Základy programování (IZP)

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Základy programování (IZP)"

Transkript

1 Základy programování (IZP) Sedmé laboratorní cvičení Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, Brno Cvičící: Petr Veigend Gabriela Nečasová Petr Veigend 2015/2016

2 Obsah Seznámení se zadáním druhého projektu Funkce a řetězce Iterační výpočty IZP cvičení 7 2

3 Seznámení s druhým projektem IZP cvičení 7 3

4 Seznámení se zadáním druhého projektu Iterační výpočty (max 7 bodů) Obhajoba: Odevzdání: Název: proj2.c Výstup: , 23:59:59 do WISu standardní výstup pro výpis výsledků (na wiki) standardní chybový výstup pro výpis chyb V rámci projektu můžete používat pouze matematické operace +,-,* a / Překlad: nutno využít přepínač -lm: gcc std=c99 Wall pedantic lm proj2.c o proj2 IZP cvičení 7 4

5 Syntaxe spuštění./proj2 -log X N./proj2 -iter MIN MAX EPS --log: vypočítá přirozený logaritmus čísla X v N iteracích A) Pomocí Taylorova polynomu B) Pomocí zřetězených zlomků (Continued Fractions) --iter: hledání požadovaného počtu iterací pro dostatečně přesný výpočet logaritmu čísla z intervalu <MIN;MAX> Minimální přesnost: EPS = 1e-12 IZP cvičení 7 5

6 Implementační detaily Zakázáno: používat funkce z math.h Povoleno: Funkce Konstanty log(), isnan(), isinf() NAN, INFINITY Nezapomeňte důkladně testovat na merlinovi!!! IZP cvičení 7 6

7 Implementační detaily (--log) Taylorův polynom double taylor_log(double x, unsigned int n); x = číslo n = počet členů Taylorova polynomu Pro 0 < x < 2 log 1 x = x x2 2 x3 3 x4 4 Pro x > ½ n x 1 log x = x n n=1 Doporučená mezní hodnota mezi polynomy je 1 IZP cvičení 7 7

8 Implementační detaily (--log) zřetězený zlomek double cfrac_log(double x, unsigned int n); x = číslo (zde z) n = rozvoj zřetězeného zlomku IZP cvičení 7 8

9 Implementační detaily (--log) formát výpisu log(x) = LOG_X cf_log(x) = CF_LOG_X taylor_log(x) = TAYLOR_LOG_X X hodnota daná argumentem (printf %g) LOG_ hodnoty log() z math.h CF_LOG_ hodnoty vypočtené zřetězeným zlomkem TAYLOR_LOG_ hodnoty vypočtené Taylorovým polynomem IZP cvičení 7 9

10 Implementační detaily hledaní počtu iterací Uživatel zadá interval <MIN;MAX> a přesnost EPS Program v tomto intervalu spočítá přirozený logaritmus pomocí Taylorova polynomu a zřetězených zlomků s danou přesností EPS a vypíše následující: IZP cvičení 7 10

11 Implementační detaily hledaní počtu iterací log(min) = LOG_MIN log(max) = LOG_MAX continued fraction iterations = CF_ITER cf_log(min) = CF_LOG_MIN cf_log(max) = CF_LOG_MAX taylor polynomial iterations = TAYLOR_ITER taylor_log(min) = TAYLOR_LOG_MIN taylor_log(max) = TAYLOR_LOG_MAX X, MIN, MAX hodnoty dané argumenty (printf %g) LOG_ hodnoty log() z math.h CF_LOG_ hodnoty vypočtené zřetězeným zlomkem TAYLOR_LOG_ hodnoty vypočtené Taylorovým polynomem IZP cvičení 7 11

12 Implementační detaily hledaní počtu iterací log(min) = LOG_MIN log(max) = LOG_MAX continued fraction iterations = CF_ITER cf_log(min) = CF_LOG_MIN cf_log(max) = CF_LOG_MAX taylor polynomial iterations = TAYLOR_ITER taylor_log(min) = TAYLOR_LOG_MIN taylor_log(max) = TAYLOR_LOG_MAX Všechny *LOG_* hodnoty (printf %.12g) CF_ITER, TAYLOR_ITER počet iterací IZP cvičení 7 12

13 Funkce a řetězce IZP cvičení 7 13

14 Funkce pro práci s řetězci string.h Vyhledání znaku c v řetězci s, vrací ukazatel na vyhledaný znak, jinak NULL char* strchr(char* s, int c); Kopie řetězce src do řetězce dst, vrací ukazatel na dst char* strcpy(char* dst, char* src); Spojení řetězců dst a src, výsledek v dst char* strcat(char* dst, char* src); Lexikografické porovnání řetězců s1 a s2 int strcmp(char* s1, char* s2); IZP cvičení 7 14

15 Bodovaný úkol 1 Práce s řetězci IZP cvičení 7 15

16 Bodovaný úkol 1 Implementujte si vlastní funkci pro lexikografické porovnání dvou řetězců int strcmpmy(char* s1, char* s2); Funkce vrací: 0 pokud s1 == s2-1 pokud s1 < s2 1 pokud s1 > s2 IZP cvičení 7 16

17 Iterační výpočty IZP cvičení 7 17

18 Rekurentní problémy Rekurentní problém: výpočet nové hodnoty závisí na hodnotě výpočtu z předcházejícího kroku Rekurentní vztah obecně: Y i+1 = F(Y i ) Pro výpočet hodnoty Y i+1 je nutné zjistit hodnotu Y i IZP cvičení 7 18

19 Rekurentní problémy Musí být dána počáteční hodnota Y 0 Co musí platit pro hodnoty získané posloupnosti Y i+1 = F(Y i ) pro y 0 Y i Y j pro všechna i j Y i pro i < N nesplňuje podmínky požadované hodnoty Y N splňuje podmínky hledané hodnoty IZP cvičení 7 19

20 Rekurentní problémy Algoritmické schéma řešení Y = y0; // Y proměnná, y0 počáteční hodnota while( B(Y)) // dokud není splněna koncová podmínka Y = F(Y); // budeme počítat další prvek // posloupnosti IZP cvičení 7 20

21 Rekurentní problémy Algoritmické schéma řešení Y = y0; // Y proměnná, y0 počáteční hodnota while( B(Y)) // dokud není splněna koncová podmínka Y = F(Y); Zápis v C může vypadat např. double y = y0; // budeme počítat další prvek // posloupnosti while(!b(y)) // dokud není splněna koncová podmínka return y; y = f(y); // budeme počítat další prvek // posloupnosti IZP cvičení 7 21

22 Ukončovací podmínka Běžně se iterační výpočet ukončí, pokud Y i Y i 1 EPS To se dá v C zapsat např. double y = y0; // aktuální člen double yp; // předchozí člen do { yp = y; // uložíme hodnotu předchozího členu y = f(y); // vypočítáme další člen } while (fabs(y - yp) > eps); Algoritmické schéma lze použít pro výpočet číselných řad (Taylorův rozvoj), kterými lze aproximovat funkce IZP cvičení 7 22

23 Příklad 1: Druhá odmocnina Newtonovou metodou Implementujte funkci, která vypočítá druhou odmocninu x Newtonovou metodou y i+1 = 1 2 x y i + y i Prototyp funkce si vhodně zvolte IZP cvičení 7 23

24 Výpočet řad K výpočtu řad se používají částečné součty Pro řadu t 0, t 1, t 2, t 3,, kde t i = f t i 1 můžeme napsat řadu částečných součtů s 0, s 1, s 2, s 3,, kde s i = Můžeme je opět řešit rekurentně: s 0 = t 0 s 1 = s 0 + t 1 = t 0 + t 1 i j=0 s i = s i 1 + t i částečný součet pro aktuální člen je částečný součet pro předchozí člen + hodnota aktuálního členu t j IZP cvičení 7 24

25 Výpočet řad Algoritmické schéma T = t0; // první člen řady S = T; // součet = první člen řady while( B(S, T)) { } T = f(t); // vypočítáme nový člen řady S = S + T; // tento člen přičteme k aktuálnímu // částečnému součtu Je nutné si vždy zjistit, jak se od sebe liší jednotlivé členy řady Pozor: Některé řady konvergují nejrychleji jen v omezeném definičním oboru funkce IZP cvičení 7 25

26 Bodovaný úkol 2 Částečné součty (řady) IZP cvičení 7 26

27 Bodovaný úkol 2 Pomocí částečných součtů implementuje výpočet exponenciální funkce e x. (Taylorova) řada má následující tvar: e x = 1 + x + x2 2! + x3 3! + x4 4! + Výsledek porovnejte s matematickou knihovnou math.h a obě hodnoty vypište na standardní výstup Nemůžete použít mocninu, faktoriál a funkci exp(x) z matematické knihovny math.h. Můžete použít funkci fabs()pro výpočet absolutní hodnoty a exp(x) pro výpis IZP cvičení 7 27

28 Bodovaný úkol 2 (66.6 ) x = 4.2; eps = 0.01; e x = 1 + x + x2 2! + x3 3! + x4 4! + double t = t0; // první člen řady double s = t; int i = 1; while (fabs(t) > eps) { // součet = první člen řady // index aktuálního členu řady t = f(t, i); // vypočítáme nový člen řady s = s + t; } return s; // tento člen přičteme k // aktuálnímu částečnému součtu IZP cvičení 7 28

29 Zřetězené zlomky IZP cvičení 7 29

30 Zřetězené zlomky Implementujte výpočet čísla π pomocí zřetězeného zlomku: π = IZP cvičení 7 30

31 Zřetězené zlomky Implementujte výpočet čísla π pomocí zřetězeného zlomku: π = 1 + n = IZP cvičení 7 31

32 Zřetězené zlomky Implementujte výpočet čísla π pomocí zřetězeného zlomku: π = n = n = IZP cvičení 7 32

33 Zřetězené zlomky Implementujte výpočet čísla π pomocí zřetězeného zlomku: π = n = 2 n = n = IZP cvičení 7 33

34 Zřetězené zlomky Implementujte výpočet čísla π pomocí zřetězeného zlomku: n = 1 π = n = 2 n = n = IZP cvičení 7 34

35 Příklad 2: Zřetězené zlomky Implementujte výpočet čísla π pomocí zřetězeného zlomku: π = IZP cvičení 7 35

36 Příště státní svátek CVIČENÍ ODPADÁ Můžete přijít na libovolné jiné cvičení, ale zadání bude vhodné pro samostudium Pozor: spousta cvičících je příští týden pryč Protože se už do půlsemestrálky neuvidíme, hodně štěstí IZP cvičení 7 36

37 Příklady k procvičení IZP cvičení 7 37

38 Příklad na rozehřátí Implementujte funkci void getmax(int *pole, int len, int *max); která vyhledá v poli maximální hodnotu a vrátí ji přes ukazatel IZP cvičení 7 38

39 Příklad na rozehřátí Implementujte funkci void getmax(int *pole, int len, int *max); která vyhledá v poli maximální hodnotu a vrátí ji přes ukazatel Jak inicializujeme pole? IZP cvičení 7 39

40 Příklad na rozehřátí Implementujte funkci void getmax(int *pole, int len, int *max); která vyhledá v poli maximální hodnotu a vrátí ji přes ukazatel Jak inicializujeme pole? int pole[10]={7,2,3,9,15,20,-1,42,100,-75}; IZP cvičení 7 40

41 Příklad na rozehřátí Implementujte funkci void getmax(int *pole, int len, int *max); která vyhledá v poli maximální hodnotu a vrátí ji přes ukazatel Jak inicializujeme pole? int pole[10]={7,2,3,9,15,20,-1,42,100,-75}; Jak zavoláme funkci getmax()? IZP cvičení 7 41

42 Příklad na rozehřátí Implementujte funkci void getmax(int *pole, int len, int *max); která vyhledá v poli maximální hodnotu a vrátí ji přes ukazatel Jak inicializujeme pole? int pole[10]={7,2,3,9,15,20,-1,42,100,-75}; Jak zavoláme funkci getmax()? int maximum = 0; getmax(pole, &maximum); IZP cvičení 7 42

43 Příklad 3: Zřetězené zlomky Implementujte výpočet čísla π pomocí zřetězeného zlomku: 4 π = Čitatele se vypočítají podle vztahu (2 n 1) IZP cvičení 7 43

44 Děkuji Vám za pozornost! IZP cvičení 7 44

Základy programování (IZP)

Základy programování (IZP) Základy programování (IZP) Deváté počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz 2016/2017

Více

Základy programování (IZP)

Základy programování (IZP) Základy programování (IZP) Bonusové laboratorní cvičení Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, 612 66 Brno Cvičící: Petr Veigend (iveigend@fit.vutbr.cz) Gabriela

Více

Iterační výpočty Projekt č. 2

Iterační výpočty Projekt č. 2 Dokumentace k projektu pro předměty IUS & IZP Iterační výpočty Projekt č. 2 Autor: Jan Kaláb (xkalab00@stud.fit.vutbr.cz) Úvod Úkolem bylo napsat v jazyce C program sloužící k výpočtům matematických funkcí

Více

Základy programování (IZP)

Základy programování (IZP) Základy programování (IZP) Deváté počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz 27.11.2017,

Více

Intervalové stromy. Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme. 1. Změna jednoho čísla v posloupnosti.

Intervalové stromy. Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme. 1. Změna jednoho čísla v posloupnosti. Intervalové stromy Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme průběžně provádět tyto dvě operace: 1. Změna jednoho čísla v posloupnosti. 2. Zjištění součtu čísel

Více

Základy programování (IZP)

Základy programování (IZP) Základy programování (IZP) Druhé laboratorní cvičení Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, 612 66 Brno Cvičící: Petr Veigend (iveigend@fit.vutbr.cz) Důležité

Více

2 Základní funkce a operátory V této kapitole se seznámíme s použitím funkce printf, probereme základní operátory a uvedeme nejdůležitější funkce.

2 Základní funkce a operátory V této kapitole se seznámíme s použitím funkce printf, probereme základní operátory a uvedeme nejdůležitější funkce. Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv copyright To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího (aby

Více

Iterační výpočty. Dokumentace k projektu č. 2 do IZP. 24. listopadu 2004

Iterační výpočty. Dokumentace k projektu č. 2 do IZP. 24. listopadu 2004 Dokumentace k projektu č. 2 do IZP Iterační výpočty 24. listopadu 2004 Autor: Kamil Dudka, xdudka00@stud.fit.vutbr.cz Fakulta Informačních Technologií Vysoké Učení Technické v Brně Obsah 1. Úvod...3 2.

Více

int => unsigned int => long => unsigned long => float => double => long double - tj. bude-li:

int => unsigned int => long => unsigned long => float => double => long double - tj. bude-li: 13.4.2010 Typová konverze - změna jednoho datového typu na jiný - známe dva základní implicitní ("sama od sebe") a explicitní (výslovně vyžádána programátorem) - C je málo přísné na typové kontroly = dokáže

Více

Lekce 9 IMPLEMENTACE OPERAČNÍHO SYSTÉMU LINUX DO VÝUKY INFORMAČNÍCH TECHNOLOGIÍ JAZYK C

Lekce 9 IMPLEMENTACE OPERAČNÍHO SYSTÉMU LINUX DO VÝUKY INFORMAČNÍCH TECHNOLOGIÍ JAZYK C Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace

Více

Kód uchazeče ID:... Varianta: 14

Kód uchazeče ID:... Varianta: 14 Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 14 1. V lednu byla zaměstnancům zvýšena mzda o 16 % prosincové mzdy. Následně

Více

Základy programování (IZP)

Základy programování (IZP) Základy programování (IZP) Druhé počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz 2016/2017

Více

Střední škola pedagogická, hotelnictví a služeb, Litoměříce, příspěvková organizace

Střední škola pedagogická, hotelnictví a služeb, Litoměříce, příspěvková organizace Střední škola pedagogická, hotelnictví a služeb, Litoměříce, příspěvková organizace Předmět: Vývoj aplikací Téma: Datové typy Vyučující: Ing. Milan Káža Třída: EK3 Hodina: 5 Číslo: V/5 Programování v jazyce

Více

9.3.2010 Program převod z desítkové na dvojkovou soustavu: /* Prevod desitkove na binarni */ #include <stdio.h>

9.3.2010 Program převod z desítkové na dvojkovou soustavu: /* Prevod desitkove na binarni */ #include <stdio.h> 9.3.2010 Program převod z desítkové na dvojkovou soustavu: /* Prevod desitkove na binarni */ #include int main(void) { int dcislo, kolikbcislic = 0, mezivysledek = 0, i; int vysledek[1000]; printf("zadejte

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, Varnsdorf, IČO: tel Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, Varnsdorf, IČO: tel Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Základy programování (IZP)

Základy programování (IZP) Základy programování (IZP) Čtvrté počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz 2016/2017

Více

Základy programování (IZP)

Základy programování (IZP) Základy programování (IZP) Druhé laboratorní cvičení Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, 612 66 Brno inecasova@fit.vutbr.cz Důležité informace Můj profil:

Více

1. test z PJC Jméno studenta: Pocet bodu: Varianta 37: příklad 5 (5 bodů)

1. test z PJC Jméno studenta: Pocet bodu: Varianta 37: příklad 5 (5 bodů) 1. test z PJC Jméno studenta: Pocet bodu: ---- Varianta 37: příklad 1 (5 bodů) Určete hodnotu výrazu: a=1,2,3 (a) 1 (b) 2 (c) 3 Varianta 37: příklad 2 (5 bodů) Jednoduchá implementace datového typu zásobník

Více

Operační systémy. Cvičení 3: Programování v C pod Unixem

Operační systémy. Cvičení 3: Programování v C pod Unixem Operační systémy Cvičení 3: Programování v C pod Unixem 1 Obsah cvičení Editace zdrojového kódu Překlad zdrojového kódu Základní datové typy, struktura, ukazatel, pole Načtení vstupních dat Poznámka: uvedené

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ DOKUMENTACE K PROJEKTU 2 DO PŘEDMĚTŮ IZP A IUS ITERAČNÍ VÝPOČTY BC. PETR ŠAFAŘÍK xsafar14 BRNO 2010 Obsah 1 Úvod 1 2 Analýza problému a princip

Více

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0 Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy

Více

Dokumetace k projektu pro předměty IZP a IUS

Dokumetace k projektu pro předměty IZP a IUS Dokumetace k projektu pro předměty IZP a IUS Iterační výpočty projekt č. 2 19. listopadu 2011 Autor: Vojtěch Přikryl, xprikr28@stud.fit.vutbr.cz Fakulta informačních Technologií Vysoké Učení Technické

Více

. Určete hodnotu neznámé x tak, aby

. Určete hodnotu neznámé x tak, aby Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 015 Kód uchazeče ID:.................. Varianta: 1 1. Původní cena knihy byla 50 Kč. Pak byla zdražena o 15 %. Jelikož nešla

Více

5 Rekurze a zásobník. Rekurzivní volání metody

5 Rekurze a zásobník. Rekurzivní volání metody 5 Rekurze a zásobník Při volání metody z metody main() se do zásobníku uloží aktivační záznam obsahující - parametry - návratovou adresu, tedy adresu, kde bude program pokračovat v metodě main () po skončení

Více

Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu.

Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Břetislav Fajmon, UMAT FEKT, VUT Brno Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Na jiných příkladech je téma podrobně zpracováno ve skriptech

Více

IUJCE 07/08 Přednáška č. 4. v paměti neexistuje. v paměti existuje

IUJCE 07/08 Přednáška č. 4. v paměti neexistuje. v paměti existuje Konstanty I možnosti: přednostně v paměti neexistuje žádný ; o preprocesor (deklarace) #define KONSTANTA 10 o konstantní proměnná (definice) const int KONSTANTA = 10; příklad #include v paměti

Více

Semestrální projekt. Předmět: Programování v jazyce C. Zadání: Operace s maticemi. Uživatelský manuál. ver. 1.0

Semestrální projekt. Předmět: Programování v jazyce C. Zadání: Operace s maticemi. Uživatelský manuál. ver. 1.0 Semestrální projekt Předmět: Programování v jazyce C Zadání: Operace s maticemi Uživatelský manuál ver. 1.0 Jakub Štrouf Obor: Aplikovaná informatika Semestr: 1. Rok: 2009/2010 Obsah: 1. Úvod 1.1. Technická

Více

Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr

Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr Seminář z IVT Algoritmizace Slovanské gymnázium Olomouc Tomáš Kühr Algoritmizace - o čem to je? Zatím jsme se zabývali především tím, jak určitý postup zapsat v konkrétním programovacím jazyce (např. C#)

Více

Práce s řetězci. IUJCE Přednáška č. 10. string.h. vrací: délku řetězce str (bez '\0')

Práce s řetězci. IUJCE Přednáška č. 10. string.h. vrací: délku řetězce str (bez '\0') Práce s řetězci string.h size_t strlen(const char *str); délku řetězce str (bez '\0') int strcmp(const char *str1, const char *str2); porovná řetězce o

Více

Formátové specifikace formátovací řetězce

Formátové specifikace formátovací řetězce 27.2.2007 Formátové specifikace formátovací řetězce - je to posloupnost podle které překladač pozná jaký formát má výstup mít - posloupnosti začínají znakem % a určující formát vstupu/výstupu - pokud chcete

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004 PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)

Více

. Opakovací kurs středoškolské matematiky podzim 2015

. Opakovací kurs středoškolské matematiky podzim 2015 . Opakovací kurs středoškolské matematiky podzim 0 František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou

Více

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY POMNĚNKA prase Pomni, abys nezapomněl na Pomněnku MSc. Catherine Morris POMNĚNKA Verze ze dne: 14. října 01 Materiál je v aktuální

Více

Pan Novák si vždy kupuje boty o velikosti 8,5 a každý den stráví

Pan Novák si vždy kupuje boty o velikosti 8,5 a každý den stráví Číselné obory Seznamte se s jistým panem Novákem z Prahy. Je mu 48 let, má 2 děti a bydlí v domě s číslem popisným 157. Vidíte, že základní informace o panu Novákovi můžeme sdělit pomocí několika čísel,

Více

MS EXCEL_vybrané matematické funkce

MS EXCEL_vybrané matematické funkce MS EXCEL_vybrané matematické funkce Vybrané základní matematické funkce ABS absolutní hodnota čísla CELÁ.ČÁST - zaokrouhlení čísla na nejbližší menší celé číslo EXP - vrátí e umocněné na hodnotu argumentu

Více

Úvod do jazyka C. Ing. Jan Fikejz (KST, FEI) Fakulta elektrotechniky a informatiky Katedra softwarových technologií

Úvod do jazyka C. Ing. Jan Fikejz (KST, FEI) Fakulta elektrotechniky a informatiky Katedra softwarových technologií 1 Fakulta elektrotechniky a informatiky Katedra softwarových technologií 12. října 2009 Organizace výuky Přednášky Teoretické základy dle normy jazyka C Cvičení Praktické úlohy odpřednášené látky Prostřední

Více

Programování v Javě I. Leden 2008

Programování v Javě I. Leden 2008 Seminář Java Programování v Javě I Radek Kočí Fakulta informačních technologií VUT Leden 2008 Radek Kočí Seminář Java Programování v Javě (1) 1/ 45 Téma přednášky Datové typy Deklarace třídy Modifikátory

Více

Logické operace. Datový typ bool. Relační operátory. Logické operátory. IAJCE Přednáška č. 3. může nabýt hodnot: o true o false

Logické operace. Datový typ bool. Relační operátory. Logické operátory. IAJCE Přednáška č. 3. může nabýt hodnot: o true o false Logické operace Datový typ bool může nabýt hodnot: o true o false Relační operátory pravda, 1, nepravda, 0, hodnoty všech primitivních datových typů (int, double ) jsou uspořádané lze je porovnávat binární

Více

Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto

Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto Exponenciální funkce Exponenciální funkce je taková funkce, která má neznámou na místě exponentu. Symbolický zápis by tedy vypadal takto: f:y = a x, kde a > 0 a zároveň a 1 (pokud by se a mohlo rovnat

Více

Paměť počítače. alg2 1

Paměť počítače. alg2 1 Paměť počítače Výpočetní proces je posloupnost akcí nad daty uloženými v paměti počítače Data jsou v paměti reprezentována posloupnostmi bitů (bit = 0 nebo 1) Připomeňme: paměť je tvořena řadou 8-mi bitových

Více

X36UNX 16. Numerické výpočty v sh příkazy expr, bc, dc. Zdeněk Sojka

X36UNX 16. Numerické výpočty v sh příkazy expr, bc, dc. Zdeněk Sojka X36UNX 16 Numerické výpočty v sh příkazy expr, bc, dc Zdeněk Sojka sojkaz1@fel.cvut.cz dc desk calculator - zadávání příkazů postfixově - data se ukládají do stacku - příkazy obyčejně pracují s jedním

Více

Racionální čísla, operátory, výrazy, knihovní funkce

Racionální čísla, operátory, výrazy, knihovní funkce Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Racionální čísla, operátory, výrazy, knihovní funkce BI-PA1 Programování a algoritmizace 1 Katedra teoretické informatiky Miroslav Balík

Více

PREPROCESOR POKRAČOVÁNÍ

PREPROCESOR POKRAČOVÁNÍ PREPROCESOR POKRAČOVÁNÍ Chybová hlášení V C# podobně jako v C++ existuje direktiva #error, která způsobí vypsání chybového hlášení překladačem a zastavení překladu. jazyk C# navíc nabízí direktivu #warning,

Více

Edita Kolářová ÚSTAV MATEMATIKY

Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................

Více

Práce s čísly. Klíčové pojmy: Základní matematické operace, zápis složitějších příkladů, mocniny, odmocniny, zkrácené operátory

Práce s čísly. Klíčové pojmy: Základní matematické operace, zápis složitějších příkladů, mocniny, odmocniny, zkrácené operátory Práce s čísly Cílem kapitoly je seznámit žáky se základy práce s čísly v programu python. Klíčové pojmy: Základní matematické operace, zápis složitějších příkladů, mocniny, odmocniny, zkrácené operátory

Více

Základní stavební prvky algoritmu

Základní stavební prvky algoritmu Základní stavební prvky algoritmu Podmínka. Cyklus for, while, do-while. Funkce, metody. Přetěžování. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká

Více

Programování v jazyce C pro chemiky (C2160) 7. Ukazatele, Funkce pro práci s řetězci

Programování v jazyce C pro chemiky (C2160) 7. Ukazatele, Funkce pro práci s řetězci Programování v jazyce C pro chemiky (C2160) 7. Ukazatele, Funkce pro práci s řetězci Ukazatele Každá proměnná je umístěna na konkrétním místě v paměti Paměť je organizována lineárně jako posloupnost bytů

Více

a n (z z 0 ) n, z C, (1) n=0

a n (z z 0 ) n, z C, (1) n=0 Mocniné řady Nechť 0, a 0, a, a 2,... jsou konečná komplexní čísla. Pak řadu funkcí a n ( 0 ) n, C, () naýváme mocninou řadou. Číslo 0 koeficienty mocniné řady. Onačme dále: se naývá střed mocniné řady,

Více

Zlatý řez nejen v matematice

Zlatý řez nejen v matematice Zlatý řez nejen v matematice Zlaté číslo a jeho vlastnosti In: Vlasta Chmelíková author): Zlatý řez nejen v matematice Czech) Praha: Katedra didaktiky matematiky MFF UK, 009 pp 7 Persistent URL: http://dmlcz/dmlcz/40079

Více

Programování v Javě I. Únor 2009

Programování v Javě I. Únor 2009 Seminář Java Programování v Javě I Radek Kočí Fakulta informačních technologií VUT Únor 2009 Radek Kočí Seminář Java Programování v Javě (1) 1/ 44 Téma přednášky Datové typy Deklarace třídy Modifikátory

Více

Jazyk C Program v jazyku C má následující strukturu: konstanty nebo proměnné musí Jednoduché datové typy: Strukturované datové typy Výrazy operátory

Jazyk C Program v jazyku C má následující strukturu: konstanty nebo proměnné musí Jednoduché datové typy: Strukturované datové typy Výrazy operátory Jazyk C Program v jazyku C má následující strukturu: Direktivy procesoru Globální definice (platné a známé v celém programu) Funkce Hlavička funkce Tělo funkce je uzavřeno mezi složené závorky { Lokální

Více

Jazyk C# (seminář 6)

Jazyk C# (seminář 6) Jazyk C# (seminář 6) Pavel Procházka KMI 29. října 2014 Delegát motivace Delegáty a události Jak docílit v C# funkcionální práce s metodami v C je to pomocí pointerů na funkce. Proč to v C# nejde pomocí

Více

Bitové operátory a bitová pole. Úvod do programování 2 Tomáš Kühr

Bitové operátory a bitová pole. Úvod do programování 2 Tomáš Kühr Bitové operátory a bitová pole Úvod do programování 2 Tomáš Kühr Bitové operátory Provádějí danou operaci s jednotlivými bity svých operandů Operandy bitových operátorů mohou být pouze celočíselné Vyhodnocení

Více

Rozsáhlé programy = projekty

Rozsáhlé programy = projekty Rozsáhlé programy = projekty Petr Šaloun katedra informatiky FEI VŠB-TU Ostrava 28. listopadu 2011 Petr Šaloun (katedra informatiky FEI VŠB-TU Ostrava) Rozsáhlé programy = projekty 28. listopadu 2011 1

Více

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled řijímcí řízení k. r. / Kompletní znění testových otázek - mtemtický přehled Koš Znění otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo otzníku? 8?. Které číslo

Více

Programovanie v jazyku C - funkcie a makra

Programovanie v jazyku C - funkcie a makra CVIČENIE 4/13 (S7) Programovanie v jazyku C - funkcie a makra About co je to funkcia a procedura, rekurzivne funkcie, co je to makro TODO: ŘETĚZCE řetězec je pole znaků zakončené 0 ( \0 má ASCI-kód 0,

Více

Matematika I Reálná funkce jedné promìnné

Matematika I Reálná funkce jedné promìnné Matematika I Reálná funkce jedné promìnné RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Reálná funkce Def. Zobrazení f nazveme

Více

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2 Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Výrazy Operátory Výrazy Verze pro akademický rok 2012/2013 1 Operace, operátory Unární jeden operand, operátor se zapisuje ve většině případů před operand, v některých případech

Více

a 3 c 5 A 1 Programové prostředí

a 3 c 5 A 1 Programové prostředí Programové prostředí Program se skládá z několika různých typů řádků. 1. Řádek pro komentář = program jej neprovede. Vložíte jej stisknutím CTRL+T, přes menu Insert -> Text, kliknutím na. Řádek začíná

Více

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);

Více

Zjednodušené základy jazyku C. Josef Podstata

Zjednodušené základy jazyku C. Josef Podstata Zjednodušené základy jazyku C Josef Podstata 3. 4. 014 1 Předmluva Tento dokument je určen všem zájemcům o programování v jazyce C. Nezáleží na tom, jestli už jste někdy v céčku programovali nebo ne. Text

Více

Ukazatel (Pointer) jako datový typ - proměnné jsou umístěny v paměti na určitém místě (adrese) a zabírají určitý prostor (počet bytů), který je daný

Ukazatel (Pointer) jako datový typ - proměnné jsou umístěny v paměti na určitém místě (adrese) a zabírají určitý prostor (počet bytů), který je daný Ukazatel (Pointer) jako datový typ - proměnné jsou umístěny v paměti na určitém místě (adrese) a zabírají určitý prostor (počet bytů), který je daný typem proměnné - ukazatel je tedy adresa společně s

Více

Algoritmizace a programování. Ak. rok 2012/2013 vbp 1. ze 44

Algoritmizace a programování. Ak. rok 2012/2013 vbp 1. ze 44 Algoritmizace a programování Ak. rok 2012/2013 vbp 1. ze 44 Vladimír Beneš Petrovický K101 katedra matematiky, statistiky a informačních technologií vedoucí katedry E-mail: vbenes@bivs.cz Telefon: 251

Více

Jak pracovat s absolutními hodnotami

Jak pracovat s absolutními hodnotami Jak pracovat s absolutními hodnotami Petr Matyáš 1 Co to je absolutní hodnota Absolutní hodnota čísla a, dále ji budeme označovat výrazem a, je jeho vzdálenost od nuly na ose x, tedy je to vždy číslo kladné.

Více

Kolekce ArrayList. Deklarace proměnných. Import. Vytvoření prázdné kolekce. napsal Pajclín

Kolekce ArrayList. Deklarace proměnných. Import. Vytvoření prázdné kolekce. napsal Pajclín Kolekce ArrayList napsal Pajclín Tento článek jsem se rozhodl věnovat kolekci ArrayList, protože je to jedna z nejpoužívanějších. Tento článek není kompletním popisem třídy ArrayList, ale budu se snažit

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

Zadání I. série. Obr. 1

Zadání I. série. Obr. 1 Zadání I. série Termín odeslání: 21. listopadu 2002 Milí přátelé! Vítáme vás v XVI. ročníku Fyzikálního korespondenčního semináře Matematicko-fyzikální fakulty Univerzity Karlovy. S první sérií nám prosím

Více

10 je 0,1; nebo taky, že 256

10 je 0,1; nebo taky, že 256 LIMITY POSLOUPNOSTÍ N Á V O D Á V O D : - - Co to je Posloupnost je parta očíslovaných čísel. Trabl je v tom, že aby to byla posloupnost, musí těch čísel být nekonečně mnoho. Očíslovaná čísla, to zavání

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

MATrixLABoratory letný semester 2004/2005

MATrixLABoratory letný semester 2004/2005 1Prostedie, stručný popis okien Command Window příkazové okno pro zadávání příkazů v jazyku Matlabu. Workspace zde se zobrazuje obsah paměti; je možné jednotlivé proměnné editovat. Command History dříve

Více

Střední škola informačních technologií a sociální péče, Brno, Purkyňova 97. Vybrané části Excelu. Ing. Petr Adamec

Střední škola informačních technologií a sociální péče, Brno, Purkyňova 97. Vybrané části Excelu. Ing. Petr Adamec INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Střední škola informačních technologií a sociální péče, Brno, Purkyňova 97 Vybrané části Excelu Ing. Petr Adamec Brno 2010 Cílem předmětu je seznámení se s programem Excel

Více

Čísla a číselné soustavy.

Čísla a číselné soustavy. Čísla a číselné soustavy. Polyadické soustavy. Převody mezi soustavami. Reprezentace čísel. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK.

Více

for (i = 0, j = 5; i < 10; i++) { // tělo cyklu }

for (i = 0, j = 5; i < 10; i++) { // tělo cyklu } 5. Operátor čárka, - slouží k jistému určení pořadí vykonání dvou příkazů - oddělím-li čárkou dva příkazy, je jisté, že ten první bude vykonán dříve než příkaz druhý. Např.: i = 5; j = 8; - po překladu

Více

Základy matematiky kombinované studium 714 0365/06

Základy matematiky kombinované studium 714 0365/06 Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické

Více

Základy programování. Úloha: Eratosthenovo síto. Autor: Josef Hrabal Číslo: HRA0031 Datum: 28.11.2009 Předmět: ZAP

Základy programování. Úloha: Eratosthenovo síto. Autor: Josef Hrabal Číslo: HRA0031 Datum: 28.11.2009 Předmět: ZAP Základy programování Úloha: Eratosthenovo síto Autor: Josef Hrabal Číslo: HRA0031 Datum: 28.11.2009 Předmět: ZAP Obsah 1 Zadání úkolu: 3 1.1 Zadání:............................... 3 1.2 Neformální zápis:.........................

Více

Základy algoritmizace a programování

Základy algoritmizace a programování Základy algoritmizace a programování Přednáška 1 Olga Majlingová Katedra matematiky, ČVUT v Praze 19. září 2011 Obsah Úvodní informace 1 Úvodní informace 2 3 4 Doporučená literatura web: http://marian.fsik.cvut.cz/zapg

Více

PB071 Programování v jazyce C Jaro 2013

PB071 Programování v jazyce C Jaro 2013 Programování v jazyce C Jaro 2013 Uživatelské datové typy, dynamické struktury a jejich ladění Organizační Organizační Vnitrosemetrální test 7.4. Dotazník k domácím úkolům informační, nebodovaný, pomáhá

Více

ZPRO v "C" Ing. Vít Hanousek. verze 0.3

ZPRO v C Ing. Vít Hanousek. verze 0.3 verze 0.3 Hello World Nejjednoduší program ukazující vypsání textu. #include using namespace std; int main(void) { cout

Více

IMPLEMENTACE OPERAČNÍHO SYSTÉMU LINUX DO VÝUKY INFORMAČNÍCH TECHNOLOGIÍ JAZYK C

IMPLEMENTACE OPERAČNÍHO SYSTÉMU LINUX DO VÝUKY INFORMAČNÍCH TECHNOLOGIÍ JAZYK C Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace

Více

Obsah. 1. Komplexní čísla

Obsah. 1. Komplexní čísla KOMPLEXNÍ ANALÝZA - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Komplexní čísla 1 2. Holomorfní funkce 3 3. Elementární funkce komplexní proměnné 4 4. Křivkový integrál 7 5. Index bodu vzhledem ke křivce 9 6.

Více

Jazyk C# (seminář 5)

Jazyk C# (seminář 5) Jazyk C# (seminář 5) Pavel Procházka KMI 23. října 2014 Přetěžování metod motivace Představme si, že máme metodu, která uvnitř dělá prakticky to samé, ale liší se pouze parametry V C# můžeme více metod

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně egistrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Implementace numerických metod v jazyce C a Python

Implementace numerických metod v jazyce C a Python Fakulta elektrotechnická Katedra matematiky Dokumentace k semestrální práci Implementace numerických metod v jazyce C a Python 2013/14 Michal Horáček a Petr Zemek Vyučující: Mgr. Zbyněk Vastl Předmět:

Více

Úvod do programování 7. hodina

Úvod do programování 7. hodina Úvod do programování 7. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Umíme z minulé hodiny Syntax Znaky Vlastní implementace

Více

Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e)

Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e) Logaritmus, logaritmická funkce, log. Rovnice a nerovnice ) Výraz log log +log není správná 0 - žádná z předchozích odpovědí ) Číslo log 8 6 je rovno číslu: ) Výraz log log +log - 0 ) Číslo log 6 6 je

Více

Téma je podrobně zpracováno ve skriptech [1], kapitola

Téma je podrobně zpracováno ve skriptech [1], kapitola Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6. Základní aproximační úlohu lze popsat následovně: Jsou dány body [x 0, y 0 ], [x 1, y 1 ],..., [x n, y n

Více

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LEXIKÁLNÍ ANALÝZA

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LEXIKÁLNÍ ANALÝZA PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LEXIKÁLNÍ ANALÝZA 2011 Jan Janoušek BI-PJP Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti LEXIKÁLNÍ ANALÝZA Kód ve vstupním jazyku Lexikální analyzátor

Více

LED_007.c Strana: 1/5 C:\Michal\AVR\Výukové programy\archiv\ Poslední změna: 4.10.2011 8:01:48

LED_007.c Strana: 1/5 C:\Michal\AVR\Výukové programy\archiv\ Poslední změna: 4.10.2011 8:01:48 LED_007.c Strana: 1/5 Nyní již umíme používat příkazy k větvení programu (podmínky) "if" a "switch". Umíme také rozložit program na jednoduché funkce a používat cyklus "for". Co se týče cyklů, zbývá nám

Více

Začínáme vážně programovat. Řídící struktury Přetypování Vstupně výstupní operace Vlastní tvorba programů

Začínáme vážně programovat. Řídící struktury Přetypování Vstupně výstupní operace Vlastní tvorba programů Začínáme vážně programovat Řídící struktury Přetypování Vstupně výstupní operace Vlastní tvorba programů Podmínky a cykly Dokončení stručného přehledu řídících struktur jazyka C. Složený příkaz, blok Pascalské

Více

Excel Matematické operátory. Excel předdefinované funkce

Excel Matematické operátory. Excel předdefinované funkce Excel Matematické operátory a) Sčítání + příklad =A1+A2 sečte obsah buněk A1 a A2 b) Odčítání - příklad =A1-A2 odečte hodnotu buňky A2 od hodnoty buňky A1 c) Násobení * příklad =A1*A2 vynásobí obsah buněk

Více

Lekce 19 IMPLEMENTACE OPERAČNÍHO SYSTÉMU LINUX DO VÝUKY INFORMAČNÍCH TECHNOLOGIÍ JAZYK C

Lekce 19 IMPLEMENTACE OPERAČNÍHO SYSTÉMU LINUX DO VÝUKY INFORMAČNÍCH TECHNOLOGIÍ JAZYK C Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

FUNKCE 2. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika

FUNKCE 2. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika FUNKCE 2 Autor: Mgr. Dana Kaprálová Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

Číselné soustavy v mikroprocesorové technice Mikroprocesorová technika a embedded systémy

Číselné soustavy v mikroprocesorové technice Mikroprocesorová technika a embedded systémy Ústav radioelektroniky Vysoké učení technické v Brně Číselné soustavy v mikroprocesorové technice Mikroprocesorová technika a embedded systémy Přednáška 8 doc. Ing. Tomáš Frýza, Ph.D. listopad 2012 Obsah

Více

IB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615)

IB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615) IB108 Sada 1, Příklad 1 ( ) Složitost třídícího algoritmu 1/-Sort je v O n log O (n.71 ). Necht n = j i (velikost pole, které je vstupním parametrem funkce 1/-Sort). Lehce spočítáme, že velikost pole předávaná

Více

Základy jazyka C. Základy programování 1 Martin Kauer (Tomáš Kühr)

Základy jazyka C. Základy programování 1 Martin Kauer (Tomáš Kühr) Základy jazyka C Základy programování 1 Martin Kauer (Tomáš Kühr) Organizační záležitosti Konzultace Pracovna 5.076 Úterý 15:00 16:30 Emailem martin.kauer@upol.cz Web předmětu http://tux.inf.upol.cz/~kauer/index.php?content=var&class=zp1

Více