MIKROSKOPICKÁ ANALÝZA OXIDATIVNÍ DEGRADACE POLYETHYLENOVÝCH KOMPONENT KLOUBNÍCH NÁHRAD



Podobné dokumenty
Modifikace struktury UHMWPE - crosslinking

ULTRAVYSOKOMOLEKULÁRNÍ POLYETHYLEN PRO KLOUBNÍ NÁHRADY SE ZVÝŠENOU ŽIVOTNOSTÍ

Porovnání vlastností různých typů UHMWPE v současných kloubních náhradách

Vliv sterilizace formaldehydem, gama zářením a etylenoxidem na vlastnosti polyetylenových komponent kloubních náhrad

HODNOCENÍ HLOUBKOVÝCH PROFILŮ MECHANICKÉHO CHOVÁNÍ POLYMERNÍCH MATERIÁLŮ POMOCÍ NANOINDENTACE

Pevné lékové formy. Vlastnosti pevných látek. Charakterizace pevných látek ke zlepšení vlastností je vhodné využít materiálové inženýrství

APLIKACE MIKROTVRDOSTI K HODNOCENÍ KVALITY PLASTOVÝCH DÍLŮ. vliv expozice v tenzoaktivním prostředí motorových paliv a geometrie dílu

LABORATORNÍ PŘÍSTROJE A POSTUPY

MORFOLOGIE VÝSTŘIKU - VLIV TECHNOLOGICKÝCH PODMÍNEK. studium heterogenní morfologické struktury výstřiků

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken

Vlastnosti tepelné odolnosti

Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními prin

Současné poznatky o vlivu technologie výroby a sterilizace na strukturu, vlastnosti a životnost UHMWPE v kloubních náhradách

charakterizaci polymerů,, kopolymerů

MECHANISMUS TVORBY PORÉZNÍCH NANOVLÁKEN Z POLYKAPROLAKTONU PŘIPRAVENÝCH ELEKTROSTATICKÝM ZVLÁKŇOVÁNÍM

PŘÍSPĚVEK K POVRCHOVÉ ÚPRAVĚ SKLOVITÝM SMALTOVÝM POVLAKEM CONTRIBUTION TO SURFACE ARRANGEMENT WITH VITREOUS ENAMEL COAT

Nové typy a generace UHMWPE pro kloubní náhrady. New types and generations of UHMWPE for total joint replacements

POROVNÁNÍ VLIVU DEPOSICE TENKÝCH VRSTEV A NAVAŘOVÁNÍ NA DEGRADACI ZÁKLADNÍHO MATERIÁLU

Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod

STUDIUM ZMĚN MECHANICKÝCH VLASTNOSTÍ POLYMERNÍCH MATERIÁLŮ PO TEPLOTNÍM STÁRNUTÍ S HLOUBKOVOU ROZLIŠITELNOSTÍ POMOCÍ NANOINDENTAČNÍCH ZKOUŠEK

Experimentální metody

Ústav výrobního inženýrství NABÍDKA SPOLUPRÁCE. Univerzita Tomáše Bati ve Zlíně, Fakulta technologická

V001 Dokončení a kalibrace experimentálních zařízení v laboratoři urychlovače Tandetron

HOŘLAVOST A MECHANICKÉ VLASNOTSTI NANOKOMPOZITŮ EVA/Mg(OH) 2

PROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ

Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).

Vlastnosti tepelné odolnosti

Metody analýzy povrchu

Zdroj: Bioceramics: Propertie s, Characterization, and applications (Biokeramika: Vlastnosti, charakterizace a aplikace) Překlad: Václav Petrák

Slitiny titanu pro použití (nejen) v medicíně

Zkoušení fyzikálně-mechanických vlastností materiálů a výrobků pro automobilový průmysl

HODNOCENÍ POVRCHOVÝCH ZMEN MECHANICKÝCH VLASTNOSTÍ PO ELEKTROCHEMICKÝCH ZKOUŠKÁCH. Klára Jacková, Ivo Štepánek

Summer Workshop of Applied Mechanics. Vliv mechanického zatížení na vznik a vývoj osteoartrózy kyčelního kloubu

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. XXII. Název: Diferenční skenovací kalorimetrie

LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) Použití GC-MS spektrometrie

FUNKČNÍ MODEL ČÁSTEČNÉ NÁHRADY KOLENNÍHO KLOUBU

Kumulace poškození termoplastického laminátu C/PPS při cyklickém zatížení a jeho posuzování

VLIV TECHNOLOGIE ŽÁROVÉHO ZINKOVÁNÍ NA VLASTNOSTI ŽÁROVĚ ZINKOVANÝCH OCELÍ

DUPLEXNÍ POVLAKOVÁNÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM DUPLEX COATING OF THE NIOBIUM-ALLOYED PM TOOL STEEL

2 Stanovení teploty tání semikrystalických polymerů v práškové formě

VLIV MECHANICKÉHO PORUŠENÍ NA CHOVÁNÍ POVRCHU S TIN VRSTVOU PŘI TEPELNÉM A KOROZNÍM NAMÁHÁNÍ. Roman Reindl, Ivo Štěpánek, Martin Hrdý, Klára Jačková

Pokročilé cvičení z fyzikální chemie KFC/POK2 Vibrační spektroskopie

VŠB Technical University of Ostrava, Faculty of Mechanical engineering, 17. Listopadu 15, Ostrava Poruba, Czech Republic

INTERPRETACE HMOTNOSTNÍCH SPEKTER

KORELACE ZMĚN POVRCHOVÝCH VLASTNOSTÍ ELEKTROCHEMICKÝM ZATÍŽENÍM A KOROZNÍM PŮSOBENÍM V REÁLNÉM ČASE.

MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA LITÝCH NIKLOVÝCH SLITIN PO DLOUHODOBÉM ÚČINKU TEPLOTY

VÝZKUM MECHANICKÝCH VLASTNOSTÍ SVAROVÝCH SPOJŮ MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ T24 A P92. Ing. Petr Mohyla, Ph.D.

Úvod do studia organické chemie

LABORATOŘ KOVŮ A KOROZE VZDĚLÁVÁNÍ ODBORNÉ KURZY A SEMINÁŘE

Struktura polymerů. Příprava (výroba).struktura vlastnosti. Materiálové inženýrství (Nauka o materiálu) Základní představy: přírodní vs.

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová

Polymery lze rozdělit podle několika kritérií. Podle původu rozlišujeme polymery přírodní a syntetické. Přírodní polymery jsou:

Seminář z chemie. Charakteristika vyučovacího předmětu

CHARAKTERIZACE PORUŠENÍ PRI KOMPLEXNÍM HODNOCENÍ VLASTNOSTÍ A CHOVÁNÍ SYSTÉMU S TENKÝMI VRSTVAMI. Ivo Štepánek

HODNOCENÍ HLOUBKOVÝCH PROFILŮ ZMĚN MECHANICKÝCH VLASTNOSTÍ A DEGRADAČNÍHO PROCESU PROSTUPUJÍCÍHO OD POVRCHU POMOCÍ INDENTAČNÍCH ZKOUŠEK

Experimentální zjišťování charakteristik kompozitových materiálů a dílů

Základy Mössbauerovy spektroskopie. Libor Machala

Hydrogenovaný grafen - grafan

1. ročník Počet hodin

Termické chování polymerů

STANOVENÍ TVARU A DISTRIBUCE VELIKOSTI ČÁSTIC MODELOVÝCH TYPŮ NANOMATERIÁLŮ. Edita BRETŠNAJDROVÁ a, Ladislav SVOBODA a Jiří ZELENKA b

PRASKÁNÍ VRTÁKŮ PO TEPELNÉM ZPRACOVÁNÍ Antonín Kříž

HODNOCENÍ STÁRNUTÍ POVRCHU MATERIÁLU POMOCÍ INDENTACNÍCH MERENÍ

Podstata plastů [1] Polymery

Hodnocení změn mechanických vlastností v mikrolokalitách po deposičního procesu

Výměnné pobyty s US vysokými školami

Reakce alkanů 75. mechanismem), iniciované světlem nebo radikálovými iniciátory: Oxidace kyslíkem, hoření, tvorba hydroperoxidů.

Úvod do strukturní analýzy farmaceutických látek

VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

18MTY 1. Ing. Jaroslav Valach, Ph.D.

Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení

Typy molekul, látek a jejich vazeb v organismech

Optická mikroskopie a spektroskopie nanoobjektů. Nanoindentace. Pavel Matějka

VLIV ZPŮSOBŮ OHŘEVU NA TEPLOTNÍ DEGRADACI TENKÝCH OTĚRUVZDORNÝCH PVD VRSTEV ZJIŠŤOVANÝCH POMOCÍ VYBRANÝCH METOD

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce

České vysoké učení technické v Praze. Fakulta strojní. Ústav materiálového inženýrství BAKALÁŘSKÁ PRÁCE. Vliv struktury na mikrotvrdost polymerů

Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch

Emise vyvolaná působením fotonů nebo částic

Matrice. Inženýrský pohled. Josef Křena Letov letecká výroba, s.r.o. Praha 9

CYKLICKÁ VRYPOVÁ ZKOUŠKA PRO HODNOCENÍ VÝVOJE PORUŠENÍ A V APROXIMACI ZKOUŠKY OPOTŘEBENÍ. Markéta Podlahová, Ivo Štěpánek, Martin Hrdý

KOROZNÍ CHOVÁNÍ Mg SLITIN V PROVZDUŠNĚNÉM FYZIOLOGICKÉM ROZTOKU

VLIV PŘÍSADY LICOMONT BS 100 NA VYBRANÉ VLASTNOSTI ASFALTOVÝCH POJIV INFLUENCE OF ADDITIVE LICOMONT BS 100 UPON PROPERTIES OF BITUMINOUS BINDERS

Fentonova oxidace ve zkrápěném reaktoru za kontinuálního a periodického nástřiku

Ing. Petr Knap Carl Zeiss spol. s r.o., Praha

VLIV OBSAHU NIKLU NA VLASTNOSTI LKG PO FERITIZAČNÍM ŽÍHÁNÍ EFFECT OF THE CONTENT OF NICKEL ON DI PROPERTIES AFTER FERRITIZATION ANNEALING

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

INFRAČERVENÁ SPEKTROMETRIE A BIOSLOŽKY PALIV

Kroková hodnocení kombinovaného namáhání systémů s tenkými vrstvami. Roman Reindl, Ivo Štěpánek, Radek Poskočil, Jiří Hána

Metody analýzy povrchu

HODNOCENÍ MECHANICKÝCH VLASTNOSTÍ TENKOVRSTVÝCH SYSTÉMŮ Z GRAFU ZÁVISLOSTI MÍRY INFORMACE NA ZATÍŽENÍ

Ústřední komise Chemické olympiády. 55. ročník 2018/2019 TEST ŠKOLNÍHO KOLA. Kategorie E ZADÁNÍ (60 BODŮ) časová náročnost: 120 minut

Chemické složení buňky

KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII. Pavla Pekárková

Metody termické analýzy. 3. Termické metody všeobecně. Uspořádání experimentů.

VYSOKOTEPLOTNÍ OXIDACE SLITIN TI-SI. T. Kubatík, D. Vojtěch, J. Šerák, B. Bártová, J. Verner

Urychlení úpravy krvetvorby poškozené cytostatickou terapií (5-fluorouracil a cisplatina) p.o. aplikací IMUNORu

Transkript:

MIKROSKOPICKÁ ANALÝZA OXIDATIVNÍ DEGRADACE POLYETHYLENOVÝCH KOMPONENT KLOUBNÍCH NÁHRAD MARTINA NEVORALOVÁ a, MIROSLAV ŠLOUF a, JIŘÍ DYBAL a, JANA KREDATUSOVÁ a, PETR FULÍN b a DAVID POKORNÝ b a Ústav makromolekulární chemie AV ČR, v.v.i., Heyrovského nám. 2, 162 06 Praha 6, b 1. Ortopedická klinika 1. LF UK a FN Motol, V úvalu 84, 156 06 Praha 5 nevoralova@imc.cas.cz Došlo 8.8.14, přijato 2.10.14. Klíčová slova: ultravysokomolekulární polyethylen, kloubní náhrady, oxidativní degradace, infračervená mikroskopie, mikrotvrdost 1. Úvod Oxidativní degradace polyethylenových komponent totálních kloubních náhrad (TJR) je jedním z hlavních faktorů, který zcela zásadním způsobem ovlivňuje jejich celkovou životnost a tudíž kvalitu života pacientů. Většina v současnosti implantovaných TJR používá jako náhradu kloubní chrupavky komponentu z ultravysokomolekulárního polyethylenu (UHMWPE), který se vyznačuje vynikající biokompatibilitou, dostatečnými mechanickými a dobrými frikčními vlastnostmi 1,2. Na poli kloubních náhrad je považován za tzv. zlatý standard 2. Navzdory uvedeným skutečnostem je právě odolnost UHMWPE vůči otěru a oxidativní degradaci limitujícím faktorem životnosti TJR. Otěr, který s oxidativní degradací přímo souvisí, se v konečném důsledku zpravidla projeví buď aseptickým uvolněním kloubní náhrady, vyvolaným imunitní reakcí lidského organismu na přítomnost cizorodých otěrových částic polymeru 3 nebo úplnou destrukcí polymerní komponenty. Problematikou degradace polyethylenových komponent kloubních náhrad se intenzivně zabývá mnoho týmů po celém světě s cílem odolnost vůči otěru a oxidativní degradaci zvýšit při současném zachování či zlepšení ostatních stěžejních vlastností materiálu. Na toto téma byla publikována řada studií 2,4. Ve většině případů je zvýšení odolnosti řešeno radiačním síťováním s následnou tepelnou stabilizací struktury polymeru 5 a v posledních letech také přísadou biokompatibilních antioxidantů 2. Rozdílné modifikační postupy však vedou k širokému spektru strukturně odlišných typů UHMWPE, což významně ovlivňuje užitné vlastnosti TJR 2. UHMWPE komponenty kloubních náhrad jsou komerční produkty. V řadě případů výrobce neuvádí dostatečné a objektivní informace pro posouzení kvality a vhodnosti pro konkrétní pacienty. Zkušenosti z klinické praxe poukázaly na potřebu objektivního srovnání kvality různých typů UHMWPE a míry vlivu jejich oxidativního poškození na životnost TJR. Pro posouzení kvality UHMWPE existuje řada zavedených postupů a norem 2,6 8. V případě analýzy kloubních náhrad se jeví jako výhodné použít mikroskopické metody a to z důvodu možnosti lokální charakterizace poškození rozměrově malých a tvarově nepravidelných UHMWPE komponent. Rozměr neumožňuje vyrobit dostatečné množství testovacích tělísek pro obvykle používané mechanické zkoušky. V této práci jsme pro charakterizaci UHMWPE použili tři mikroskopické techniky: metodu infračervené mikroskopie (IR) pro sledování oxidativního poškození a strukturních změn, méně obvyklé měření mikrotvrdosti (MH) pro lokální charakterizaci vlivu oxidativní degradace na mechanické vlastnosti a metodu diferenční kompenzační kalorimetrie (DSC) pro ověření korelací mezi nadmolekulární strukturou a mechanickými vlastnostmi. Cílem bylo otestovat citlivost zvolených mikroskopických metod z hlediska: (i) míry oxidativní degradace UHMWPE a jejího vlivu na selhání TJR, (ii) objektivního posouzení kvality a rozdílů mezi různými typy UHMWPE pro TJR a (iii) posouzení účinnosti námi navrženého způsobu simulace přirozeného stárnutí různých typů UHMWPE. 2. Teoretická část 2.1. Podstata oxidativní degradace UHMWPE 2.1.1. Radiační modifikace UHMWPE Důvodem radiační modifikace UHMWPE je zvýšení odolnosti vůči otěru díky propojení makromolekul do trojrozměrné sítě. Řetězce UHMWPE se vyznačují extrémně vysokou molární hmotností a jen malým množstvím strukturních iregularit 9. Interakcí UHMWPE s ionizujícím γ-zářením nebo urychlenými elektrony dochází k homolytickému štěpení C-C a C-H vazeb. Hlavními produkty reakcí jsou vodíkové radikály (H ) a alkylradikály (R ). H následně extrakcí atomu vodíku ze stejné či jiné makromolekuly tvoří další sekundární alkylradikál nebo vinylenovou dvojnou vazbu 2. Volný elektron v alkylradikálech může migrovat podél polymerního řetězce a pokud se dostane k vinylenové dvojné vazbě, tak vytvořit termodynamicky stabilní allyl radikál. Dalšími reakcemi volných radikálů dochází, mimo jiné, ke vzájemnému propojování polymerních řetězců (síťování), kterému je přisuzováno zvýšení odolnosti vůči otěru 10. 2.1.2. Mechanismus oxidace Při reakci radiačně indukovaných radikálů s kyslíkem dochází k nežádoucímu štěpení řetězců, které vede ke zhoršení řady důležitých mechanických vlastností včetně klíčové odolnosti vůči otěru. Směs alkyl a allylradikálů může v UHMWPE přetrvat i roky po ozáření 1. Radikály kromě autoreakcí ještě navíc reagují s kyslíkem 11, který do 395

většina výrobních postupů zahrnuje tepelnou úpravu ozářeného polymeru. Zpravidla se volí mezi tzv. annealingem (AN; ohřev těsně pod teplotu tání (T m )) a remeltingem (RM, ohřev těsně nad T m ) 6. V obou případech dochází k zániku většiny (AN) nebo všech (RM) zbytkových radikálů a ovlivnění mechanických vlastností 10,14. V poslední době 5,15 se vhodnou alternativou k postradiační tepelné modifikaci jeví stabilizace UHMWPE syntetickým -tokoferolem, který je podstatnou složkou přírodního antioxidantu vitaminu E. 2.2. Korelace mezi strukturními změnami a mechanickými vlastnostmi Schéma 1. Bollandův cyklus 12 polymeru velice ochotně difunduje z prostředí radiačního (při ozařování), postradiačního (uskladnění před implantací) a fyziologického (po implantaci do těla pacienta). Mechanismus oxidace uhlovodíků je známý pod názvem Bollandův cyklus (Schéma 1). Jde o cyklický sled reakcí, kdy v důsledku štěpení řetězců se formují oxidační produkty (estery, karboxylové kyseliny, aldehydy, aj.). Výchozí alkylradikály zanikají pouze bočními reakcemi a rychlost oxidativní degradace s časem klesá jen mírně 13. 2.1.3. Stabilizace UHMWPE Z důvodu eliminace zbytkových radikálů, které reakcí s kyslíkem spouští oxidativní degradaci UHMWPE, dnes Tabulka I Přehled UHMWPE komponent z reoperovaných kloubních náhrad Případ Typ TJR Výrobce Doba v těle pacienta P1 Medin sférická- Medin 6,4 let MS P2 Balgrist Sulzer 13,2 let P3 Aesculap Bbraun 7,2 let Ozařování a tepelné úpravy UHMWPE vedou ke změnám polymeru na molekulární úrovni (vzniku radikálů, síťování, oxidaci a štěpení řetězců) i nadmolekulární úrovni (změně hmotnostního podílu krystalické fáze w c, změně průměrné tloušťky krystalických lamel l c, cit. 6,8 ). Změny na molekulární i nadmolekulární úrovni se následně mohou mnoha různými způsoby projevit v mechanických vlastnostech 6,8,16. Pro UHMWPE komponenty TJR je typický následující řetězec změn: (i) dlouhodobá oxidativní degradace in vivo vede ke štěpení řetězců, (ii) v důsledku štěpení řetězců dochází k tzv. sekundární dokrystalizaci 6,7 spojené s nárůstem l c a tím i w c a konečně (iii) vyšší krystalinita a tloušťka lamel se projeví nárůstem tuhosti a křehkosti polymeru. Pro sledování lokálních změn mechanických vlastností UHMWPE je vhodné využít měření mikrotvrdosti (MH), která je provázána s nadmolekulární strukturou semikrystalických polymerů (vysoko nad teplotou skelného přechodu) prostřednictvím rovnice (1) 17 : MH wh /(1 b/ l) 0 c C c kde w c a l c reprezentují krystalinitu a tloušťku lamel, jak je 0 zmíněno výše, zatímco H C a b lze považovat za konstanty pro polymer a zvolené parametry měření 17. 3. Experimentální část 3.1. Testované vzorky V souladu s cíli práce, definovanými v úvodu, byla citlivost mikroskopických technik charakterizace UHMWPE (M w = 2 6 10 6 g mol 1 ) (cit. 2 ) testována na třech skupinách vzorků. První skupinu tvořily UHMWPE komponenty, které byly explantovány při revizních opera- (1) Tabulka II Přehled UHMWPE komponent nových (neimplantovaných) kloubních náhrad Vzorek Obch. označení Výrobce Základní popis modifikace UHMWPE PE-0 Chirulen 1020 MediTech Nemodifikovaný, panenský polymer PE-IMC PE-XL-IMC Beznoska s.r.o. Síťovaný PE 1. generace (75 kgy, RM) 8 PE-X3 Scorpio-flex-X3 Stryker Síťovaný PE 2. generace (90 kgy, AN) 8 396

Tabulka III Přehled vzorků UHMWPE, které byly podrobeny umělému stárnutí Vzorek Obch. označení Výrobce Základní popis modifikace UHMWPE PE-0 Chirulen 1020 MediTech Nemodifikovaný, panenský polymer PE+E Chirulen 1020E MediTech Panenský UHMWPE s 0,1 % vitaminu E cích TJR ve FN Motol (tab. I). Ve druhé skupině byly nové UHMWPE komponenty s rozdílnými způsoby modifikace polymeru (tab. II). Třetí skupinu představovaly vzorky před a po urychleném stárnutí (tab. III; stárnutí 105 dní v 0,1 M vodném roztoku peroxidu vodíku za teploty 70 C, cit. 18 ). 3.2. Příprava vzorků pro měření Vzorky (tab. I III) byly za intenzivního chlazení, aby se předešlo tepelně indukovaným změnám materiálu, rozděleny na 2 mm silné řezy. Řezy explantovanými komponentami (tab. I) byly vedeny tak, aby procházely jejich maximálně i minimálně poškozenou oblastí. (Úroveň poškození byla posuzována na základě pozorování povrchu komponent světelným mikroskopem 2.) Pomocí sáňkového mikrotomu (Meopta) byly pro IR měření z 2 mm řezů připraveny mikrořezy o tloušťce 200 m procházející napříč celým studovaným vzorkem. Před IR měřením byly navíc mikrořezy explantovaných UHMWPE komponent (tab. I) podrobeny extrakci ve vroucím hexanu kvůli odstranění lipidů z podpovrchové vrstvy 2. Zbylé řezné plochy byly s výhodou použity k hodnocení MH a poté ke kontrolnímu měření DSC. 3.3. Mikroskopická charakterizace vzorků IR spektra byla měřena v transmisním módu na IR mikroskopu Nicolet Continu m TM vybaveném MCT detektorem umožňujícím mj. měření lineárních profilů s krokem 100 m. Oxidační poškození (OI) bylo vyhodnocováno na základě podílu integrální plochy píku odpovídající oblasti karbonylů (A 1715 ) a píku referenčního pásu (A 1370 ) (tj. OI = A 1715 / A 1370 ).Trans-vinylenový index (VI = A 965 /A 1370 ) je úměrný koncentraci vazeb C=C ve struktuře PE, které vznikají jako vedlejší produkt ozařování, takže VI je mírou použité radiační dávky. Z integrálních ploch pásů příslušejících absorbanci v krystalické a amorfní oblasti UHMWPE (AC=A 1894 /A 1303 ) byl stanoven stupeň krystalinity polymeru CI=AC/(AC+0,3), cit. 19. Mikrotvrdost (MH) vzorků byla stanovena měřením podle Vickerse (ISO 6507; mikrotvrdoměr VMHT Auto Man; UHL) 20. DSC měření byla využita k získání hodnot krystalinity (x c w c, kde x c je podíl krystalické fáze polymeru stanovený DSC) a teplot tání (T m l c ), souvisejících s rovnicí (1), cit. 6,8. 4. Výsledky a diskuse 4.1. In vivo oxidace UHMWPE komponent Explantované UHMWPE komponenty TJR vykazovaly tři odlišné typy průběhů závislostí oxidativní degradace na hloubce pod zatěžovaným povrchem (h). Pro TJR typické poškození vykazoval vzorek P1 (obr. 1A). Oxidační profil se vyznačoval podpovrchovými maximy 2 ve všech částech implantátu. Vysoká oxidace se projevila také nárůstem krystalinity a mikrotvrdosti, takže analogická maxima vykazovaly také závislosti CI a MH. Směrem Obr. 1. Profil MH (1), CI (2) a OI (3) komponenty: (A) P1 s typickou podpovrchovou oxidací, (B) P3 s velmi malým oxidativním poškozením 397

ke středu vzorku pak u komponenty hodnoty OI, CI i MH klesaly. Analyzovaná in vivo oxidativní degradace byla v souladu s klinickým nálezem, kdy komponentu bylo nutné vyoperovat již po pouhých šesti letech. Vzorek P2 (obrázek neuvádíme) vykazoval zdánlivě odlišný průběh poškození. Zatímco v oblasti téměř nepoškozené otěrem byla detegována podpovrchová oxidace, jako v předchozím případě (obr. 1A), v oblasti velmi poškozené otěrem bylo změřeno pouze jedno maximum OI. Důvodem byla paradoxně neobvykle vysoká oxidativní degradace. Vnitřní strana otěrem poškozené komponenty byla v těle pacienta poničena v takovém rozsahu, že IR data bylo možné získat pouze z vnější strany komponenty. Maximální naměřená hodnota OI byla větší než tři, což představuje kritickou míru oxidativního poškození UHMWPE v TJR (cit. 2 ), která zcela odpovídala pozorovanému kritickému poškození explantované UHMWPE komponenty. Oxidativní poškození komponenty P3 bylo velmi malé (OI menší než 0,3), takže ve větším rozsahu nedošlo ani ke štěpení polymerních řetězců, dodatečné krystalizaci a výrazným lokálním změnám mikrotvrdosti (obr. 1B). Výsledky naznačovaly, že k selhání náhrady nedošlo z důvodu oxidace polymeru. Oprávněnost předpokladu byla jednoznačně potvrzena při konfrontaci naměřených dat s klinickým nálezem, kdy důvodem reoperace byla ztráta funkčnosti TJR v důsledku defektu kosti pacienta, nikoliv destruktivní degradace materiálu komponenty. 4.2. Rozlišení různých typů UHMWPE Cílem experimentů bylo zjistit, jestli mikroskopické metody charakterizace UHMWPE postihnou rozdíly mezi různě modifikovanými typy polymeru pro TJR, které ve své historii nepodlehly dlouhodobé oxidativní degradaci. Porovnávané vzorky (tab. II) zahrnovaly tři typické UHMWPE komponenty pro moderní TJR (PE-0: nemodifikovaný polymer; PE-IMC: síťovaný UHMWPE 1. generace; PE-X3 síťovaný UHMWPE 2. generace) 4,8. Výsledky měření jsou shrnuty v tab. IV. Nízký OI všech vzorků svědčil o korektní modifikaci, při které nedošlo k oxidativnímu poškození. Nenulový VI obou síťovaných polymerů korespondoval s použitou radiační dávkou (srovnej tab. II a IV). Nejvyšší hodnoty CI, x c a T m pro vzorek PE-X3 potvrdily skutečnost, že tepelná úprava pomocí AN (kapitola 2.1.3.) zpravidla vede k růstu průměrné tloušťky krystalických lamel i celkové krystalinity, zatímco tepelná úprava pomocí RM Tabulka IV Výsledky infračervené mikroskopie (průměrné oxidační (OI) a vinylenové (VI) indexy, index krystalinity (CI), DSC (krystalinita (x c ) a bod tání (T m )) a mikrotvrdosti (MH) pro různé typy UHMWPE uvedené v tabulce II Vzorek OI VI CI [%] T m [ C] x c [%] MH [MPa] PE-0 0,06 ± 0,02 0.000 ± 0.000 62 137,9 51,2 45,2 ± 0,9 PE-IMC 0,06 ± 0,02 0.020 ± 0.002 59 135,7 47,5 39,8 ± 0,6 PE-X3 0,32 ± 0,04 0.029 ± 0.003 66 140,8 55,6 48,1 ± 0,7 Obr. 2. Profily MH vzorků PE-0 (1) a PE+E (2) a OI vzorků PE-0 (3) a PE+E (4) (A); Krystalinita vzorků PE-0 a PE+E (B); Vzorky byly 105 dní urychleně stárnuty v 0,1 M vodném roztoku peroxidu vodíku za teploty 70 C (cit. 18 ) 398

mívá opačný účinek 8. Mikrotvrdost (v souhlasu s rovnicí (1)) velmi přesně odpovídala pozorovaným změnám krystalinity (w c x c CI) a tloušťky lamel (l c T m ). Mikroskopické techniky prokázaly rozdíly mezi jednotlivými typy UHMWPE (radiační dávka, tepelná úprava) a potvrdily, že rozdíl mezi 1. a 2. generací používaných UHMWPE je nepatrný 8. 4.3. Charakterizace stárnutí UHMWPE in vitro Cílem těchto experimentů bylo vyzkoušet, jak jsou zvolené mikroskopické techniky schopny postihnout tzv. urychlené stárnutí UHMWPE in vitro. Současně jsme testovali nově zavedenou in vitro metodu (viz kap. 3.1.), která nejméně o 60 % zkracuje nezbytnou dobu stárnutí 18. Modelové vzorky (PE-0 a PE+E; tab. III) vykazovaly charakteristické profily OI a MH (obr. 2A), ale na rozdíl od in vivo stárnutých komponent (kap. 4.1.) docházelo k nejvyšší oxidativní degradaci na povrchu a nikoli pod povrchem, což bylo pozorováno i v jiných studiích 21. U nemodifikovaného polymeru PE-0 došlo k výrazné povrchové oxidativní degradaci a následnému nárůstu mikrotvrdosti (obr. 2A, křivky 1 a 3), zatímco u stabilizovaného polymeru PE+E byl naměřený OI nepatrný a mikrotvrdost v zásadě konstantní resp. nižší (obr. 2A, křivky 2, resp. 4). Podobně jako u explantovaných komponent nárůst mikrotvrdosti souvisel se štěpením řetězců a sekundární dokrystalizací (viz kap. 2.2.), přičemž nárůst krystalinity zde byl potvrzen paralelními DSC experimenty (obr. 2B). Podrobnější analýza IR dat 18 prokázala, že spektra neobsahují tzv. nepřirozený pás odpovídající aldehydům (přítomný při nedokonalé simulaci přirozeného stárnutí 2 ), ale pouze tzv. přirozený pás příslušející karbonylové skupině, jenž je typický pro stárnutí in vivo. 5. Závěr Na třech odlišných skupinách vzorků UHMWPE pro kloubní náhrady byla testována citlivost mikroskopických metod charakterizace lokálních změn struktury a vlastností polymeru. Metody IR a MH (infračervená mikroskopie a měření mikrotvrdosti doplněné metodou DSC) prokázaly, že změny UHMWPE úzce souvisí s jeho oxidativní degradací. Obě metody poskytly výsledky, které se dobře shodovaly s ortopedickými nálezy příčin selhání UHMWPE komponent kloubních náhrad (kapitola 4.1.), odhalily rozdíly mezi různými typy komerčních kloubních náhrad (kapitola 4.2.) a postihly různou stabilitu modelových vzorků při umělém stárnutí (kapitola 4.3.). Seznam symbolů TJR UHMWPE IR MH totální kloubní náhrada ultravysokomolekulární polyethylen infračervená mikroskopie mikrotvrdost DSC AN RM w c x c l c 0 H C M w OI VI CI diferenční kompenzační kalorimetrie ohřev těsně pod teplotu tání (anglicky annealing) ohřev těsně nad teplotu tání (anglicky remelting) hmotnostní podíl krystalické fáze polymeru krystalický podíl polymeru stanovený metodou DSC tloušťka lamel mikrotvrdost nekonečně tlustého krystalu molární hmotnost oxidační index (určený z infračervené mikroskopie) trans-vinylenový index (určený z infračervené mikroskopie) index krystalinity polymeru Práce vznikla za podpory grantů TAČR TA01011406, IGA MZ ČR NT12229-4/2011 a GAČR P108/14-17921S. LITERATURA 1. Jahan M., Wang C.: J. Biomed. Mater. Res. 25, 1005 (1991). 2. Kurtz S. M. (ed.): UHMWPE Biomaterials Handbook. Elsevier, Amsterdam 2009. 3. Harris W. H.: Acta Orthop. Scand. 65(1), 113 (1994). 4. Šlouf M., Vacková T., Nevoralová M., Mikešová J., Dybal J., Pilař J., Zhigunov A., Kotek J., Kredatusová J.: Chem. Listy 107, 783 (2013). 5. Bracco P., Brunella V., Zanetti M., Luda M. P., Costa L.: Polym. Degrad. Stab. 92, 2155 (2007). 6. Šlouf M., Synková H., Baldrian J., Marek A., Kovářová J., Schmidt P., Dorschner H., Stephan M., Gohs U.: J. Biomed. Mater. Res., Part B 85B, 240 (2007). 7. Nevoralová M., Baldrian J., Pospíšil J., Chodák I., Horák Z.: J. Biomed. Mater. Res., Part B 74, 800 (2005). 8. Šlouf M., Kotek J., Baldrian J., Kovářová J., Fencl J., Bouda T., Janigová I: J. Biomed. Mater. Res., Part B 101B, 414 (2012). 9. Brunella V., Bracco P., Carpentieri I., Paganini M. C., Zanetti M., Costa L.: Polym. Degrad. Stab. 92, 1498 (2007). 10. Lewis G.: Biomaterials 22, 371 (2001). 11. Costa L., Prever E. M.: UHMWPE for Arthoplasty. Minerva Medica, Torino 2000. 12. Bolland J. L.: Q. Rev., Chem. Soc. 3, 1 (1949). 13. Costa L., Carpentieri I., Bracco P.: Polym. Degrad. Stab. 93, 1695 (2008). 14. Bracco P., Oral E.: Clin. Orthop. Relat. Res. 469, 2286 (2011). 15. Kurtz S. M., Hozack W., Marcolongo M., Turner J., Rimmac C., Edidin A.: J. Arthroplasty 18, 68 (2003). 16. Nevoralová M., Mikešová J., Baldrian J., Horák Z.: Polym. Adv. Technol. 14, 802 (2003). 17. Calleja F. J., Fakirov S.: Microhardness of Polymers. 399

Cambridge University Press, Cambridge 2000. 18. Kruliš Z.: Výzkumná zpráva č. T-772, ÚMCH AV ČR, v.v.i., Praha 2012. 19. Medel F. J., Rimnac C. M., Kurtz S. M.: J. Biomed. Mater. Res., Part A 89A, 531 (2009). 20. Operating Instructions Micro Hardness Tester UHL VMHT AUTO, Walter Uhl technische Mikroskopie GmbH & Co.KG, Asslar 2007. 21. Kurtz S. M.: J. Biomed. Mater. Res., Part B 90B, 368 (2009). M. Nevoralová a, M. Šlouf a, J. Dybal a, J. Kredatusová a, P. Fulín b, and D. Pokorný b ( a Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, b Orthopedic Clinic, First Faculty of Medicine, Charles University, Faculty Hospital Motol, Prague): Microscopic Analysis of Oxidative Degradation of Polyethylene Components of Total Joint Replacements Ultrahigh-molecular-weight polyethylene (UHMWPE) has been used as a liner in total joint replacements (TJR) since the 1970 s. One of the main lifetime-limiting factors of contemporary TJRs is the long-term oxidative stability of UHMWPE, as the oxidative degradation results in chain scissions and deterioration of mechanical properties, including the most important one wear resistance. In order to maximize the oxidation and wear resistance of UHMWPE components, the manufacturers apply various procedures, such as crosslinking by ionizing radiation, thermal treatment and stabilization. Almost each manufacturer uses its own UHMWPE modification procedure and there is a number of different types of UHMWPEs on the market. Clinical practice stressed the need for an objective comparison of different UHMWPE types and the influence of oxidative damage on the lifetime of TJR. Due to the small size and irregular shape of UHMWPE components and inhomogeneous nature of oxidative degradation in vivo, their properties should be studied by microscopic methods. We tested the sensitivity and accuracy of two microscopic methods infrared microscopy (IR) and microhardness (MH) measurements supplemented by DSC in relation to UHMWPE characteristics. The methods help to analyze reasons for TJR failures, to detect differences in molecular and supramolecular structures and properties of various UHMWPE types, and to characterize aging of various UHMWPE components in vitro. 400