VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken
|
|
- Eduard Kříž
- před 9 lety
- Počet zobrazení:
Transkript
1 VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém složení vláken a jejich nadmolekulární struktuře. epelné vlastnosti polymerů jsou určeny ve značné míře tím, že tyto látky jsou tvořeny polymerními molekulami. Poměr hlavních vazebných sil (působících podél molekulárních řetězců) k vedlejším vazebným silám (které působí mezi atomy sousedních molekul), tvar jednotlivých molekul a jejich vzájemné uspořádání (amorfní nebo částečně krystalické), pohyblivost molekul a molekulárních sementů ovlivňují rozhodujícím způsobem tepelnou roztažnost, měrné teplo a tepelnou vodivost těchto látek. Při zahřívání polymeru dochází i k jeho deradaci a to buď pouze tepelné, tedy k procesu, při kterém s rostoucí pohyblivostí makromolekulárních řetězců dochází k jejich rozpadu a nebo i k deradaci vlivem prostředí (kyslík, vlhkost, přítomnost jiných látek, katalysátorů apod.) Základní termodynamické pojmy Při vedení tepla rozlišujeme dva základní případy: (a) V prvním případě je tepelný tok ustálen tak, že rozložení teplot v tělese se nemění s časem jde o stacionární (ustálené) vedení tepla. (b) Ve druhém případě není teplený tok ještě ustálen a rozložení teplot se účinkem akumulace mění s časem, jde o nestacionární (neustálené) vedení tepla. epelné vodivost λ má rozměr [W/m K], resp. [J/m s K]. V odborné literatuře a v praxi se dříve používaly vedlejší jednotky tepelné enerie, kilokalorie. Rozměr tepelné vodivosti byl pak [kcal/m h de], případně [cal/cm s de]. Pro přepočet platí kcal = 486,8 J, kcal/m h de =,630 W/m K, cal/cm s de = 48,68 W/m K Při sdílení tepla konvekcí mezi povrchem tuhého tělesa (nebo tělesa, které lze za tuhé považovat) a tekutinou je mechanismu výměny tepla na fázovém rozhraní obecně velmi složitý. Zavádí se proto součinitel přestupu tepla α, který děj popisuje v jednoduché formě. V ustáleném stavu platí známý vztah Q = α. A./ t /. τ kde / t/ je rozdíl teploty stěny a specifikované teploty tekutiny. Každou látku lze charakterizovat obsahem volné entalpie (G), která je daná vzorcem G = H S kde H je entalpie, je absolutní teplota a S je entropie. Každý systém má za dané teploty snahu dosáhnout takový stav, který odpovídá nižšímu obsahu volné entalpie. Příkladem může být přechod látky z jedné krystalické formy do druhé, která má za dané teploty menší obsah volné entalpie a je tedy stálejší. K vytvoření stabilnější krystalické struktury nebo jiného stavu s nižší hodnotou volné entalpie může při ohřevu vzorku dojít i postupně přes jednotlivé mezistupně. akovou přeměnou může být tání, var, sublimace, krystalická přeměna, chemická reakce apod. Přeměna je pak charakterizována teplotou a změnou entalpie. Změna entalpie může být provázena i změnou hmotnosti sledované látky, jako tomu je např. při chemickém rozkladu, dehydrataci, sublimaci nebo oxidaci. Při ohřevu nebo ochlazování látky dochází k reverzibilním nebo ireverzibilním změnám rozměrů, které závisí na počátečních rozměrech a teplotě. prof.in. Jiří Militký,CSc.,doc. RNDr. Jiří Vaníček, CSc, katedra textilních materiálů, F, Ú Liberec
2 3.3. epelná kapacita, měrné teplo epelná kapacita vláken se nejčastěji vyjadřuje měrným teplem za stálého tlaku C P v [Jk - K - ]. Měrné teplo je definováno jako teplo Q potřebné k ohřátí jednoho kiloramu látky o jeden stupeň Kelvina. Je funkcí molekulární a nadmolekulární struktury vláken, teploty i rychlosti ohřevu. Měrné teplo při konstantním tlaku je dáno vztahem C p = ( Q / p ) [ Jk - K - ] Vlákna mají téměř konstantní C p =,5 [J - K - ]. Hodnoty tepelné kapacity jsou následující vlákno C P [Jk - K - ] [20 o C] vlákno C P [Jk - K - ] [20 o C] acetát,46,88 bavlna,2 polyamid 6,40,50 vlna,36 polyester,34 hedvábí,36 polypropylen,46 azbest,05 Vliv vlhkosti vlny na měrné teplot je patrný z obrázku. S rostoucí vlhkostí roste měrné teplo, což se dalo očekávat. Pro vyjádření tepelných vlastností polymerů má větší význam tepelná vodivost 3.4. epelná vodivost epelná vodivost charakterizuje rychlost přestupu tepla v materiálu. Má vliv na tepelně izolační procesy, ohřev i chlazení. epelnou vodivost vyjadřuje součinitel tepelné vodivosti λ [Wm - K - ], což je konstanta úměrnosti ve vztahu pro ustálený tepelný tok přes plochu velikosti A 0. Rychlost toku tepla je úměrná také rozdílu teplot na vstupu a výstupu 2 z desky a tloušťce desky X (viz. obr.2. 45) (-2)/X 2 Ao X Obr 2.45 Ustálený tepelný tok přes desku plochy Ao a tloušťky X. 2 prof.in. Jiří Militký,CSc.,doc. RNDr. Jiří Vaníček, CSc, katedra textilních materiálů, F, Ú Liberec
3 Platí, že Q t ( 2 ) = λ * Ao * X kde Q je množství tepla prošlého deskou za čas t. Pro vybrané polymery je tepelná vodivost v tab Velmi nízkou tepelnou vodivost 0,003 [Wm - K - ] má vzduch. epelná vodivost souvisí se specifickým měrným teplem při stálém objemu C v, měrnou hmotností polymeru a rychlostí šíření zvuku v polymeru v z λ K * ρ * C V * v Z kde K je konstanta typická pro každý polymer. Vychází se z představy fotonového modelu. epelná enerie se šíří v kvantech rychlostí zvuku po jednotlivých vrstvách polymeru. abulka 2.25 epelná vodivost a související parametry pro amorfní polymery polymer λ [Js - m - K - ] C v 0 3 [Jk - K - ] v z [ms- ] PP 0,72 2,4 750 PVC 0,68 0, PES 0,28,3 240 elastan 0,47,70 70 U semikrystalických polymerů souvisí tepelná vodivost s měrnými hmotnostmi amorfní ρ a a krystalické ρ K fáze. λ C ρ K = λ a + 5,8* ρ a Při běžné teplotě je tepelná vodivost krystalické fáze zhruba 6x vyšší než tepelná vodivost amorfní fáze. 3.5.Nukleární manetické rezonance epelné vlastnosti eplota tání a zeskelnění Některé vlastnosti vláken se při určitých teplotách náhle mění. eploty náhlých změn vlastností (tepelné přechody) jsou pro jednotlivé druhy vláken specifické a spojené se změnou sementání pohyblivosti makromolekulárních řetězců. Ve většině případů jsou pozorovány fázové přechody I. a II. druhu. Fázový přechod I. druhu je charakterizován změnou stavu (plyn, kapalina, pevná látka). Např. při tání probíhá změna z pravidelného uspořádání krystalů na neuspořádanou formu taveniny. ento přechod je charakterizovaný teplotou fázového přechodu M teplotou tání. Čistě krystalické látky mají přesně definovaný bod tání. U amorfních polymerů není tato fázová změna jasně ohraničena. U krystalických látek se v bodě přechodu mění fyzikální vlastnosti skokem a dochází k němu při přesně definované teplotě. U amorfních látek není tento přechod rovnovážný a 3 prof.in. Jiří Militký,CSc.,doc. RNDr. Jiří Vaníček, CSc, katedra textilních materiálů, F, Ú Liberec
4 není to přechod bodový. Proto u polymerních látek závisí průběh fázových změn na stupni krystalinity. Se zvyšující se teplotou dochází u amorfních látek k přechodu ze skelného stavu do stavu kaučukovitého. ato přeměna se uskutečňuje v určitém teplotním intervalu, který je nazýván skelný přechod. Střední teplota tohoto intervalu je nazývána teplotou zeskelnění. Na druhé straně zde není možné indikovat jednoznačně teplotu tání M. U semikrystalicých polymerů, které mají jak krystalickou tak i amorfní část je možné indikovat jak tak i M. ypická závislost měrného objemu (objemu na jednotku hmotnosti) na teplotě pro amorfní a semikrystalické polymery je na obr V M A S M Obr.2.43 eplotní závislost měrného objemu (A) amorfní polymer, (S) semikrystalický polymer. Mnoho fyzikálních charakteristik (viskozita, tepelná kapacita, modul pružnosti, koeficient tepelné expanse atd.) se mění při teplotě. V řadě případů je hlavní příčinou změna volného objemu v polymerech. Pro amorfní polymery je celkový objem V M složen z objemu řetězců V O a volného objemu V f. Až do teploty mohou částice makromolekul vykonávat pouze vibrační pohyb kolem určitých rovnovážných poloh. Proto roste V O i V f stejnou rychlostí. Při enerie dodaná částicím právě postačuje k překonání eneretické bariéry pro vnitřní rotaci molekul kolem jednoduchých kovalentních vazeb rotace se označuje jako sementální pohyb. Nad dojde vlivem sementální pohyblivosti k výrazně rychlejšímu růstu V f. Schematicky je to znázorněno na obr V Vf Vo Obr 2.44 Závislost volného a obsazeného objemu amorfních polymerů na teplotě. Důsledkem je vznik velkého množství volných míst v polymeru, které ovlivňují vlastnosti. eplota zeskelnění závisí obecně na molekulové hmotnosti polymeru Mn podle vztahu = z K M n 4 prof.in. Jiří Militký,CSc.,doc. RNDr. Jiří Vaníček, CSc, katedra textilních materiálů, F, Ú Liberec
5 kde z je rovnovážná teplota zeskelnění a K je konstanta. U úplně krystalických látek skelný přechod neexistuje. U semikrystalických polymerů souvisí teplota zeskelnění na stupni krystalinity a tedy na teplotě tání. Pro polymery se symetrickými řetězci je 0,5 * M a pro polymery s asymetrickými řetězci je 0,66* M. eplota zeskelnění kopolymerů se dá určit ze vztahu W = + W 2 Zde je teplota zeskelnění prvního homopolymeru s hmotnostním podílem W a 2 je teplota zeskelnění druhého homopolymeru s hmotnostním podílem W 2 = -W. eplota zeskelnění má projevy charakteristické pro fázový přechod II. druhu, ale fázovým přechodem II. druhu není. Závisí na teplotě ohřevu či chlazení a má tedy kinetický charakter. Při vyšších rychlostech ohřevu či chlazení se dosáhne větší hodnoty. Vysoké zajišťují také tuhé a neohebné řetězce a silné mezimolekulární vazby. Orientační hodnoty teplot zeskelnění a tání jsou v tab abulka 2.23 eploty zeskelnění a tání vlákno [ o C] M [ o C] polyetylén polypropylén PA PA PES 67 amorfní 256 PVC prof.in. Jiří Militký,CSc.,doc. RNDr. Jiří Vaníček, CSc, katedra textilních materiálů, F, Ú Liberec
Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích N_ Stavebně fyzikální aspekty budov Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: prof. Ing. Ingrid
Struktura polymerů. Příprava (výroba).struktura vlastnosti. Materiálové inženýrství (Nauka o materiálu) Základní představy: přírodní vs.
Struktura polymerů Základní představy: přírodní vs. syntetické V.Švorčík, vaclav.svorcik@vscht.cz celulóza přírodní kaučuk Příprava (výroba).struktura vlastnosti Materiálové inženýrství (Nauka o materiálu)
Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština
Identifikátor materiálu: ICT 2 41 Registrační číslo projektu CZ.1.07/1.5.00/34.0796 Název projektu Vzděláváme pro život Název příjemce podpory SOU plynárenské Pardubice název materiálu (DUM) Mechanika
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM tepelně-fyzikální parametry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM tepelně-fyzikální parametry Vedení tepla v látkách: vedením (kondukcí) předání kinetické energie neuspořádaných tepelných pohybů. Přenos z míst vyšší
POZNÁMKA: V USA se používá ještě Fahrenheitova teplotní stupnice. Převodní vztahy jsou vzhledem k volbě základních bodů složitější: 9 5
TEPLO, TEPLOTA Tepelný stav látek je charakterizován veličinou termodynamická teplota T Jednotkou je kelvin T K Mezi Celsiovou a Kelvinovou teplotní stupnicí existuje převodní vztah T 73,5C t POZNÁMKA:
TERMOMECHANIKA 15. Základy přenosu tepla
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný
2 Stanovení teploty tání semikrystalických polymerů v práškové formě
2 Stanovení teploty tání semikrystalických polymerů v práškové formě Teorie Schopnost molekul uspořádat se těsně do pravidelné krystalické mřížky je dána strukturními a termodynamickými předpoklady. Zahříváme-li
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN tepelně-fyzikální parametry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123MAIN tepelně-fyzikální parametry Vedení tepla v látkách: vedením (kondukcí) předání kinetické energie neuspořádaných tepelných pohybů. Přenos z míst vyšší
Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn
Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10
Měření prostupu tepla
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ
ZÁKLADY STAVEBNÍ FYZIKY
ZÁKLADY STAVEBNÍ FYZIKY Doc.Ing.Václav Kupilík, CSc. První termodynamická věta představuje zákon o zachování energie. Podle tohoto zákona nemůže energie samovolně vznikat nebo zanikat, ale může se pouze
BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Průběh zkoušky, literatura Tepelně
10. Energie a její transformace
10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na
UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie
PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy
Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013
Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná
Fyzika - Sexta, 2. ročník
- Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence
Molekulová fyzika a termika:
Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta
Maturitní témata fyzika
Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený
Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti
Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel
Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007
Tepelná technika Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelné konstanty technických látek Základní vztahy Pro proces sdílení tepla platí základní
TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie
TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení
Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny
Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Hustota toku Zatím jsme studovali pouze soustavy, které byly v rovnovážném stavu není-li soustava v silovém poli, je hustota částic stejná
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 Nestacionární vedení tepla v rovinné stěně Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento
Teorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha
Teorie transportu plynů a par polymerními membránami Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha Úvod Teorie transportu Difuze v polymerních membránách Propustnost polymerních membrán
Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
PROCESY V TECHNICE BUDOV 11
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 11 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
TERMOFYZIKÁLNÍ VLASTNOSTI. Radek Vašíček
TERMOFYZIKÁLNÍ VLASTNOSTI Radek Vašíček Základní termofyzikální vlastnosti Tepelná konduktivita l (součinitel tepelné vodivosti) vyjadřuje schopnost dané látky vést teplo jde o množství tepla, které v
1. Látkové soustavy, složení soustav
, složení soustav 1 , složení soustav 1. Základní pojmy 1.1 Hmota 1.2 Látky 1.3 Pole 1.4 Soustava 1.5 Fáze a fázové přeměny 1.6 Stavové veličiny 1.7 Složka 2. Hmotnost a látkové množství 3. Složení látkových
Základy vakuové techniky
Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní
Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů
Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory
Nauka o materiálu. Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny
Nauka o materiálu Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny Difuze v tuhých látkách Difuzí nazýváme přesun atomů nebo iontů na vzdálenost větší než je meziatomová vzdálenost. Hnací
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.3 k prezentaci Křivky chladnutí a ohřevu kovů
Číslo projektu CZ.1.07/1.5.00/34.0514 Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast Strojírenská technologie, vy_32_inovace_ma_22_06 Autor
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
h nadmořská výška [m]
Katedra prostředí staveb a TZB KLIMATIZACE, VĚTRÁNÍ Cvičení pro navazující magisterské studium studijního oboru Prostředí staveb Cvičení č. 1 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly za
VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006
Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova
Výpočtové nadstavby pro CAD
Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se
U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí
VI. Nestacionární vedení tepla
VI. Nestacionární vedení tepla Nestacionární vedení tepla stagnantním prostředím, tj. tělesy a kapalinou, ve které se neprojevuje přirozená konvekce. F. K. rovnice " ρ c p = q + Q! = λ + Q! ( g) 2 ( g)
Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky
Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,
TERMOMECHANIKA 1. Základní pojmy
1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,
Vnitřní energie. Teplo. Tepelná výměna.
Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie
TESTY Závěrečný test 2. ročník Skupina A
1. Teplota tělesa se zvýšila o o C. Analogicky tomu lze říci, že se a) snížila o K. b) zvýšila o 93,15 K c) snížila o 53,15 K d) zvýšila o K. Částice v látce se pohybují a) neustáleným a uspořádaným pohybem
PROCESY V TECHNICE BUDOV 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 12 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
2 Tokové chování polymerních tavenin reologické modely
2 Tokové chování polymerních tavenin reologické modely 2.1 Reologie jako vědní obor Polymerní materiály jsou obvykle zpracovávány v roztaveném stavu, proto se budeme v prvé řadě zabývat jejich tokovým
T0 Teplo a jeho měření
Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná
Kontrolní otázky k 1. přednášce z TM
Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele
Technologie a procesy sušení dřeva
strana 1 Technologie a procesy sušení dřeva 3. Teplotní pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
TECHNOLOGIE VSTŘIKOVÁNÍ
TECHNOLOGIE VSTŘIKOVÁNÍ PRŮVODNÍ JEVY působení smykových sil v tavenině ochlazování hmoty a zvyšování viskozity taveniny pokles tlaku od ústí vtoku k čelu taveniny nehomogenní teplotní a napěťové pole
102FYZB-Termomechanika
České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH
Netkané textilie. Materiály 2
Materiály 2 1 Pojiva pro výrobu netkaných textilií Pojivo je jednou ze dvou základních složek pojených textilií. Forma pojiva a jeho vlastnosti předurčují technologii a podmínky procesu pojení způsob rozmístění
9. Struktura a vlastnosti plynů
9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)
Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova
1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota
3.3 Fyzikální vlastnosti
3 STRUKTURA A VLASTNOSTI MATERIÁLU A JEJICH ZKOUŠENÍ 33 Fyzikální vlastnosti Fyzikální vlastnosti jsou odezvou materiálu na vnější působení fyzikálního charakteru Toto působení může mít charakter mechanický,
Látkové množství n poznámky 6.A GVN
Látkové množství n poznámky 6.A GVN 10. září 2007 charakterizuje látky z hlediska počtu částic (molekul, atomů, iontů), které tato látka obsahuje je-li v tělese z homogenní látky N částic, pak látkové
Metody termické analýzy. 3. Termické metody všeobecně. Uspořádání experimentů.
3. ermické metody všeobecně. Uspořádání experimentů. 3.1. vhodné pro polymery a vlákna ermická analýza je širší pojem pro metody, při nichž se měří fyzikální a chemické vlastnosti látky nebo směsi látek
5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.
OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické
Měření teplotní roztažnosti
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty
Autokláv reaktor pro promíchávané vícefázové reakce
Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.
Mechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování
Pevné lékové formy. Vlastnosti pevných látek. Charakterizace pevných látek ke zlepšení vlastností je vhodné využít materiálové inženýrství
Pevné lékové formy Vlastnosti pevných látek stabilita Vlastnosti léčiva rozpustnost krystalinita ke zlepšení vlastností je vhodné využít materiálové inženýrství Charakterizace pevných látek difraktometrie
Test vlastnosti látek a periodická tabulka
DUM Základy přírodních věd DUM III/2-T3-2-08 Téma: Test vlastnosti látek a periodická tabulka Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Test vlastnosti
LOGO. Struktura a vlastnosti pevných látek
Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním
4 Stanovení krystalického podílu semikrystalických polymerů z hustotních měření
4 Stanovení krystalického podílu semikrystalických polymerů z hustotních měření Teorie Polymery, které mohou vytvářet krystalickou strukturu, obsahují vždy určitý podíl polymeru v amorfním stavu. Semikrystalický
Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok
Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok 2014-15 Stavba hmoty Elementární částice; Kvantové jevy, vlnové vlastnosti částic; Ionizace, excitace; Struktura el. obalu atomu; Spektrum
Profilová část maturitní zkoušky 2017/2018
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: FYZIKA
VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA
HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad
Okruhy k maturitní zkoušce z fyziky
Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální
Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory
Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno JAMES WATT 19.1.1736-19.8.1819 Termodynamika principy, které vládnou přírodě Obsah přednášky Vysvětlení základních
Molekulová fyzika a termika. Přehled základních pojmů
Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou
Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky
U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Seminář z PHH 3. ročník Fakulta strojní ČVU v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Seminář z PHH - eplo U218 Ústav procesní
Identifikátor materiálu: ICT 2 54
Identifikátor ateriálu: ICT 2 54 Registrační číslo projektu Název projektu Název příjece podpory název ateriálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního ateriálu Druh interaktivity
TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;
TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla
5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu
Fázové přechody 5.6.5 Fáze Fázové rozhraní 5.6.6 Gibbsovo pravidlo fází 5.6.7 Fázový přechod Fázový přechod prvního druhu Fázový přechod druhého druhu 5.6.7.1 Clausiova-Clapeyronova rovnice 5.6.8 Skupenství
Chemická kinetika. Reakce 1. řádu rychlost přímo úměrná koncentraci složky
Chemická kinetika Chemická kinetika Reakce 0. řádu reakční rychlost nezávisí na čase a probíhá konstantní rychlostí v = k (rychlost se rovná rychlostní konstantě) velmi pomalé reakce (prakticky se nemění
c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky
Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda
VÝUKOVÝ MATERIÁL Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0220 Anotace
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
1 Zatížení konstrukcí teplotou
1 ZATÍŽENÍ KONSTRUKCÍ TEPLOTOU 1 1 Zatížení konstrukcí teplotou Časově proměnné nepřímé zatížení Klimatické vlivy, zatížení stavebních konstrukcí požárem Účinky zatížení plynou z rozšířeného Hookeova zákona
1. Fázové rozhraní 1-1
1. Fázové rozhraní 1.1 Charakteristika fázového rozhraní Velmi často se setkáváme s řadou fyzikálních či chemických procesů, které probíhají na rozhraní mezi sousedícími objemovými fázemi (fáze - určitá
12. Struktura a vlastnosti pevných látek
12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace
Skupenské stavy látek. Mezimolekulární síly
Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.
Podstata plastů [1] Polymery
PLASTY Podstata plastů [1] Materiály, jejichž podstatnou část tvoří organické makromolekulami látky (polymery). Kromě látek polymerní povahy obsahují plasty ještě přísady (aditiva) jejichž účelem je specifická
VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika
VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má
5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN
5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN Metody zkoumání fázových přeměn v kovech a slitinách jsou založeny na využití změn převážně fyzikálních vlastností, které fázovou přeměnu a s ní spojenou změnu struktury
Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Teplotní roztažnost Teorie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost souvisí se změnou rozměru zahřívaného těles Při zahřívání se tělesa zvětšují, při ochlazování
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných
ČÍSLO PROJEKTU: OPVK 1.4
NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_185_Skupenství AUTOR: Ing. Gavlas Miroslav ROČNÍK, DATUM: 8., 16.11.2011 VZDĚL. OBOR, TÉMA: Fyzika, ČÍSLO PROJEKTU:
Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.
Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),
Zákony ideálního plynu
5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8
Šíření tepla. Obecnéprincipy
Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření
Nauka o materiálu. Přednáška č.13 Polymery
Nauka o materiálu Přednáška č.13 Polymery Úvod Technické materiály, které jsou určeny k dalšímu technologickému zpracování zahrnují širokou škálu možného chemického složení, různou vnitřní stavbu a různé
charakterizaci polymerů,, kopolymerů
Vysoká škola chemicko technologická v Praze Fakulta chemické technologie Ústav polymerů Využit ití HiRes-TGA a MDSC při p charakterizaci polymerů,, kopolymerů a polymerních směsí Jiří Brožek, Jana Kredatusová,
6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)
TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC
Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha
Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví páry Pro správné pochopení funkce parních systémů musíme znát základní pojmy spojené s párou. Entalpie Celková energie, příslušná danému