Hmotnostní spektrometrie



Podobné dokumenty
Mass Spectrometry (MS) Lenka Veverková 2012

HMOTNOSTNÍ SPEKTROMETRIE

ANORGANICKÁ HMOTNOSTNÍ SPEKTROMETRIE

HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním

Hmotnostní spektrometrie v organické analýze

Hmotnostní spektrometrie ve spojení se separačními metodami

Metody spektrální. Metody hmotnostní spektrometrie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Hmotnostní spektrometrie - Mass Spectrometry (MS)

Hmotnostní spektrometrie. Historie MS. Schéma MS

KOMBINACE CHROMATOGRAFICKÝCH A SPEKTRÁLNÍCH METOD

Hmotnostní analyzátory I

Atomová absorpční spektroskopie (AAS) spektroskopie (AAS) spektroskopie (AAS) r Wolaston pozoroval absorpční čáry ve slunečním spektru

Hmotnostní spektrometrie

Hmotnostně spektrometrické zobrazování malých molekul

HMOTNOSTNÍ SPEKTROMETRIE

HMOTNOSTNÍ SPEKTROMETRIE

Spojení hmotové spektrometrie se separačními metodami

Hmotnostní spektrometrie

Hmotnostní analyzátory Hmotnostní analyzátory

OPTICKÁ EMISNÍ SPEKTROMETRIE

Klinická a farmaceutická analýza. Petr Kozlík Katedra analytické chemie

Hmotnostní analyzátory a detektory iont

Detekce ve vysokoúčinné kapalinové chromatografii

Úvod do strukturní analýzy farmaceutických látek

10. Tandemová hmotnostní spektrometrie. Princip tandemové hmotnostní spektrometrie

INTERPRETACE HMOTNOSTNÍCH SPEKTER

Přístrojové vybavení pro detekci absorpce a fluorescence

Rozdělení metod tlakového odporového svařování

HMOTNOSTNÍ SPEKTROMETRIE

ANORGANICKÁ HMOTNOSTNÍ SPEKTROMETRIE

Otázka: Atomy, molekuly, látky. Předmět: Chemie. Přidal(a): Jirka. Základní chemické pojmy. Hmota

Paralyzér v hodině fyziky

ASYNCHRONNÍ STROJ. Trojfázové asynchronní stroje. n s = 60.f. Ing. M. Bešta

Molekulová absorpční spektrometrie (Spektrometrie ve viditelné a UV oblasti)

Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D.

Patří k jednoduchým způsobům tváření materiálů. Jde v podstatě o proces tváření. Podmínkou je ROZTAVENÍ a STLAČENÍ polymeru na potřebný tvářecí tlak

TECHNICKÁ UNIVERZITA V LIBERCI

Zdroje iont používané v hmotnostní spektrometrii. Miloslav Šanda

Iontové zdroje. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253

Jaderná energie. Obrázek atomů železa pomocí řádkovacího tunelového mikroskopu

podíl permeability daného materiálu a permeability vakua (4π10-7 )

Úvod do problematiky extrakčních metod

STROJÍRENSKÉ TECHNOLOGIE

Potenciometrie. Obr.1 Schema základního uspořádání elektrochemické cely pro potenciometrická měření

Manuální, technická a elektrozručnost

Mechanismy. Vazby členů v mechanismech (v rovině):

Model dvanáctipulzního usměrňovače

MOŽNOSTI POUŽITÍ ODKYSELOVACÍCH HMOT PŘI ÚPRAVĚ VODY

MEMBRÁNY AMPEROMETRICKÝCH SENSORŮ

269/2015 Sb. VYHLÁŠKA

Elektrická měření 4: 4/ Osciloskop (blokové schéma, činnost bloků, zobrazení průběhu na stínítku )

Hmotnostní spektrometrie. Hmotnostní spektrometrie 1

VYR-32 POKYNY PRO SPRÁVNOU VÝROBNÍ PRAXI - DOPLNĚK 6

% STĚNY OKNA INFILTRA STŘECHA PODLAHA 35 CE % 20 25% 15 20% 10 10% 10% 5

1 ŘÍZENÍ S POSILOVAČEM

Zlepšení kyslíkových poměrů ve vodním toku

1 NÁPRAVA De-Dion Představuje přechod mezi tuhou nápravou a nápravou výkyvnou. Používá se (výhradně) jako náprava hnací.

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

KAPITOLA 6.3 POŽADAVKY NA KONSTRUKCI A ZKOUŠENÍ OBALŮ PRO INFEKČNÍ LÁTKY KATEGORIE A TŘÍDY 6.2

Vlastnosti a zkoušení materiálů. Přednáška č.2 Poruchy krystalické mřížky

Iontové zdroje II. Iontový zdroj. Data. Vzorek. Hmotnostní analyzátor. Zdroj vakua. Iontové zdroje pracující za sníženého tlaku

Stručná historie hmotnostní spektrometrie. Analytická chemie II: Úvod do hmotnostní spektrometrie. Stručná historie hmotnostní spektrometrie.

Antény. Zpracoval: Ing. Jiří. Sehnal. 1.Napájecí vedení 2.Charakteristické vlastnosti antén a základní druhy antén

ÚČEL zmírnit rázy a otřesy karosérie od nerovnosti vozovky, zmenšit namáhání rámu (zejména krutem), udržet všechna kola ve stálém styku s vozovkou.

ÚVOD. V jejich stínu pak na trhu nalezneme i tzv. větrné mikroelektrárny, které se vyznačují malý

L A S E R. Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami.

Atom je základní částice hmoty dále chemicky nedělitelná. Z hlediska strojírenské technologie je důležitá, protože určuje vlastnosti hmoty.

Hmotnostní detekce v separačních metodách

Jaká je nejmenší výška svislého rovinného zrcadla, aby se v něm stojící osoba vysoká 180 cm viděla celá? [90 cm]

Moderní nástroje v analýze biomolekul

PRVKY 17. (VII. A) SKUPINY

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Měření elektrického proudu

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/

Inovace bakalářského studijního oboru Aplikovaná chemie. Reg. č.: CZ.1.07/2.2.00/

Demonstrační experiment pro výuku využívající Crookesův radiometr

MDT xxx TECHNICKÁ NORMA ŽELEZNIC Schválena: Ochrana zabezpečovacích zařízení před požárem

UNIVERZITA PALACKÉHO V OLOMOUCI

Pracovní návrh. VYHLÁŠKA Ministerstva práce a sociálních věcí. ze dne o hygienických požadavcích na prostory a provoz dětské skupiny do 12 dětí

Přednáška č.10 Ložiska

TECHNICKÝ NÁVOD PRO ČINNOSTI AUTORIZOVANÝCH OSOB PŘI POSUZOVÁNÍ SHODY STAVEBNÍCH VÝROBKŮ PODLE

SC 61 detektor kovů baterie 9V (PP3) dobíjecí NI Mh baterie (volitelné příslušenství) nabíječka (volitelné příslušenství)

Elektrické. MP - Ampérmetr A U I R. Naměřená hodnota proudu 5 A znamená, že měřená veličina je 5 x větší než jednotka - A

ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY DLE 156 ZÁKONA 137/2006 Sb., O VEŘEJNÝCH ZAKÁZKÁCH

TECHNICKÁ UNIVERZITA V LIBERCI

Analytická technika HPLC-MS/MS a možnosti jejího využití v hygieně

7. Stropní chlazení, Sálavé panely a pasy - 1. část

Nanočástice ve fotovoltaice

Nabídky služeb zkušebního centra VUZ ve Velimi

Návrh rotujícího usměrňovače pro synchronní bezkroužkové generátory výkonů v jednotkách MVA část 1

Laserová ablace (LA) II

Oblastní stavební bytové družstvo, Jeronýmova 425/15, Děčín IV

Podpovrchové vody PŮDNÍ VODA

Vítězslav Bártl. únor 2013

Několik dalších pokusů s termocitlivými fóliemi


Upíše-li akcie osoba, jež jedná vlastním jménem, na účet společnosti, platí, že tato osoba upsala akcie na svůj účet.

Zvyšování kvality výuky technických oborů

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ OHYB SVĚTLA

Transkript:

Hmotnostní spektrometrie Mass Spectrometry (MS) (c) David MILDE, 2003-2010 ÚVOD MS je nejrychleji se rozvíjejí technika analytické chemie. Dokáže poskytnout informace o: elementárním složení vzorku, struktuře organických a biomolekul, kvalitativním a kvantitativním složení vzorku, struktuře a složení povrchů, izotopických poměrech atomů ve vzorku. První chemické aplikace ze 40. let 20. stol. kvantitativní analýza směsí petrochemickém průmyslu. uhlovodíků v Od 90. let 20. stol. explozivní nárůst biologických a biochemických aplikací. 1

Spektrální technika, využívající separace iontů. Jeden ze způsobů dělení (podle způsobu ionizace): Molekulová hmotnostní spektrometrie (studium molekul). Atomová hmotnostní spektrometrie (multielementární prvková analýza). Základem je vytvoření iontů v plynné fázi, které jsou dále separovány v hmotnostním analyzátoru. M + e - M + + 2e - (radikál ion) Iontový zdroj Ionizace ÚVOD MS analyzátor Transport a fokusace iontů David MILDE 2008 Detektor I m/z Hmotnostní spektrum získáme převedením atomů či molekul vzorku na rychle se pohybující ionty v plynném stavu a jejich separací podle m/z. 1 12 1amu = 1Da = hmotnosti amu atomic mass unit 6C 12 Atomové a molekulové hmotnosti se odlišují podle izotopů. 12 C 98,90 % 13 C 1,10 % 1 H 99,985 % 2 H 0,015 % 79 Br 50,69 % 81 Br 35 Cl 37 Cl 49,31 % 75,47 % 24,53 % David MILDE 2008 2

Atomová (anorganická) hmotnostní spektrometrie ICP-MS Pouze nejrozšířenější technika ICP-MS. PRINCIP: ionizace prvků vzorku přítomných v ICP; vzniklé ionty jsou přes interface vedeny do MS. Zařízení rozpoznává odlišné relativní atomové hmotnosti (izotopy), ale nerozpoznává chemické prvky podle elektronových obalů!!! V ICP je více než 50 prvků ionizováno do 1. stupně z více jak 90 %. Menší % ionizace u Se, As, P, S a halogenů. Prvky s nízkým 2. ionizačním potenciálem 2x nabité ionty (např. Ba 2+ ). Z hlavice vystupuje a do MS vstupuje směs iontů, atomů, fragmentů molekul a Ar. 3

ICP-MS - instrumentace Axiální pozorování z plazmové hlavice! Používané MS separátoru: kvadrupólový, průletový a s dvojí fokusací (HR-MS). Spojení ICP s MS Snížení tlaku na 10-5 Pa. Materiál konusů: kov s dobrou vodivostí a odolností vůči kyselinám Ni. Pt. Konusy chlazeny vodou. Problémy se solnými roztoky. Iontová optika: fokusace iontového paprsku a odstranění nenabitých částic a fotonů. (Zarážka fotonů.) 4

Interference u ICP-MS Nespektrální interference: ovlivnění transportu a zmlžování; ovlivnění ionizace v plazmatu; blokování interface usazenými solemi. ELIMINACE: vnitřní standard (např. Re, In) přidávána známá koncentrace. Spektrální interference (jsou u MS s nízkým rozlišením): hmotnostní překryv prvku s molekulárními či polyatomickými ionty z H 2 O, Ar či vzorku. m/z 23 56 77 prvek Na Fe Se Interferent 46 Sc 2+ 40 Ar 16 O, 40 Ca 16 O 40 Ar 37 Cl + David MILDE 2003 Spektrální interference u ICP-MS Eliminace spektrálních interferencí: Kolizní cela. Iron Argon Oxygen Helium David MILDE 2008 5

Molekulová (organická) hmotnostní spektrometrie Instrumentace Základní části spektrometru: zavádění vzorku: přímé či spojení se separační technikou, iontový zdroj: ionizace molekul a urychlení, analyzátor(-y): separace iontů v plynném skupenství, zařízení pro detekci a registraci iontů, vakuová aparatura snížení tlaku na 10-3 10-6 Pa. VAKUOVÁ APARATURA: turbomolekulární pumpy, vývěvy obvykle vícestupňové snižování tlaku. Nízký tlak brání nežádoucím srážkám mezi ionty a neutrálními molekulami mezi ionizací a detekcí. 6

ZPŮSOBY IONIZACE MOLEKUL 2 základní skupiny Způsoby ionizace se liší tvrdostí = množstvím E, která na molekulu při ionizaci působí (tvrdé a měkké ionizační zdroje). 1. Gas-phase sources vzorek nejprve převeden do plynné fáze a pak ionizován různými způsoby: Elektronová ionizace (Electron Ionization EI) Chemická ionizace (Chemical Ionization CI) Ionizace polem (Field Ionization FI): k ionizaci plynných molekul se používá velmi silné elektrické pole 10 7 V/cm, které se udržuje mezi kladně nabitým vláknem a protielektrodou potenciálem 8-12 KV. Elektron z plynné molekuly je kvantově mechanickým tunelováním přenesen na elektrodu. ZPŮSOBY IONIZACE MOLEKUL 2 základní skupiny 2. Desorption sources (desorpční zdroje) vzorek umístěn na sondě, E k ionizaci dodávána ke kapalnému nebo pevnému vzorku, kde dochází ke vzniku plynných iontů: Desorpce polem (Field Desorption FD) Náraz rychlými atomy či ionty (FAB/FIB) Laserová desorpce (Laser Desorption LD) Elektrosprej (Electrospray Ionization ESI) Termosprej (Thermospray Ionization TSI) Některé ionizace probíhají za atmosférického tlaku a využívají se ve spojení HPLC-MS). 7

Elektronová ionizace (EI) starší název: Electron Impact Elektrony vytlačovány ze žhavené katody (W, Re) a urychleny potenciálem 70 ev směřují k anodě. Molekuly vzorku se dostávají do proudu e -, kde dochází k jejich ionizaci. Vzniklé kladné ionty jsou vytlačovány elektrodou (2) a po urychlení vysokým kladným potenciálem na (5) přecházejí do MS analyzátoru. Dochází k ovlivnění elektromagnetických polí (nikoli nárazu e - ) a tím k uvolnění valenčního e -. Tlak 10-5 Pa nedochází ke srážkám pouze monomolekulární rozpady mají-li ionty přebytek E tak fragmentují. David MILDE 2003 Elektronová ionizace (EI) Primárně vzniká molekulární ion: M + e - M + + 2 e -. Typické reakce u EI: Vznik molekulárního iontu (radikál ion!!!): ABCD + e - ABCD + + 2e - Fragmentace dceřinné ionty: ABCD + A + + BCD A + BCD + BC + + D CD + AB + B + A + (nebo A + B + ) CD + + AB D + C + (nebo C + D + ) Kolize + následná fragmentace: ABCD + + ABCD (ABCD) + 2 BCD + ABCDA + Nevýhody EI: značná fragmentace, která může zapříčinit ztrátu M + iontu; nutný převod vzorku do plynné fáze (pro některé molekuly problematické). Výhody EI: dobrá citlivost; rozsáhlé knihovny spekter. David MILDE 2003 8

Hmotnostní spektrum ethylbenzenu C 6 H 5 CH 2 CH 3 + e - C 6 H 5 CH 2 CH 3.+ + 2e - 106 molekulární ion David MILDE 2003 Chemická ionizace (CI) Konstrukční uspořádání jako u EI. Do iontového zdroje se kromě vzorku zavádí pomocný plyn (CH 4, NH 3, C 3 H 8, isobutan, ) o tlaku 10 2 Pa, tlak par vzorku 10-4 Pa. Proudem e - jsou ionizovány téměř výhradně molekuly pomocného plynu (např.: u CH 4 ionty CH 5+ a C 2 H 5+ ). Tyto ionty reagují se vzorkem iontově molekulárními reakcemi. Pro CH 4 : CH 4 + e - CH 4 + + 2e - CH 4 + + CH 4 CH 5+ + CH 3 CH 3+ + CH 4 C 2 H 5+ + H 2 Přenos protonu: M + CH 5+ MH + + CH 4 M + C 2 H 5+ MH + + C 2 H 4 Odtržení H: M + CH 5+ (M-H) + + CH 4 + H 2 Ve spektru ionty: (M+H) + nebo (M-H) - - tzv. pseudomolekulární ionty. Kondenzační reakce adukty, např.: (M+29) +. David MILDE 2003 9

David MILDE 2008 Desorpční zdroje FD (field desorption desorpce polem) k ionizaci kondenzované fáze se používá elektrické pole; vzorek se ionizuje z elektrody, na které je vysoký potenciál. FAB a FIB (fast atom/ion bombardment) vzorek v kondenzované fázi (např.: glycerinový roztok na kovovém terči) je bombardován Xe či Ar atomy nebo ionty Xe + či Ar + se kin 10 3 ev. Pozitivní i negativní ionty jsou rozprašovány z povrchu vzorku desorpčním procesem. Tento způsob ionizace provází rychlé zahřívání vzorku, což snižuje možnost fragmentace analytu ve spektru převažuje M + ion. PD (plasma desorption plazmová desorpce) k ionizaci slouží urychlené produkty rozpadu vhodného radioaktivního izotopu ( 252 Cf). Vhodná je k ionizaci tepelně nestálých makromolekulárních látek. David MILDE 2003 10

Porovnání spekter glutamové kyseliny tvrdost ionizace EI FI FD Desorpční zdroje LDI (laser desorption ionization) laserový paprsek dopadá na vzorek umístěný na terči v pulsech a emituje ionty a neutrální částice. Citlivou regulací intenzity laseru se brání pyrolýze analytu. Možné vyvolat vznik velkých iontů k jejichž separaci se používají TOF analyzátory. MALDI (matrix assisted LDI) přimíchaná nízkomolekulární matrice absorbuje E laseru o vhodné λ z Vis nebo IR oblasti a tím je umožněna desorpce a ionizace velkých molekul až m/z = 10 6. Využívá se pro analýzu biopolymerů. Uspořádání MALDI-TOF. David MILDE 2008 11

Desorpční zdroje (HPLC-MS) Elektrosprej: kapalina z HPLC kolony prochází kapilárou, na kterou je aplikováno silné elektrické pole (3-6 kv) kapičky po výstupu z kapiláry mají + nebo - náboj. Odpařováním rozpouštědla se kapičky zmenšují a roste hustota povrchového náboje až se uvolní pseudomolekulární ion [M+H] + nebo adukt nebo vícenásobně nabitý ion u velkých molekul. Desorpční zdroje (HPLC-MS) Termosprej (TSI) vzorek je zaváděn do ocelové vyhřívané kapiláry, kde dojde k rychlému zahřátí. Dále je zaváděn do vakua a vznikají kapičky obsahující ionty, rozpouštědlo a molekuly vzorku. Ionty jsou vytlačovací elektrodou směrovány do MS analyzátoru. První ionizační technika navržená výhradně pro HPLC- MS. 12

ANALYZÁTORY (separátory) IONTŮ David MILDE 2003 Typy analyzátorů Typ analyzátoru Magnetický sektor Elektrický sektor Kvadrupól Iontová past Průletový Iontová cyklotronová rezonance Orbitální past Princip separace Magnetický moment Kinetická energie m/z stabilita trajektorií m/z resonanční frekvence Rychlost (doba letu) m/z resonanční frekvence m/z resonanční frekvence Rozlišení 100000 2000 4000 20000 500000 100000 Rozlišení: m R = Δm 13

Kvadrupólový analyzátor Kruhové tyče 20-30 cm 2 složky elektrického pole: stejnosměrná radiofrekvenční (10 MHz) Ionty mezi oscilovat. tyčemi začnou Při určité hodnotě poměru RF a stejnosměrného napětí dosáhnou ionty určitém m/z stabilních oscilací, zatímco ionty jiných m/z oscilují s rostoucí amplitudou a jsou zachyceny na tyčích. Snímání spektra: zvyšování stejnosměrného a RF napětí. Ionty vstupují do osy kvadrupólu urychleny: V + = U + V F cos2πft V + = - V - David MILDE 2008 Zařízení se chová jako hmotnostní filtr nastavený na určitou hodnotu m/z. Rychlý záznam spektra, jednoduchá konstrukce, nízká cena. Malý rozsah m/z a nízké rozlišení. Tandemové uspořádání kvadrupólů, např.: 3 za sebou QqQ (tzv TripleQuad); umožňují různé způsoby scanování a MS n. David MILDE 2008 Q1 a Q3 hmotnostní filtr q2 kolizní cela 14

Iontová past (Ion Trap) Trojrozměrný kvadrupólový filtr detektor pro GC a LC. Ionizaci lze provádět uvnitř IT (starší typ) nebo mimo IT (novější typ). Funguje obdobně jako kvadrupól: zvyšováním frekvence prstencové elektrody se dráhy iontů s určitým m/z stanou nestabilní a začnou vyletovat z IT. IT umožňuje zadržení iontů v prostoru pasti po dobu řádově s. Nízká rozlišovací schopnost; nízká cena. End cap uzavírací elektrody (uzeměné) Central electrode prstencová David MILDE 2008 David MILDE 2008 15

Průletový analyzátor (TOF) Pulsní iontový ZDROJ akcelerátor letová trubice D Nejjednodušší a nejrychlejší analyzátor celý vzorek je akcelerován (el. polem 10 3-10 4 V) najednou. Všechny ionty mají stejnou E kin. Ionty vstupují do evakuované trubice bez silového pole délky asi 1 m. Uspořádání s reflektronem je menší a má lepší rozlišení. K rozdělení iontů dochází na základě jejich odlišné doby letu. Ionty s nižší m mají větší rychlost a dopadají na detektor dříve, těžší ionty dorazí na detektor později. (E kin = 1/2mv 2 ) Velký rozsah m/z, vysoká citlivost, rychlá analýza. David MILDE 2008 Magnetický sektorový analyzátor Urychlené ionty vstupují do magnetického pole tvořeného elektromagnetem ve tvaru kruhové výseče. Silové účinky mag. pole způsobí pohyb iontů po kruhové dráze. Na detektor dopadá při rovnosti dostředivé a odstředivé síly ion o určité m/z. Částice s jinou m opisují dráhu o jiném poloměru r. Záznam spektra: plynulá změna mag. indukce B (jiná možnost: měnit urychlovací potenciál nepoužívá se kvůli diskriminaci iontů o velké m.) David MILDE 2003 16

Magnetický sektorový analyzátor Ionty jsou ve zdroji urychleny a mají kinetickou energii: 1 2 2 Ekin = mv = zv kde V je akcelerační napětí V mag. poli na ionty působí dostředivá a odstředivá síla: F = Bzv dostředivá síla mv F= r 2 odstředivá síla Pro ion, který dopadne na detektor se síly rovnají: m B r = ze 2V 2 2 David MILDE 2006 2 mv 2zV Bzv = a v = r m Analyzátor s dvojí fokusací High Resolution (HR-MS) E iontů o stejném m/z vystupujících z iontového zdroje se při vstupu do magnetického pole do jisté míry liší z důvodu nehomogenity elektrického pole urychlujícího ionty. Ionty nevznikají ve stejném místě zdroje. To vede k rozšíření paprsku iontů dopadajících na detektor a zhoršení rozlišení. Kombinace magnetického sektorového analyzátoru se sektorem elektrickým polem, který sjednotí E iontů o stejném m/z vstupujících do magnetického pole, tím se rozlišení spektrometru zvýší až o 2 řády. Dvojí fokusace: 1 elektrický a jeden magnetický sektor. Trojí fokusace: 2 elektrické a 1 magnetický sektor. 17

Analyzátor s dvojí fokusací High Resolution (HR-MS) Přímá geometrie Obrácená geometrie Orbitální past (Orbitrap) Nejnovější komerčně vyráběný MS analyzátor (od r. 2005) využívající Fourierovu transformaci. Kombinuje v sobě separační i detekční část. Vnější elektroda soudkového tvaru s otvorem pro vstup iontů, uzemněná. Vnitřní elektroda vřetenového tvaru, potenciál asi 3000 V. 18

Orbitální past (Orbitrap) Ionty vstupují s určitým potenciálem a začnou oscilovat. Snímá se frekvence oscilace a tase pak pomocí FT převádí na hmotnostní spektrum. Výhody: unikátní správnost hmoty a vysoké rozlišení. Nevýhoda : komplikovaný a poměrně drahý systém (25 mil. Kč). David MILDE 2003 Iontová cyklotronová rezonance FT-ICR FT hmotnostní spektrometr: zlepšení poměru S/N, rychlejší, lepší citlivost a rozlišení. Výrazně vyšší požadavky na vakuum a cena kolem 70 mil. Kč jediný přístroj v ČR. Směr magnetického pole Síla: 3-12 T Poloměr cely 3 cm. Cyklotronová frekvence: ω zb m c = = v r 19

Iontová cyklotronová rezonance FT-ICR Ion v silném magnetickém poli se začne pohybovat s cykloidální trajektorií a frekvencí ω c. Krátké vložení střídavého proudu způsobí simultánní excitaci všech iontů v cele. Simultánně se detekuje frekvence všech iontů (každá m/z má charakteristickou frekvenci) a pomocí FT se převádí na hmotnostní spektrum. Časová doména FT m/z doména DETEKTORY IONTŮ ELEKTRONOVÝ NÁSOBIČ: v podstatě se jedná o fotonásobič bez ochranné baňky, ion dopadající na první elektrodu (konverzní) uvolni 1-2 e -, které jsou urychleny k další dynodě atd. FARADAYOVA KLEC (Faraday cup): ion dopadá na konverzní elektrodu (z BeO, GaP) a vyráží z ní e -, který dopadá na anodu. Vzniklý elektrický proud je zesílen a zpracován. David MILDE 2003 20

Tandemová hmotnostní spektrometrie (MS n ) Hmotnostní spektrometry mohou být spojeny jako tandemové spektrometry (např. MS/MS; MS 2 ). První ionizace a následné fragmentační reakce generuje ionty, z nichž se vybere požadovaný ion, ten se podrobí další fragmentační reakci a z něj vzniklé ionty se analyzují. Požadovaný ion (tzv. prekurzor) podrobíme tzv. kolizní disociaci nejčastěji srážkami s kolizním plynem. Tím se tento ion rozpadá na fragmenty, jejichž hmotnostní spektrum změříme. NS/MS (či MS 2 ) spektrum pak obsahuje fragmentové ionty pouze prekurzoru. Příklad MS/MS spekter 2 látky: dibutyl ftalát a sulfamethazin se shodnou M r = 279. K rozlišení byl vybrán jako prekurzor ion o m/z = 279. Hmotnostní spektra prekurzoru umožní rozlišit látky. 21

Interpretace spekter m/z = 18 molekulární ion m/z = 17 dceřinný ion po fragmentaci jedné O-H vazby m/z = 36 molekulární ion pro 35 Cl m/z = 38 molekulární ion pro 37 Cl Poměr intenzit 3:1 m/z = 35 a 37 dceřinné ionty David MILDE 2006 22

Interpretace spekter 1-pentanol CH 3 CH 2 CH 2 CH 2 CH 2 OH David MILDE 2006 Aplikace MS Atomová MS: kvalitativní i kvantitativní stopová prvková analýza. Ze všech metod atomové spektrometrie má nejlepší LOD. Molekulová MS: Kvalitativní analýza (strukturní analýza) organických látek a biomolekul. Spojení s plynovou či kapalinovou chromatografií (GC- MS, HPLC-MS) analýza vzorků životního prostředí, např.: pesticidy, dioxiny, dibenzofurany. Toxikologická analýza sledování léků, drog, jejich metabolitů. Kvantitativní analýza: okrajová záležitost. David MILDE 2008 23