L a b o r a t o r n í c v i č e n í z f y z i k y



Podobné dokumenty
LABORATORNÍ CVIČENÍ Z FYZIKY. Měření rychlosti šíření zvukových vln v kapalině

Jméno a příjmení. Ročník. Měřeno dne. Marek Teuchner Příprava Opravy Učitel Hodnocení. 1 c p. = (ε r

Akustooptický modulátor s postupnou a stojatou akustickou vlnou

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Posuzoval:... dne:...

Akustooptický modulátor s postupnou a stojatou akustickou vlnou

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

Studium ultrazvukových vln

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny

MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru

Název: Měření vlnové délky světla pomocí interference a difrakce

Laboratorní práce č. 3: Měření vlnové délky světla

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

L a b o r a t o r n í c v i č e n í z f y z i k y

Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky

M I K R O S K O P I E

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2

MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH

Fyzika II, FMMI. 1. Elektrostatické pole

Klasické a inovované měření rychlosti zvuku

Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

Tabulka I Měření tloušťky tenké vrstvy

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

13 Měření na sériovém rezonančním obvodu

4. Z modové struktury emisního spektra laseru určete délku aktivní oblasti rezonátoru. Diskutujte,

Jméno a příjmení. Ročník

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1

1. Zadání. 2. Teorie úlohy ID: Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.

Jméno a příjmení. Ročník. Měřeno dne Příprava Opravy Učitel Hodnocení. Vlnové vlastnosti světla difrakce, laser

MĚŘENÍ Laboratorní cvičení z měření. Měření magnetických veličin, část 3-9-3

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 9 : Akustika

Jednotlivé body pouze kmitají kolem rovnovážných poloh. Tato poloha zůstává stálá.

Interference vlnění

Název: Měření paralelního rezonančního LC obvodu

Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední

Podle studijních textů k úloze [1] se divergence laserového svaku definuje jako

Vlnění. vlnění kmitavý pohyb částic se šíří prostředím. přenos energie bez přenosu látky. druhy vlnění: 1. a. mechanické vlnění (v hmotném prostředí)

PRAKTIKUM II Elektřina a magnetismus

Fyzikální praktikum FJFI ČVUT v Praze

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úlohač.III. Název: Mřížkový spektrometr

17. března Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

Podpora rozvoje praktické výchovy ve fyzice a chemii

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Stavba Michelsonova interferometru a ověření jeho funkce

Vlnové vlastnosti světla. Člověk a příroda Fyzika

Laboratorní úloha č. 7 Difrakce na mikro-objektech

Teoretický úvod: [%] (1)

Fyzika II. Marek Procházka Vlnová optika II

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Měření vlnové délky, impedance, návrh impedančního přizpůsobení

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. 1

- + C 2 A B V 1 V 2 - U cc

Měření vlastností střídavého zesilovače

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

Fyzikální praktikum III

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 9: Základní experimenty akustiky. Abstrakt

Elektrodynamika, elektrický proud v polovodičích, elektromagnetické záření, energie a její přeměny, astronomie, světelné jevy

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 8 : Studium ultrazvukových vln

Zadání. Pracovní úkol. Pomůcky

Jméno a příjmení. Ročník. Měřeno dne Příprava Opravy Učitel Hodnocení. Charakteristiky optoelektronických součástek

POZOROVÁNÍ VLN NA VLNOSTROJI

MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH.

vede sice ke zvýšení kontrastu, zároveň se ale snižuje rozlišení a ostrost obrazu (Obr. 46).

DUM č. 14 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná.

Střední průmyslová škola elektrotechnická a informačních technologií Brno

PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.

DUM č. 5 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník

Elektrická měření pro I. ročník (Laboratorní cvičení)

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech

Fázová a grupová rychlost ultrazvuku v kapalinách

POZOROVÁNÍ VLN NA VLNOSTROJI

Digitální učební materiál

Datum měření: , skupina: 9. v pondělí 13:30, klasifikace: Abstrakt

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

ELEKTROMAGNETICKÉ KMITÁNÍ A VLNĚNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Operační zesilovač, jeho vlastnosti a využití:

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Akustický přijímač přeměňuje energii akustického pole daného místa na energii elektrického pole

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 6: Geometrická optika. Abstrakt

Charakteristiky optoelektronických součástek

rezonančního obvodu 6. března 2010 Fyzikální praktikum FJFI ČVUT v Praze

Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P05 MECHANICKÉ VLNĚNÍ

Praktikum školních pokusů 2

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S /10

Úloha 3: Mřížkový spektrometr

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Studium ohybových jevů v laserovém svazku

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis

Transkript:

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE K ATEDRA FYZIKY L a b o r a t o r n í c v i č e n í z f y z i k y Jméno TUREČEK Daniel Datum měření 15.11.2006 Stud. rok 2006/2007 Ročník 2. Datum odevzdání 29.11.2006 Stud. skupina 103 Lab. skupina Klasifikace Čís. úlohy 1a Název úlohy Měření rychlosti šíření zvukových vln v kapalině

1. Úkol měření 1. Změřte závislost napětí na měniči na vzdálenosti reflektoru. Tuto závislost zobrazte graficky a určete tak vlnovou délku ultrazvukových vln v dimethylftalátu. 2. Vypočítejte rychlost šíření zvuku v dimethylftalátu a určete modul objemové pružn osti. Stanovte chybu měření pro obě tyto veličiny. 3. Pozorujte zobrazení zvukových vln v interferometrické komůrce optickou metodou. 2. Obecná část Pro měření rychlosti šíření zvukových vln v kapalině použi jeme nepřímé metody. Zvláště výhodná je interferenční metoda, využí vající porovnání (interferenci) dvou signálů o stejném kmitočtu. V této úloze se zkoumají a měří interferenční jevy vzniklé při skládání dvou kmitů téže vlnové délky a opačného směru šíření. Jako zdroj vlnění se použí vá destička z piezoelektrické keramiky. Při přivedení vysokofrekvenčního elektrického napětí na elektrody destička kmitá tloušťkovými kmity. Vlastní kmity destičky piezoelektrického měniče je možn o zjednodušeně popsat jako délkové kmity tyče o modulu pružn osti: E=0,94.10-11 N.m -2 a hustotě r= 7,4.103 kg.m 3. Kmitočet vlastních kmitů je dán vztahem (1.1): f n = n 2d & E, kde n=1,3,5,....zde se měnič budí kmitočtem blízkým kmitočtu vlastních kmitů na třetí harmonické (n=3). Kmity měniče vyvolávají v kapalině podélné ultrazvukové vlnění šířící se ve směru osy měniče. Je-li vzdálenost mezi měničem a reflektorem rovna celistvému násobku l/2, vznikne v prostoru mezi měničem a reflektorem stojaté vlnění. Odraže ná vlna pak přichází zpět na měnič ve fázové shodě s vlastními kmity měniče. To se projeví na elektrické straně měniče sníže ním odběru. Měnič je součástí rezonančního LC obvodu, který je volně induktivně navázán k budícímu generátoru. Zvýšená impedance měniče tak způsobí zvýšení napětí na měniči. Toto napětí je měřeno ručkovým měřidlem na generátoru. Stojaté zvukové vlnění v interferometrické komůrce se pozoruje v optické lavici uspořádané podle obr. 1. Ze žá rovky 1 vycházejí světelné paprsky víceméně rozbíhavě. Kondenzor 2 (je tvořen dvěma ploskovypuklými čočkami, přivrácenými vypuklými stranami k sobě) má za úkol vytvořit z nich svazek sbíhavých paprsků, které vytvoří obraz zdroje 1 v místě 3. Tam je umístěna štěrbina, která z nich propustí jen velmi úzký výřez. Od štěrbiny 3 tak vychází dobře definovaný a značně rozbíhavý svazek světelných paprsků. Ten se objektivem 4 převede na svazek rovnoběžn ých paprsků. Proto je štěrbina 3 a objektiv 4, umístěna ve společném držá ku, kde je vzdálenost mezi 3 a 4 pevně nastavena. Pokud by nebyla do optické lavice vlože na interferometrická komůrka, byl by tento svazek rovnoběžn ých paprsků objektivem 6 opět kolimován do úsečky - obrazu štěrbiny v místě 7 - a na stínítku 8 by se vytvořila rovnoměrně osvětlená plocha. Vlože ní jakéhokoli předmětu do svazku rovnoběžn ých paprsků mezi 4 a 6 se zobrazí na stínítku 8 jako jeho stínový obraz. Zobrazí se i odchylky od původního směru paprsků mezi 4 a 6, způsobené změnami indexu lomu na zvukových vlnách (stojaté vlnění, kmitny, uzly) v interferometrické komůrce. Do místa 7 je možn é vloži t další štěrbinu nebo clonu, kterou je možn é vymezit odchýlené nebo neodchýlené paprsky a tak ovlivnit kontrast zobrazení stojatého zvukového vlnění v komůrce na stínítku 8. Jako kapalina, v níž se měří rychlost zvuku, se použí vá dimethylftalát C10H10O4. Tato látka má vysoký index lomu, který se značně mění pod vlivem zvukových vln, je nehořlavá, netěkavá, nezpůsobuje korozi a je zvlášť vhodná pro toto demonstrační měření. Měření je však proveditelné s jakoukoli kapalinou.

3. Postup měření 1. Zapneme interferometrický generátor, z LED displeje odečteme kmitočet, na ručičkovém měřidle je napětí generátoru. 2. Zapneme transformátor žá rovky ve světelném zdroji. 3. Mikrometrický šroub, kterým měníme polohu reflektoru, přivedeme do nejnižš í polohy, jeho poloho postupně měníme po 0,05 mm. Polohy každ ého maxima se snaží me změřit co nejpřesněji. Naměřené hodnoty vyneseme do grafu. Z grafu odečteme vzdálenost sousedních maxim, která se rovná polovině vlnové délky ultrazvuku v kapalině. 4. Clonu 7 nastavíme tak, aby odclonila většinu neodchýlených paprsků, zvýšíme tím kontrast zobrazení stojatého vlnění na stínítku. 5. Hodnoty získané odečtením z křivky U = U(l) zpracujeme postupnou metodou. Na to potřebujeme mít naměřenu polohu, alespoň 10 maxim. Rychlost šíření zvuku v kapalině určíme ze vztahu: c = λf. Modul objemové pružn osti určíme ze vztahu: K = ρc 2. Hustota dimethylftalátu je: ρ = 1,19.103 kg.m -3. 4. Schéma měřícího zařízení 1 a 2 - světelný zdroj s kondenzorem, 3 štěrbina, 4 a 6 - spojené optické soustavy (fotografické objektivy), 5 - interferometrická komůrka, 7 - clona, 8 - stínítko. 5. Seznam použitých zařízení $ ultrazvukový generátor s komůrkou $ optická lavice $ magnetoelektrický voltmetr, TP:1,5 $ mikrometr - chyba 0,005mm 6. Tabulky naměřených hodnot a zpracovaných výsledků 6.1 Frekvence $ f= 1569 khz

6.2 Tabulka naměřených hodnot l [mm] U [V] l [mm] U [V] l [mm] U [V] l [mm] U [V] l [mm] U [V] l [mm] U [V] 50,35 3,00 51,14 6,60 52,00 5,80 52,80 4,40 53,50 4,80 54,34 5,60 50,40 3,30 51,15 6,60 52,03 6,20 52,85 4,80 53,55 3,30 54,35 5,60 50,45 4,00 51,16 6,40 52,04 6,30 52,90 5,40 53,60 2,80 54,36 5,60 50,50 4,50 51,17 6,00 52,05 6,30 52,93 5,80 53,65 3,40 54,37 5,60 50,60 5,80 51,20 5,10 52,06 6,20 52,94 5,80 53,70 4,10 54,38 5,40 50,63 6,40 51,25 3,20 52,07 6,10 52,95 6,00 53,75 4,60 54,40 4,20 50,64 6,50 51,30 3,00 52,10 5,50 52,96 6,00 53,80 5,00 54,45 4,00 50,65 6,70 51,35 2,60 52,15 3,60 52,97 6,00 53,85 5,50 54,50 2,80 50,66 6,80 51,40 4,20 52,20 2,80 52,98 6,00 53,87 5,70 54,55 2,90 50,67 6,80 51,45 4,70 52,25 3,20 53,00 5,90 53,88 5,80 54,60 3,10 50,68 6,70 51,50 5,30 52,30 4,00 53,05 4,50 53,89 5,80 54,65 3,80 50,69 6,60 51,55 6,00 52,35 4,40 53,10 3,00 53,90 5,80 54,70 4,40 50,70 6,60 51,58 6,20 52,40 4,90 53,14 2,80 53,91 5,80 54,75 4,80 50,75 4,60 51,59 6,20 52,45 5,60 53,15 2,90 53,92 5,60 54,77 5,20 50,80 3,00 51,60 6,20 52,48 6,00 53,20 3,60 53,95 5,10 54,78 5,30 50,85 3,10 51,61 6,00 52,49 6,00 53,25 4,20 54,00 3,50 54,79 5,40 50,90 3,80 51,62 5,80 52,50 6,20 53,30 4,60 54,05 2,80 54,80 5,40 50,95 4,30 51,65 5,30 52,51 6,20 53,35 5,10 54,10 3,20 54,81 5,50 51,00 5,50 51,70 3,40 52,52 6,10 53,40 5,70 54,15 3,90 54,82 5,50 51,05 6,40 51,75 2,80 52,55 5,70 53,43 5,90 54,20 4,40 54,83 5,40 51,10 6,50 51,80 3,40 52,60 4,00 53,44 5,90 54,25 4,80 51,11 6,60 51,85 4,20 52,65 2,80 53,45 5,80 54,30 5,30 51,12 6,60 51,90 4,60 52,70 3,00 53,46 5,80 54,32 5,40 51,13 6,60 51,95 5,00 52,75 3,80 53,47 5,60 54,33 5,50 6.2 Tabulka maxim i l i [mm] l i+5 [mm] l i+5 l i [mm] Δ i [mm] 2 Δ i 1 50,67 52,96 2,29 0,01 0,0002 2 51,12 53,43 2,31-0,01 0,0000 3 51,59 53,89 2,30 0,00 0,0000 4 52,04 54,35 2,31-0,01 0,0000 5 52,50 54,81 2,31-0,01 0,0000 6.4 Výpočty 6.4.1 Vlnová délka += 2 k 2 " (l i%5!l i )=2 /25#11,52=0,9216 mm '-(+)= 2 3 & " * i 2 5#4 = 2 & 3.2#10!4 3 20 +=(0,922±0,003)#10!3 m =0,0027 mm

6.4.2 Rychlost c=+#f =0,9216#10!3 #1569#10 3 =1445,99 ms!1 '-(c)=& f 2 #-(+) 2 =&(1569#10 3 ) 2 #(0,0027#10!3 ) 2 =4,24 m#s!1 c=(1445,99±4,24) m#s!1 6.4.3 Modul oběmové pružnosti K =,#c 2 =1,19#10 3 #1445,99=2,488#10 9 Pa '-(K )=&(2,c) 2 # ' - 2 (c)=&(2#1,19#10 3 #1445,99) 2 #4,24 2 =0,015#10 9 Pa K =(2,488±0,015)#10 9 Pa 7. Graf 7,00 6,50 6,00 5,50 U=f(l) U [V] 5,00 4,50 4,00 3,50 3,00 2,50 50,00 50,50 51,00 51,50 52,00 52,50 53,00 53,50 54,00 54,50 55,00 l [mm]

8. Závěr Měřili jsme vlnovou délku ultrazvukových vln v dimetylftalátu, rychlost zvuku v dimethylftalátu a modul objemové pružnosti. Výsledné hodonoty jsou následující: $ +=(0,922±0,003)#10!3 m $ c=(1445,99±4,24)m#s!1 $ K =(2,488±0,015)#10 9 Pa Grafické vyjádření námi naměřené závislosti napětí na vzdálenosti reflektoru přibližně odpovídá teoretickým předpokladům vzdálenost dvou sousedních maxim se přibližně rovnala polovině vlnové délky. Nepřesnosti měření byly způsbeny nepřesným odečítáním hodnot z voltmetru a mikrometru. 9. Seznam prostudované literatury [1] Bednařík, Koníček, Jiříček: Fyzika I a II Fyzikální praktikum, Vydavatelství ČVUT 1999