THE NUMERICAL PREDICTION OF FRICTION FORCES DISTRIBUTION WITHIN THE ROLL BITE WHEN HOT ROLLING STEEL

Podobné dokumenty
SIMPLE MODELS DESCRIBING HOT DEFORMATION RESISTANCE OF SELECTED IRON ALUMINIDES

DC circuits with a single source

SEMI-PRODUCTS. 2. The basic classification of semi-products is: standardized semi-products non-standardized semi-products

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:

The Over-Head Cam (OHC) Valve Train Computer Model

THE PREDICTION PHYSICAL AND MECHANICAL BEHAVIOR OF FLOWING LIQUID IN THE TECHNICAL ELEMENT

Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku

CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA

Problematika disertační práce a současný stav řešení

WORKSHEET 1: LINEAR EQUATION 1

Compression of a Dictionary

Introduction to MS Dynamics NAV

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

STŘEDNÍ PŘIROZENÉ DEFORMAČNÍ ODPORY PŘI TVÁŘENÍ OCELÍ ZA TEPLA - VLIV CHEMICKÉHO A STRUKTURNÍHO STAVU

Friction drives have constant or variable drives (it means variators). Friction drives are used for the transfer of smaller outputs.

CHAIN TRANSMISSIONS AND WHEELS

MODELS OF MEAN FLOW STRESS AND STRUCTURE EVOLUTION OF IRON ALUMINIDES IN HOT FORMING

VYUŽITÍ DYNAMICKÝCH MODELŮ OCELÍ V SIMULAČNÍM SOFTWARE PRO TVÁŘENÍ

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Transportation Problem

Využití hybridní metody vícekriteriálního rozhodování za nejistoty. Michal Koláček, Markéta Matulová

Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation

Biosensors and Medical Devices Development at VSB Technical University of Ostrava

EXPLOITATION OF THE ELEMENTS OF ARTIFICIAL INTELLIGENCE FOR TIME PREDICTION OF COOLING DOWN METAL SPECIMENS BEFORE FORMING.

Uni- and multi-dimensional parametric tests for comparison of sample results

ČSN EN ed. 3 OPRAVA 1

Tváření,tepelné zpracování

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

HODNOCENÍ VLASTNOSTÍ VÝKOVKŮ ROTORŮ Z OCELI 26NiCrMoV115

Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.

PC SIMULACE PRONIKU PLASTICKÉ DEFORMACE V ZÁVISLOSTI NA PODCHLAZENÍ POVRCHOVÝCH VRSTEV PRI VÁLCOVÁNÍ SOCHORU. Richard Fabík a Jirí Kliber a

Effect of temperature. transport properties J. FOŘT, Z. PAVLÍK, J. ŽUMÁR,, M. PAVLÍKOVA & R. ČERNÝ Č CTU PRAGUE, CZECH REPUBLIC

SPECIAL FORMING METHODS. Use: It is used for the production of cylindrical and conical parts of exact shapes, which needn t be further machined.

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník LII, řada strojní článek č.

Obrábění robotem se zpětnovazební tuhostí

TKGA3. Pera a klíny. Projekt "Podpora výuky v cizích jazycích na SPŠT"

ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION

INŽENÝRSKÁ MECHANIKA 2002

OPTIMALIZACE CHLAZENÍ KALIBROVANÝCH VÁLCŮ OPTIMIZATION OF CALIBRATED SHAPED ROLLS. Pohanka, M., Horský, J., Juriga, A.

The tension belt serves as a tension unit. After emptying the belt is cleaned with a scraper.

2. Entity, Architecture, Process

VÝZKUM VLASTNOSTÍ SMĚSI TEKBLEND Z HLEDISKA JEJÍHO POUŽITÍ PRO STAVBU ŽEBRA

USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING

MC Tlumiče (řízení pohybu) MC Damper

T E S T R E P O R T No. 18/440/P124

Department of Mathematical Analysis and Applications of Mathematics Faculty of Science, Palacký University Olomouc Czech Republic

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

UPM3 Hybrid Návod na ovládání Čerpadlo UPM3 Hybrid 2-5 Instruction Manual UPM3 Hybrid Circulation Pump 6-9

Air Quality Improvement Plans 2019 update Analytical part. Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová

Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK. cz

Aktivita CLIL Chemie III.

Ja n T. Št e f a n. Klíčová slova: Řada knih, srovnání cen v čase, cena vazby a ocelorytové viněty, lineární regresní analýza.

GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA

PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I I

Melting the ash from biomass

VERIFICATION OF MODEL DESCRIBING TEMPORARY AREA SUBSIDENCE VERIFIKACE MODELU POPISUJÍCÍHO POKLES AREÁLU V ASE

JEDNODUCHÉ MODELY DEFORMAČNÍCH ODPORŮ A STRUKTUROTVORNÉ PROCESY PŘI TVÁŘENÍ ALUMINIDŮ ŽELEZA ZA TEPLA

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů

MOŽNOSTI TVÁŘENÍ MONOKRYSTALŮ VYSOKOTAVITELNÝCH KOVŮ V OCHRANNÉM OBALU FORMING OF SINGLE CRYSTALS REFRACTORY METALS IN THE PROTECTIVE COVER

POUŽITÍ PROGRAMU FORMFEM K SIMULACI TVÁRENÍ PLOCHÝCH VÝVALKU THE SOFTWARE FORMFEM APPLICATION FOR FLAT BARS ROLLING SIMULATION

CZ.1.07/2.3.00/

Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.

USER'S MANUAL FAN MOTOR DRIVER FMD-02

Karta předmětu prezenční studium

Ivo Schindler a Marek Spyra b Eugeniusz Hadasik c Stanislav Rusz a Marcel Janošec a

STLAČITELNOST. σ σ. během zatížení

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník LII, řada strojní článek č.

Výuka odborného předmětu z elektrotechniky na SPŠ Strojní a Elektrotechnické

CONTRIBUTION TO METALLURGICAL TECHNOLOGY CONTROL PROBLEMS PŘÍSPĚVEK K PROBLEMATICE ŘÍZENÍ METALURGICKÝCH TECHNOLOGIÍ

The target was to verify hypothesis that different types of seeding machines, tires and tire pressure affect density and reduced bulk density.

INVERSE ANALYSIS CALCULATION OF HEAT TRANSFER COEFFICIENT FOR FEM SIMULATION OF RAILS HARDENING

These connections are divided into: a) with a form-contact b) with a force-contact

SPECIFICATION FOR ALDER LED

Energy vstupuje na trh veterinárních produktů Energy enters the market of veterinary products

UTILIZATION OF THE HOT WEDGE TEST IN RESEARCH OF HOT FORMABILITY OF FREE-CUTTING STAINLESS STEELS

VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace

Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová

Objasnění příčin vzniku vady při válcování speciálního profilu pomocí MKP

STATISTICKÉ PARAMETRY OCELÍ POUŽÍVANÝCH NA STAVBU OCELOVÝCH KONSTRUKCÍ

Úvod do datového a procesního modelování pomocí CASE Erwin a BPwin

SIMULACE TECHNOLOGICKÝCH PROCESŮ HYBRIDNÍ TECHNIKOU VYUŽÍVAJÍCÍ MATEMATICKO-FYZIKÁLNÍCH MODELŮ A UMĚLÝCH NEURONOVÝCH SÍTÍ

Numerické zkoumání vlivu tvaru okrajové části opěrného válce na napjatost a porušování

Litosil - application

Transfer inovácií 20/

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Parametrická studie vlivu vzájemného spojení vrstev vozovky

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost


Presentation of company AMEKAN s.r.o.

KONTAKTNÍ TLAKY TĚSNĚNÍ HLAVY VÁLCŮ STACIONÁRNÍHO MOTORU

GENERAL INFORMATION RUČNÍ POHON MANUAL DRIVE MECHANISM

MODELS OF HOT DEFORMATION RESISTANCE OF A NB-TI HSLA STEEL

STUDIUM DEFORMAČNÍHO CHOVÁNÍ NÍZKOUHLÍKOVÉ OCELI PŘI FINÁLNÍM DVOUPRŮCHODU NA PÁSOVÉ TRATI STECKEL ZA TEPLA. Libor Černý a, Ivo Schindler b

Dynamic Development of Vocabulary Richness of Text. Miroslav Kubát & Radek Čech University of Ostrava Czech Republic

DYNAMICS - Force effect in time and in space - Work and energy

WYSIWYG EDITOR PRO XML FORM

KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE

Transactions of the VŠB Technical University of Ostrava, Mechanical Series. article No Vladislav KŘIVDA *

PLASTOMETRICKÁ SIMULACE TERMOMECHANICKÉHO VÁLCOVÁNÍ OCELI MIKROLEGOVANÉ VANADEM

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Transkript:

Acta Metallurgica lovaca, 13, 2007,4 (660-666) 660 THE NUMERICAL PREDICTION OF FRICTION FORCE DITRIBUTION WITHIN THE ROLL BITE WHEN HOT ROLLING TEEL Aksenov., Fabik R., Kliber J. VB - Technical University of Ostrava, Faculty of Metallurgy and Materials Engineering, Department of Materials Forming,17. listopadu 15, 708 33 Ostrava, Cech Republic, e-mail: sergey.aksenov.st@vsb.c NUMERICKÝ MODEL PRO PREDIKCI ROZLOŽENÍ T Ř ECÍCH IL PO DÉLCE ZÁBĚ ROVÉHO OBLOUKU P Ř I VÁLCOVÁNÍ ZA TEPLA Aksenov., Fabík R., Kliber J. VŠB Technická univerita Ostrava, Fakulta metalurgie a materiálového inženýrství, Katedra tvář ení materiálu, 17. listopadu 15, 708 33 Ostrava, Č eská Republika, e-mail: sergey.aksenov.st@vsb.c Abstrakt V tomto článku je preentována metoda vypočtu rodělení smykového napětí v pásmu deformace na ákladě našíření a tepla válcovaného pásu. Za účelem stanovení ávislosti součinitele tření po délce áběrového oblouku na deformačních podmínkách, bylo provedeno laboratorní válcování oceli 235J2G3 v teplotním romeí 900-1200 C poměrnou výškovou deformací 40% na laboratorní válcovací stolici K350. Pro stanovení roložení součinitel tření po délce áběrového oblouku byla aplikována nepřímá metoda. Jako řídící parametr metody byla použita šířka pásu v jednotlivých příčných řeech. Okrajové a počáteční podmínky matematické modelovaní vycháely existujících laboratorních podmínek válcování. Pro vlastní analýu byla využita modifikovaná metoda konečných prvků v řeech. Pro výpočet distribuce třecích sil při kontaktu provalku s válci po délce áběrového oblouku byla použita inverní metoda výpočtu. Pro inicialiaci modelu byla adána geometrie pásma deformace a vlastnosti materiálu při tváření a tepla. Konečně prvkový model umožňuje ískat teplotní, deformační a napětové pole, pole rychlostí deformací, válcovací moment, válcovací sílu a povrchové napětí. Na ákladě nalosti povrchového smykového napětí, tlaku na válce a deformačního odporu byly stanoveny ávislosti koeficientu tření na poloe vůči neutrální rovině podle Coulombova a Trescova modelu tření. Na ákladě těchto výsledků bylo provedeno porovnání modelů Columba a Trescy. Bylo jištěno e součinitel tření v obou případech není konstantní po délce pásma deformace. Nejvýnamnější rodíl ve výsledcích ískaných obou metod je v óně předstihu. Absolutní hodnota smykového napětí je nejnižší v neutrální rovině. Abstract In the paper the method of calculation of sear stresses distribution in the deformation one by spread of stock is proposed. In order to establish the dependence of friction coefficient on deformation conditions, the 235J2G3 steel strips were rolled at temperatures 900-1200 C with 40% reduction on K350 laboratory rolling mill. For determination of friction variation the non direct method was used. Mathematic modeling was related to existing laboratory rolling conditions. The modified slab and finite element method was employed. The mathematic simulation of the process has been used to determine the variation of friction along the rolling

Acta Metallurgica lovaca, 13, 2007,4 (660-666) 661 contact interface. For initialiation of the model the deformation one geometrics and the hot forming properties of steel were specified. The finite element based model implements the calculation of strain, strain rate and temperature distributions, roll torques, forward slip, roll pressure and interfacial shear stress. The coefficients of friction for Coulomb and Tresca friction formulations were determined from the shear stress, the roll pressure and the yield stress distributions. The comparison of Coulomb and Tresca friction factor distributions was made. It was indicate that friction coefficient in both cases is not constant along the contact length. The differences between the Coulomb and Tresca friction factors were found more significant in the one of slippage. The absolute value of the shear stress was found to decrease towards the neutral section. Key words: Rolling friction, FEM, slab method, friction variation, mathematic simulation 1. Introduction Friction is a one of the largest sources of error and uncertainty in the modeling of rolling. The problem usually reduces to knowing a friction coefficient or friction factor under true rolling conditions. Thus, typically only two friction formulations are used [1, 2]. Coulomb s friction law states that the friction force (or friction stress) is proportional to the normal stress: τ = µp. (1) Tesca friction may by written as follows: τ k σ y =, (2) 3 σ y τ max =. (3) 3 Here µ and k can be interpreted as an undetermined constants. σ y - is a yield stress and p is a normal pressure. Generally, the Coulomb model is supposed more precision in conditions of small pressure, where p <<τ max and on the other hand in conditions where p >>τ max, the using of Tresca friction formulation gives better results. ome combination of this formulations ware proposed in Levanov s and Wanheim-Bay s models [2, 3]. In the case of rolling, the deformation conditions in contact one are various along the contact length. Measurement of the friction variation in deformation one is a difficult task demanding special equipment. Another way is to determinate the friction distribution by indirect parameters. In this study the method of determination of friction variation along the rolling contact interface by spread of the stock is used. 2. Experimental conditions and analysis technique 2.1 Laboratory conditions Unalloyed C teel 235J2G3 was used for laboratory simulation. Flow stress of investigated steel is given by Andrejuk s equation:

Acta Metallurgica lovaca, 13, 2007,4 (660-666) 662 σ f m 1 m2 m3 = A T ε & ε (4) where A = 250 889 645 922 [MPa], m 1 = -3,122, m 2 = 0,174, m 3 = 0,135 Rolling was executed on K350 rolling mill [4]. It is a modified rolling mill with geometric similarity 1:15 to a four-high rolling mill 3.5 m at the Vítkovice plant. It is primarily used for reverse hot rolling of larger flat products. The rolling mill can be effectively and quickly converted to a two-high configuration by using the back-up rolls as working rolls. Firstly the input samples were prepared by milling to the required shape and dimension (thickness = 9 mm, length = 90 mm, width = 9 and 18 mm). Each sample was measured and afterwards directly heated in an electric resistance furnace to the rolling temperature (900-1200 C). The heated sample was immediately rolled to the half of their length, then taken out from the roll bite and cooled down. After cooling the width and thickness of rolled stick in deformation one were carefully measured. 2.2 Mathematic model To simulate a rolling process we used a mathematic model based on slab method [1, 3]. This implies that following hypothesis should bee accept. Lets in the Cartesian coordinate system xy rolling executing in -direction, assume that in each section of deformation one by -orthogonal plane the distribution of strain rate in direction of rolling is constant. This supposition let us to implement the retrieval of particle transference velocity in each section in following form: vx ( x, y) v y ( x, y), (5) C where C=Const. Consequently we able to construct the three-dimensional model of billet deflected mode by joining up the set of flat solutions in control sections. At that the constant C defined in each section so as strength to axial deformation would be equal to the -direction resultant of forces which effects on it: ds = p + σ ( τ ) dl d (6) L 0 Where: σ - -direction component of stress tensor, - the area of billet cross section, L - contact boundary of section, p - -direction component of roller pressure, τ - -direction component of torsion stress. Note that σ,, L, p and τ are functions of. To estimate the strain rate in direction of rolling the equation (2) solves by iteration procedure to definite constant C. Using a reverse procedure, the torsion stress distribution ~ τ can be determinate. Here, τ ~ is a value averaged by width:

Acta Metallurgica lovaca, 13, 2007,4 (660-666) 663 ~ 1 τ = ( τ ) dl. (7) L L Late we will use the symbols below: = σ ds, (8) F = L 0 p dl d, (9) T = L 0 (τ ) dl d, (10) Thus the torsion stress can be defined as follows: ( F ) 1 T 1 ~τ = =. (11) L L τ ~, is necessary to know Consequently to determinate function and F distributions which can be calculated by finite element method solving of generalied plane problem in each cross section. At that the strain rate in the direction of rolling calculated separately by experimental data of spreading in deformation one. 3. Results and discussion The distribution of stock spread on contact length is the input parameter of the model and mast by a smooth function. Therefore we approximate the measured points by polynomial function (fig.1). Fig.1 pread of the stick in the roll bite.

Acta Metallurgica lovaca, 13, 2007,4 (660-666) 664 These data were input to the finite element model. The rolling process was simulated in -orthogonal plane by solving generalied plain task in every cross sections of deformation one. As the deformation is symmetric about -x, -y plans, one quarter of the deforming workpiece was studied. In the fig. 2 are illustrated some steps of calculation. Fig.2 The effective strain distribution in different stages of deformation In every step of calculation the value of strain rate in the direction of rolling has been varied until the calculated and given width of the billet was congruent with prescribed accuracy. The obtained dependence of strain rate on coordinate is illustrated in fig. 3. Fig.3 Distribution of strain rate in the direction of rolling within the roll bite By distribution of deflected mode characteristics, according to the equations (7-11), we calculate the functions, F and T illustrated in fig. 4. Fig.4 Variation of roll bite - a), F -b) and T -c) within the Fig.5 Variation of p - a), roll bite τ max -b) and ~ τ -c) within the

Acta Metallurgica lovaca, 13, 2007,4 (660-666) 665 ~ τ (fig. 5), By differentiation of T by coordinate we obtain the torsion stress which characteries the distribution of friction forces in the contact boundary of deformation one. The distribution of torsion forces shown in fig. 5 is not uniform. The value of ~ τ changes its sign by transfer from lag one to the one of slippage on the delivery side. At that the torsion forces decrease towards the neutral section what can be effect of decreasing of slip velocity. By the distributions of normal stress and shear stress can be calculate the friction factors for Coulomb (1) and Tresca (2) equations. Fig.6 Coulomb and Tresca friction factors depending on coordinate The comparison of factors µ and k is illustrated in fig. 6. It s obvious that these coefficients are not constant in different sections of deformation one and decreasing by coming near the neutral section. 4. Conclusions On basis of measured spreading in deformation one by computer simulation have been calculate deformation and force characteristics of rolling. The method of calculation of torsion stresses distribution in the deformation one by such characteristics, have been proposed. The obtained results indicate the nonuniform behavior of tensile stress distribution by the length of deformation one. The tensile stress in general deceases towards the neutral section. The Coulomb and Tresca friction factors are not constant along the contact length and their distributions have a similar character in the lag one. In the one of slippage, the significant differences between µ and k have been detected. Acknowledgements This investigation was conducted with the support of Ministry of Education, Youth and ports of the Cech Republic under the MM 6198910015 research plan. Literature [1] Chumachenko E.: Matematicheskoye modelirovaniye techeniya metalla pri prokatke, MIEM. Moskva,.2005, 147p. (In Russian)

Acta Metallurgica lovaca, 13, 2007,4 (660-666) 666 [2] Wagoner R., Chenot J.: Metal Forming Analysis. Cambridge University Press, yndicate of the University of Cambridge 2001, IBN 0 521 64267 1. [3] Kumar D., Dixit U.: A slab method study of strain hardening and friction effects in cold foil rolling process. Journal of Materials Processing Technology 171 (2006) 331-340. [4] Rolling mill K350, [online][cit. 2007-20-05]. http://fmmi10. vsb.c/model/english/kvarto.htm