti budou elektrošokově svař eny. Po tepelném zpracování se uvažuje vliv uhlíku a manganu na gradient chemického složení v obou č ástech vzorku. Př edkládaná práce se zabývá difúzí manganu. Č lánek vychází z již dř íve vyvinuté a aplikované pů vodní metodiky adaptace Levenberg Marquardtova algoritmu pro model redistribuce substituč ních prvků ve svarovém spoji dvou materiálů na bázi železa. Postup je numericky i graficky demonstrován na manganu. Teoretickým základem vyhodnocení je ř ešení 2. Fickova zákona jednorozmě rové difúze s př íslušnými okrajovými podmínkami. Okrajové podmínky př edpokládají stejné hodnoty difuzivit prvku v obou materiálech. Zároveň př edpokládají, že ve velké vzdálenosti od roviny svarového spoje jsou koncentrace totožné s výchozí chemickou analýzou. Parametry difúzní rovnice se optimalizovaly metodou nelineární regrese. Výstup programu zahrnuje statistické výsledky, vyjadř ující míru použitelnosti modelu a strukturní i chemickou heterogenitu. Výsledné hodnoty optimalizač ních parametrů závisejí na metodě zpracování. Abstract The work is based on the program of research works dealing with investigation of new materials. This investigation comprises attempts of use of numerical model of son of cast blanks. There are some differences between experimental results and results obtained from the model. Information about crystallization interval could contribute to higher precision of these results. It is assumed that within the interval of chemical composition of the available samples it is specifically the carbon contents that could have had the biggest influence of crystallization temperature. From the viewpoint of the given stage of the project, which deals with transport phenomena in materials it is planned to make an experiment in the following manner: each

Acta Metallurgica Slovaca, 13, 2007, 4 (517-523) 518 sample will get its counterpart made form pure material and both parts will be welded by electric shock. After heat treatment an influence of carbon and manganese on chemical composition gradient will be studied in both parts of the sample. The presented work deals with manganese diffusion. The paper is based on already previously developed and applied methodology of adaptation of Levenberg Marquardt algorithm for the model of re-distribution of substitution elements in a welded joint of two iron-based materials. The procedure is illustrated numerically and graphically on the example of manganese. Theoretical basis for evaluation is solution of the Fick s second law of onedimensional diffusion with the relevant boundary conditions. The boundary conditions assume the same values of the element diffusivities in both materials. They also presume that at great distance from the plane of the welded joint the concentrations are identical with initial chemical analysis. Parameters of diffusion equation were optimized by method of non-linear regression. Program outputs comprise statistical results expressing the extent of usability of the model and structural and chemical heterogeneity. Final values of optimization parameters depend on the method of processing. Keywords: welded joint, diffusion, manganese re-distribution 1. Introduction Knowledge of re-distribution of elements in welded joints made of various iron-based materials have both theoretical and practical significance particularly for piping subjected to long-term thermal loads, e.g. in power engineering. These issues have been for a long time already in the centre of interest of the works oriented on interstitial and substitution elements [1-5]. Presented methodology leading to obtaining of the relevant results consists of acquisition of the necessary experimental data, theoretical solution of the problem, its evaluation and interpretation of results. Experience gained with use of this methodology is demonstrated in the presented work on manganese re-distribution. 2. Experiment Measurement of the manganese re-distribution was realized on two welded joints, which were formed by electrolytic iron of the purity 3N and by Mn steels with chemical composition specified in the Table 1. Table 1 Chemical composition of steels [wt %] Steel C Mn Si P S Cr Ti Cu Mo V Al Co Nb Sample 25 0.39 0.97 0.29 0.011 0.006 0.05 0.01 0.13 0.01 0.01 0.01 0.01 - Sample 31 0.08 1.29 0.23 0.011 0.005 0.03 0.02 0.11 0.01 0.07 0.03 0.01 0.04 Initial material electrolytic iron of the purity 3N was re-melted twice in a plasma furnace in order to increase the purity to 4N. Afterwards it was melted in a vacuum furnace and cast into a graphite mould with three cylindrical holes with diameter 10 mm and depth 100 mm under presence of argon.

Acta Metallurgica Slovaca, 13, 2007, 4 (517-523) 519 Samples of pure iron and of Mn steels were cut in transversal direction; frontal faces were polished and prepared metallographically to high cleanness. Welded joints were prepared at the Institute of Physics of Materials at the Academy of Sciences of the Czech Republic in Brno (ÚFM AV Č R Brno) by electric shock welding under protective argon atmosphere, while metallographic polished sections of the samples were mutually pushed together by mechanical pressure. Dimensions of each cylindrical sample were the following: diameter 10 mm, height 10 to 15 mm. Welded diffusion pairs were subjected to isothermal annealing in electric resistance furnace at the temperature of 900 C for 48 hours. The samples were after annealing cut in the middle perpendicularly to the weld boundary and metallographic polished sections were prepared on the surface of cut areas. Interfacial boundary was determined on microscope and a mark was made here by micro-hardometer. Distribution of selected elements over the welded interface was studied by the WDX method (wavelength dispersive X-ray analysis) perpendicularly to the interface. This analysis was made in individual points with a step of 5 µm (altogether 26 measurements, the 13 th measurement point was exactly at the interface, see the Fig. 1). Fig.1 Structure of the welded joint (sample 31, 900 C / 48 h) 3. Theoretical basis 3.1 Diffusion Theoretical basis for evaluation is solution of the Fick s second law of onedimensional diffusion with the relevant boundary conditions. The boundary conditions assume the same values of the element diffusivities in both materials. They also presume that at great distance from the plane of the welded joint the concentrations are identical with initial chemical analysis. Parameters of diffusion equation were optimized by method of non-linear regression. Solution of diffusion in the system that is formed by two media is based the concept of one-dimensional diffusion for semi-infinite areas: ( x ),. The basis equation can be found in the Ref. [6], or with respect to analogy between diffusion and heat conduction also in Ref. [7]. 0 ( x 0) x c 1 = A1 + B1erf, x > 0 (1) D t 2 1

Acta Metallurgica Slovaca, 13, 2007, 4 (517-523) 520 x c 2 = A2 + B2erf, x < 0 (2) D t 2 2 where c 1 is concentration in the area x > 0, c 2 is concentration in the area x < 0, A 1, B 1, A 2, B 2 are constants, which are obtained after insertion of initial and boundary conditions, D 1 is diffusion coefficient in the area x > 0, D 2 is diffusion coefficient in the area x < 0. Diffusion of elements in the welded joint is solved by the equations (1), (2) with the following initial and boundary conditions: Initial conditions: 1.) c 1 = c0, t 0, 0 < x < (3) 2.) c 2 = d 0, t 0, 0 > x > (4) Initial conditions assume constant concentrations of diffusing component, different in both diffusion domains (diffusion areas). Boundary conditions: c 3.) 2 = 1, x = 0, t > 0 (5) c1 4.) c c D 1 1 = D2 2, x = 0, t > 0 (6) x x Boundary conditions (5), (6) are valid in the time t > 0 on the boundary of both diffusion domains at x = 0. The boundary condition (5) assumes equality of concentrations on the boundary, the boundary condition (6) assumes equality of densities of diffusion flows on the boundary. It is assumed that diffusivity in both areas is independent on concentration. If the equality D 1 = D2 is true, the concentration profile at the time t > 0 at x = 0 is continuous. The next calculation comprises this assumption. Solution leads to the result that is valid for both parts of the welded joint - in the following form: N i x 1. (7) ( x, t) = N + 0,5( N N ) erfc 2 1 2 Dit This form is cited in the work [2], where the values N, N 1, N 2 substitute generally expressed concentration by weight percents: N( x,t) c 1 c2, N1 c0, N 2 d0. The equation (7) satisfies the initial and boundary conditions. It can be easily proven that at big distance on both sides of the welded joint the following is valid: N (,t) = N1, N (,t) = N 2, i.e. that these concentrations are therefore identical with initial concentrations at the time t = 0. 3.2 Evaluation of experimental data A modified form of the equation (7) from the work [9] was used for evaluation of experimental data:

Acta Metallurgica Slovaca, 13, 2007, 4 (517-523) 521 N i x x 1 (8) ( ) ( ) 0 x, t = N + 0,5 N N erfc 2 1 2 Dit From the measured values N i ( x,t) and x, t the free optimization parameters N1, N2, D, x0 were evaluated by method of non-linear regression. The parameter x 0 represents a correction of inaccuracy of deduction of (zero) position of the welded joint; from mathematical viewpoint it is a transformation of the coordinate x. The attempt of evaluation of parameters from the equation (7) by the user program Polymath 5.1 [10] was unsuccessful. That s why there was developed a proprietary optimization program of non-linear regression. The Levenberg Marquardt s method, which uses an algorithm according to the Ref. [11], is the core of the program. The program was at first tested on simulated data with small scatter. When real experimental data with greater scatter were used, it was found that the pursued special function minimizing sum of squares of deviations can have several local minimums. That s why the basic algorithm was applied only on limited part of multi-dimensional space (from the viewpoint of optimization parameters). The limitation did not permit e.g. negative values of the parameters N1,N 2, D and too big deviations of the pars N 1, N 2 from the relevant chemical composition. It chose from the found local minimums the most suitable one, i.e. the one with the minimum residual sum of squares. In case of close magnitudes of these values it preferred a minimum with the smallest error of the value of diffusivity. Scatters of real data cannot be attributed to a systematic error of the experiment, but rather to processes embedded already in steelmaking technology, which result in structural and chemical non-homogeneity in the area of the welded joint. 4. Results Measurement results and their evaluation are contained in the Table 2 and in the Figures 2. and 3. Table 2 Concentration of manganese and its diffusion coefficients Sample No. (T[K], t[s]) 10 2 N 1 [wt %] N 2 [wt %] 10 12 D Mn [cm 2 /s] sample 25 (900 C, 48h) 96.2 ± 1.2 2.5 10-6 ± 1.4 10-2 4.3 ± 0.6 sample 31 (900 C, 48h) 147.3 ± 1.7 5.5 10-8 ± 1.7 10-2 6.8 ± 0.7 Figure 2 corresponds to the manganese re-distribution in the sample 25, Fig. 3 corresponds to the same situation in the sample 31. Computing program has made in both cases a correction of inaccuracy of determination of zero position of the interface of both materials. Shift in the Fig. 3 is quite considerable and changes due to oxidation at the zone of contact of both materials cannot be excluded. Number of concentration data in the areas corresponding to initial conditions according to the equations (3) and (4) is not big. This may be the cause of errors in the values N 1, N 2. These parameters and their statistics are determined by computing program. Diffusivity errors are permissible.

Acta Metallurgica Slovaca, 13, 2007, 4 (517-523) 522 measured concentration calculated concentration corrected weld position 1.2 1 0.8 N Mn [wt.%] 0.6 0.4 0.2 0-80 -60-40 -20 0 20 40 60 80 x [µm] Fig.2 Manganese re-distribution (sample 25, 900 C, 48h) measured concentration calculated concentration corrected weld position 1.8 1.6 1.4 1.2 N Mn [wt.%] 1 0.8 0.6 0.4 0.2 0-80 -60-40 -20 0 20 40 60 80 x [µm] Fig.3 Manganese re-distribution (sample 31, 900 C, 48h) 5. Conclusion Results of the manganese diffusion that were obtained by original method based on adaptation of the Levenberg Marquardt algorithm can be considered as the first orientational information, since diffusivity was measured only at one temperature and in one time interval. Both these quantities must be put into their context and further developed. The values of the manganese diffusivity are acceptable, possible comparison with other authors for a similar system of pairs is not available.

Acta Metallurgica Slovaca, 13, 2007, 4 (517-523) 523 Acknowledgement This paper has been prepared thanks to financial support of the Ministry of Education, Youth and Sports of the Czech Republic, project No. MSM6198910013. Literature [1] Stránský K. Termodynamika kvazistacionární difúze uhlíku v ocelích a její aplikace [Thermodynamics of quasi-stationary diffusion of carbon in steels and its application], Academia Praha 1977 [2] Pilous V., Stránský K. Strukturní stálost návarů a svarových spojů v energetickém strojírenství [Structural stability of weld deposits and welded joints in power engineering machinery], Academia Praha 1989 [3] Kuč era J., Million B., Stránský K. Czech. J. Phys. B35, 1985, pp. 1355-1361 [4] Kuč era J., Kozák V., Million B., Stránský K. Czech. J. Phys. B36, 1986, pp. 514-523 [5] Ř eháč ková L. et al. Acta Metallurgica Slovaca 12, 4, 2006, pp. 388-399 [6] Crank J. The mathematic of diffusion, Oxford University press, 2 nd ed., 1975, pp. 38-39 [7] Carlslaw H. S., Jaegen. Conduction of Heat in Solids, 2 nd Edition, Oxford Clarendon Press 1959 Russian translation Teploprovodnosť tverdych tel [Thermal conductivity of solids], Nauka, Moskva 1964, p. 91 [8] Bird R. B., Steward W. S., Lightfoot E. L. Př enosové jevy [Transport phenomena], Academia Praha 1968, p. 371 [9] Kuč era J. et al. Kovove mater. 34, 1996, No. 8 [10] Cutlip M. B., Shacham M. Problem Solving in Chemical Engineering with Numerical methods. Prentice Hall, PTR, New York, 2000 [11] Numerical Recipes in Fortran, (with permission of Cambridge University Press, Chap. 15, pp. 678-683, http://library.lan./ gov/ numerical/bookfpdf/f15.5.pdf [12] Hátle J., Likeš J.: Základy poč tu pravdě podobnosti a matematické statistiky [basis of probability calculus and of mathematical statistics], SNTL ALFA, Praha 1974, P. 139